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Construction of mathematical models from experimental data is a topical field in mathematical
statistics and nonlinear dynamics. It has a long history and still attracts increasing attention.
We briefly discuss key problems in nonlinear modeling for typical problem settings (“white”,
“gray”, and “black boxes”) and illustrate several contemporary approaches to their solution
with simple examples. Finally, we describe a technique for determination of weak directional
coupling between oscillatory systems from short time series based on empirical modeling of
their phase dynamics and present its applications to climatic and neurophysiological data.

1.1 Introduction

Ubiquitous use of analog-to-digital converters and fast development of computing power have
stimulated considerable interest in methods for modeling discrete sequences of experimental
data. Construction of mathematical models from “the first principles” is not always possi-
ble. In practice, available information about an object dynamics is often represented in the
form of experimental measurements of a scalar or vector quantityη, which is called “ob-
servable”, at discrete time instants. Such a data set is called “a time series” and denoted
{ηi}N

i=1 ≡ {η1, η2, . . . , ηN} whereηi = η(ti), ti = i∆t, ∆t is a sampling interval,N
is a time series length. Modeling from experimental time series is known as “system iden-
tification” in mathematical statistics and automatic control theory [1] or “reconstruction of
dynamical systems” in nonlinear dynamics [2].

Dynamical systems reconstruction has its roots in the problems ofapproximationandsta-
tistical investigationof dependencies. Initially, observed processes were modeled as explicit
functions of time which approximated experimental dependencies on the plane(t, η). The
purpose of modeling was either predicting the future evolution (via extrapolation) or smooth-
ing the data. A significant advance in empirical modeling of complex processes was achieved
in the beginning of the twentieth century whenlinear stochasticautoregressive models were
introduced [3]. It gave an origin to ARIMA models technology which became a predominant
approach for half a century (1920s - 1970s) and found numerous applications, especially in
automatic control [4, 1]. Subsequently, birth of the concept of “deterministic chaos” and fast
progress of computational power led to the appearance of a different framework. Currently,
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empirical modeling is often performed with the use ofnonlineardifference and differential
equations, see pioneering works [5, 6, 7, 8, 9, 10]. Such empirical models are demanded
in many fields of science and practice such as physics, meteorology, seismology, economy,
biomedicine, etc [11].

In this chapter a brief overview of the problems and techniques for construction of dy-
namical models from noisy chaotic time series is given. It supplements existing surveys
[12, 13, 14, 15, 16, 17, 18] due to the use of a special systematization of the variety of problem
settings and methods. Also, we try to provide clear explanation of the key points with simple
examples and illustrate some specific problems with our own results. For the most part, we
examine finite-dimensional models in the form of difference equations (maps)

xn+1 = f(xn, c) (1.1)

or ordinary differential equations (ODEs)

dx/dt = f(x, c), (1.2)

wherex is aD-dimensional state vector,f is a vector-valued function,c is aP -dimensional
parameter vector,n is discrete time, andt is continuous time.

We expose the problems “from simple to complex”, as the amount ofa priori information
about an object decreases. We start from a situation where only concrete values of model
parameters are to be found (“transparent box” or “white box”, Sec. 1.3). Then, we go via the
case where model structure is partly known (“gray box”, Sec. 1.4) to the case of noa priori
information (“black box”, Sec. 1.5). Throughout the chapter, we refer to a unified scheme of
the empirical modeling process outlined in Sec. 1.2. Some applications of empirical modeling
(in particular, to climatic and neurophysiological data) are described in Sec. 1.6.

1.2 Scheme of modeling process

Despite an infinite number of specific situations, objects, and purposes of modeling, one can
single out basic stages of the modeling process and present them using a scheme shown in
Fig. 1.1 which generalizes similar schemes given in [1, 4]. It starts with consideration of
availablea priori information about an object under investigation, formulation of the goals of
modeling, acquisition and preliminary analysis of experimental data (stage 1). It ends with a
desired application of a constructed model. However, the modeling process typically involves
multiple reiterations and step-by-step approach to a “good” model.

At the second stage, a model structure is specified. One chooses the type and number
of model equations, the form of functions entering their right-hand sides (components of the
functionf ), and dynamical variables (components of the vectorx). As for the latter, one can
use just the observable quantities as model variables, but in general the relationship among the
observables and dynamical variables may be specified separately. Usually, it takes the form
η = h(x), whereh is called “measurement function”. Moreover, the observable values may
be corrupted with noise. The stage 2 is often called “structural identification”.
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Figure 1.1: A general scheme of the process of modeling from time series

At the third stage, the values of the model parametersc are to be determined. One often
speaks ofparameter estimationor model fitting. In the theory of system identification this is a
stage of “parametric or non-parametric identification”. To perform the estimation, one usually
looks for a global extremum of an appropriatecost function. For example, the sum of squared
deviations of a model time realization from the observed data is often minimized.

Finally, the quality of a model is checked, as a rule, based on a specially reserved test part
of a time series. In respect of the final goal of modeling, one can distinguish between two
settings: “cognitive identification” (the goal is to obtain an adequate model and to understand
better the object behavior) and “practical identification” (a practical goal is to be achieved
with the aid of the model, e.g., a forecast). Depending on the setting, one checks either model
adequacyin respect of some properties (this step is also called model validation or verification)
or modelefficiencyin respect of the practical goal. If a model is found satisfactory (adequate
or efficient) then it may be exploited. Otherwise, one must return to one of the previous stages
of the scheme.

The background colors in (Fig. 1.1) change from black to white reflecting the degree of
a priori uncertainty. The worst situation is called “black box” problem: information about
an appropriate model structure is completely lacking and one must start the modeling process
from the very top of the scheme. The more information about a possible model structure
is available, the more probable is the success of modeling: the “box” becomes “gray” and
even “transparent” (“white”). In any case, one cannot avoid the stage of parameter estimation.



4 1 Nonlinear dynamical models from chaotic time series: methods and applications

Therefore, we start our consideration with the simplest situation when one knows everything
about an object, except for the concrete values of the model parameters. It corresponds to
white background color in Fig. 1.1.

1.3 “White box” problems

If a model structure is completely known, the problem reduces to the estimation of model
parametersc from the observed data. Such a setting is encountered in different applications
and, therefore, attracts considerable attention. There are two basic tasks:

1. to obtain parameter estimates with a desired accuracy; this is especially important if
the parameters cannot be measured directly under the conditions of experiment, i.e. the
modeling procedure acts as “a measurement device” [19, 20, 21, 22, 23, 24];

2. to obtain reasonable parameter estimates when time courses of some model state vari-
ablesxk can neither be measured directly nor calculated from the available time series of
the observableη, i.e. some model variables are “hidden” [25, 26].

Let us discuss both points in turn.

1.3.1 Parameter estimates and their accuracy

As a basic test example, we consider parameter estimation in a nonlinear map from its time
series. The object is a quadratic map in a chaotic regime

xn+1 = f(xn, c) + ξn, ηn = xn + ζn, (1.3)

wheref(xn, c) = 1 − cx2
n, the only parameterc is considered unknown,ξn, ζn are random

processes. The processξn is called “dynamical noise” since it affects the evolution of the
system, whileζn is referred to as “measurement noise” since it corrupts only the observations.
In the absence of any noise, one hasηn = xn so that all experimental data points on the plane
(ηn, ηn+1) lie exactly on the quadratic parabola (Fig. 1.2,a). The value ofc can be determined
from an algebraic equation whose solution takes the formĉ = (1− ηn+1)/η2

n (throughout the
paper, a “hat” denotes quantities calculated from a time series). It is sufficient to use any pair
of successive observed values withηn 6= 0. As a result, the model is practically ideal.

In the presence of any noise, one must speak of statistical estimates instead of precise
calculation of the parameter value. There are various estimation techniques [27]. Below, we
describe several of them, which are most widespread.

Maximum likelihood approach

The maximum likelihood (ML) approach is the most efficient under quite general conditions
[27]. It is most often announced as a method of choice. However, additional assumptions
about the properties of an object and noise are typically accepted in practice reducing the ML
approach to a version of the least squares (LS) technique.



1.3 “White box” problems 5

Figure 1.2: Parameter estimation in the quadratic map (1.3), the true value isc = 1.85. Open
circles denote observed data. a) Noise-free case, the dashed line is an original parabola. b)
Uniformly distributed dynamical noise. The dashed line is a model parabola obtained via
minimization of the vertical distances. c) Gaussian measurement noise. The dashed line is a
model parabola obtained via minimization of the orthogonal distances. d) Gaussian measure-
ment noise. Rhombs indicate a model time realization which is the closest one to the observed
data in the least squares sense

Let us start with the simplest situation when only dynamical noise is present in the system
(1.3). Letξn be a sequence of independent identically distributed random values whose one-
dimensional probability density function ispξ(z). Then, an ML estimate is such a value ofc
which maximizes logarithmic likelihood function

ln L(c) ≡ ln p(η1, . . . , ηN |c) ≈
N−1∑
n=1

ln pξ(ηn+1 − f(ηn, c)), (1.4)

which is, roughly speaking, a logarithm of a conditional probability to observe the available
time series{η1, . . . , ηN} at a givenc. To apply the ML-method, one needs to know the
distribution lawpξ(z) a priori. This is rarely the case, therefore, Gaussian distribution is
often assumed. It is not always the best idea but it is reasonable both from theoretical (central
limit theorem) and practical (successful results) point of view.
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Dynamical noise: ordinary least squares technique

For Gaussian noise, the ML estimation (1.4) reduces to the “ordinary” LS (OLS) technique.
The LS method is the most popular estimation technique due to the relative simplicity of im-
plementation, bulk of available theoretical knowledge about the properties of the LS estimates,
and many satisfactory practical results. The OLS technique consists in the minimization of
the sum of squared deviations

S(c) =
N−1∑
n=1

(ηn+1 − f(ηn, c))2 → min . (1.5)

Geometrically, it means that a curve of a specified functional form is drawn on the plane
(ηn, ηn+1) in such a way that the sum of squaredvertical distancesfrom experimental data
points to this curve is minimized (Fig. 1.2,b). The OLS technique often gives acceptable
accuracy of the estimates even if noise is not Gaussian, that is justified by the robust estimation
theory, see e.g. [28]. Therefore, it is valuable on its own, apart from being a particular case of
the ML approach.

A technical problem in application of the ML and the OLS estimation arises if a “relief”
of the cost function to be optimized exhibits multiple local extrema. It may be the case for
the problem (1.5) iff is nonlinear in parameterc. Then, the optimization problem is solved
with the aid of iterative techniques which require a starting guess for the estimated parameter.
Whether a global extremum will be found depends typically on the closeness of the starting
guess to the true value of the parameter. The functionf is linear inc for the example (1.3),
therefore the cost functionS is quadratic inc and has the only minimum which is easily found
via the solution of a linear algebraic equation. Such simplicity of the LS problem solution
is a reason for the widespread use of the models which are linear in parameters, so-called
pseudo-linearmodels, see also Sec. 1.5.

The error in the estimatêc decreases with the time series length. Namely, for the dynam-
ical noise case, both ML and OLS techniques give asymptotically unbiased and consistent
estimates, i.e. error in the estimate vanishes asN → ∞. Moreover, it can be shown that the
variance of the estimates decreases asN−1 [27, 28].

Measurement noise: total least squares technique and others

If only measurement noise is present, the estimation problem becomes more difficult. The
OLS technique (1.5) provides biased estimates for arbitrary long time series, since it is devel-
oped under the assumption of the dynamical noise. However, it is simple in implementation
and still may be used sometimes to get a crude approximation. Roughly speaking, if measure-
ment noise level is not high, namely up to 1%, then the OLS estimates are reasonably good
[20]. Throughout the chapter, we define noise level as the ratio of the noise root-mean-squared
value to the signal root-mean-squared value.

At a higher noise level, to enhance accuracy of the estimates is partly possible with the
aid of the total LS (TLS) method [19] where the sum of squaredorthogonal distancesis
minimized, see Fig. 1.2,c. But this is only partial solution since the bias in the estimates is
not completely eliminated. A more radical approach is to write down the “honest” likelihood



1.3 “White box” problems 7

function taking into account the effect of measurement noise. To accomplish it, one must
include an initial condition of a model map into the set of estimated quantities. Thus, for
Gaussian measurement noise the problem reduces to a version of the LS technique where a
modeltime realizationis made as close tothe observed time seriesas possible (Fig. 1.2,d):

S(c, x1) =
N−1∑
n=0

(ηn+1 − f (n)(x1, c))2 → min, (1.6)

wheref (n) stands for then-th iteration of the mapxn+1 = f(xn, c), f (0)(x, c) ≡ x.
As an orbit of chaotic system is highly sensitive to initial conditions and parameters, the

variance of such an estimate decreases very quickly with time series lengthN , even exponen-
tially for specific examples [22, 23]. But it holds true only if a global minimum of the cost
function (1.6) is guaranteed to be found. However, the graph of the cost functionS becomes
so “jagged” for a largeN that it appears practically impossible to find its global minimum
(see Fig. 1.3,a) because it would require unrealistically lucky starting guesses forc andx1. It
is also difficult to speak of the asymptotic properties of such estimates since the cost function
(1.6) is no longer smooth in the limitN → ∞. Therefore, modifications of the direct ML
approach have been developed for this problem setting [20, 21, 23, 24].

Figure 1.3: Cost functions for the example of the quadratic map (1.3) atN = 20 and true values
c = 1.85, x1 = 0.3: a) for the forward iteration approach (1.6), b) for the backward iterations
(1.7). Trial values ofx1 andxN are kept equal to their true values for illustration purposes

In particular, it was suggested to divide an original time series into segments of moderate
lengthL, minimize (1.6) for each segment separately, and average the segment estimates (a
piecewise approach). This is a practically reasonable technique but the resulting estimate may
remain asymptotically biased. Its variance decreases again only asN−1. Several tricks to
enhance the accuracy of the estimates are described below (Sec. 1.3.2). Here, we would like
to note a specific version of the LS technique suggested in [24] for one-dimensional maps. It
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relies upon the property that the only Lyapunov exponent of a one-dimensional map becomes
negative under the time reversal so that a “reverse-time” orbit is no longer highly sensitive to
parameters and an “initial” condition. Therefore, one minimizes

S(c, xN ) =
N−1∑
n=0

(ηN−n − f (−n)(xN , c))2 → min, (1.7)

wheref (−n) is then-th backward iteration of the map. The graph of this cost function looks
rather smooth and gradually changing (as in Fig. 1.3,b) even for arbitrary long time series
so that its global minimum can be readily found. At low and moderate noise levels (up to
5-15 %), the error in the estimates obtained via (1.7) turns out less than for the piecewise
approach. Moreover, for sufficiently low noise levels the backward iteration technique gives
asymptotically unbiased estimates whose variance decreases generically asN−2 . The latter
property is determined by close returns of the map orbit to an arbitrary small vicinity of the
extrema of the functionf [24].

1.3.2 Hidden variables

If the measurement noise level is considerable, the state variablex can be treated as “hidden”
since its true values are not known. But even “more hidden” are those variables whose values
can neither be measured directly nor calculated from the observed time series. The latter case
is encountered in practice very often. To estimate model parameters is much more problematic
in such a situation than for the settings considered in Sec. 1.3.1. However, if one succeeds,
there appears a possibility to get time courses of the hidden variables as a by-product of the
estimation procedure. Hence, a modeling procedure acts as a measurement device in respect
of dynamical variables.

Let us briefly mention available techniques. To a significant extent, all of them rely on
the idea (1.6), i.e. one looks for initial conditions and parameters of a model which provide
the least deviation of a model time realization from the observed data. The naive solution of
the problem (1.6) directly is called “initial value approach” [18]. As we already mentioned,
such a method is inapplicable already for moderately long chaotic time series, while simple
division of the time series into segments decreases accuracy of the estimates and the backward
iterations are not appropriate for multidimensional dissipative systems.

To overcome the difficulties and exploit longer time series (than allowed by the initial
value approach) is partly possible with the aid of Bock’s algorithm [25, 18]. It is often called
“multiple shooting approach” since it replaces the Cauchy problem with a set of boundary-
value problems to get a model orbit. Namely, the idea is to divide the time series into shorter
segments of the lengthL and consider “initial conditions” of the model on each of them as
additional quantities to be estimated. Optimization problems (1.6) are solved for each segment
while keepingmodel parameter valuesc the samefor all segmentsand imposing constraints
of “sewing the segments together” to obtain finally a model orbit which is continuous over
the entire observation period. Thus, the number of free parameters (“independent” estimated
quantities) remain the same as in the initial value approach but intermediate trial values for all
estimated quantities may pass through a domain which corresponds to a discontinuous model
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orbit and is, therefore, forbidden for the initial value approach. The latter property provides
higher flexibility of Bock’s algorithm [25].

The multiple shooting approach softens the demands to the choice of starting guesses for
the estimated quantities. However, for a longer time series it can also become inefficient since
the requirement of closeness of a chaotic model orbit to the observed time series over the entire
observation interval can appear very strict. One can overcome some difficulties if final discon-
tinuity of a model orbit at some fixed time instants within the observation period is allowed.
It increases the number of free parameters and, hence, leads to the growth of the variance of
their estimates, but simultaneously the probability to find a global minimum of the cost func-
tion increases. Such a modification allows the use of arbitrary long chaotic time series. The
undesirable “side effect” is that a model with inadequate structure can sometimes be regarded
“good” due to its ability to reproduce only short segments of a time series. Therefore, one
must avoid the use of too short continuity segments [18].

We note that there exist and are currently developed several methods for parameters and
hidden variables estimation which are suitable even for the case of simultaneous presence of
dynamical and measurement noise. They are based on Bayesian approach [29] and Kalman
filtering [30, 18]. But that broad field of research is beyond the scope of this chapter.

Model validation for the “white box” problems can be performed via one of the two basic
lines: 1) analysis of residual model errors, i.e. checking the agreement among their statis-
tical properties and expected theoretical properties of the noise (typically, Gaussianity and
temporal uncorrelatedness) [4]; 2) comparison of dynamical, geometrical, and topological
characteristics of a model attractor with the corresponding properties of an object [2].

1.3.3 What do we get from successful and unsuccessful modeling
attempts?

Success of the methods described above provides both estimates of model parameters and
time courses of hidden variables. It promises exciting applications such as validation of the
“physical” ideas underlying a specified model structure, “indirect measurement” of quantities
inaccessible for a device of an experimentalist, and restoration of the lost or distorted segments
of an observed time realization. However, unsuccessful modeling attempts also give useful
information. Let us elaborate.

In practice, one never encounters a purely “white box” problem. A researcher may only
have faith that a trial model structure is adequate to an object. Therefore, the result of mod-
eling may well appear negative, i.e. reveal an impossibility to get an adequate model with
the specified structure. In such a case, a researcher has to claim falseness of his/her ideas
about underlying mechanisms of the investigated process and return to the stage of structural
identification.

If there are several alternative model structures, then the results of time series modeling
may reveal the most adequate among them. In other words, a modeling procedure provides
opportunity to falsify or verify (or, possibly, make more accurate) substantial notions about
the dynamics of an object. An impressive example of such a modeling process and substantial
conclusions about the mechanism underlying a biochemical signaling process in cells is given
in [31]. In a similar way, Horbelt and co-authors validated concepts about a gas laser behavior
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and reconstructed interdependencies among transition rates and pumping current which are
difficult to measure directly [32]. However, despite these and some other successful practical
attempts, an estimation problem can often appear technically unsolvable: the more hidden
variables and unknown parameters are involved, the weaker are the chances for the success
and the lower is the accuracy of the obtained estimates.

1.4 “Gray box” problems

From our point of view, the most promising line of research in the field of dynamical systems
reconstruction is related to the “gray box” problems when one knows a lot about an appro-
priate model structure except for some components of the functionf in (1.1) or (1.2). These
components are, in general, nonlinear functions which can often be meaningfully interpreted
asequivalent characteristicsof certain elements of an object under investigation.

One has to choose someapproximatingfunctions for the characteristics. In this Section
we focus on approximation of univariate dependencies. Such a case is much simpler than
multivariate approximation addressed in Sec. 1.5. Despite models deduced from physical
considerations take most often the form of differential equations, let us consider a model map
as the first illustration for the sake of clearness.

1.4.1 Approximation and “overlearning” problem

Let the object be a one-dimensional mapxn+1 = F (xn). We pretend that the form of the
functionF is unknown. Let the observable coincide with the dynamical variablex: ηn = xn.
One has to build a one-dimensional model mapxn+1 = f(xn, c). The problem reduces to
selection of a model functionf(x, c) and its parametersc so that it could approximateF to
the best possible accuracy. It is the matter of agreement to attribute this problem setting to the
“gray box” class. We do so since the knowledge thatone-dimensionalmodel is appropriate
can be considered as an importanta priori information.

Usually, the OLS technique (1.5) is used to calculate parameter values. However, in-
terpretation of the results differs. Now, one speaks of approximation and its mean squared
error rather than of the estimates and noise. Typically, an individual model parameter is not
physically meaningful, only the entire model functionf(x, ĉ) can make sense as a nonlinear
characteristic. A key question is how to choose the form of the model functionf .

One may choose it intuitively via looking at the experimental data points on the plane
(ηn, ηn+1). However, this way is not always possible. Thus, it is practically excluded if
an unknown univariate function is only a component of a multidimensional model. A more
general and widespread approach is to use a functional basis for approximation. For example,
the celebrated Weierstrass theorems state that any continuous function over a finite interval
can be uniformly approximated to arbitrary high accuracy with an algebraic polynomial (or a
trigonometric polynomial under an additional condition). An algebraic polynomialf(x, c) =
c1 + c2x + · · · + cK+1x

K is one of the most efficient constructions for approximation of
smooth univariate dependencies. Therefore, we use it below for illustration.

Theoretically, any smooth function can be accurately approximated with a polynomial of
sufficiently highorderK. What value of the order must be chosen in practice given a time
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series of the finite lengthN , i.e. N − 1 data points on the plane(ηn, ηn+1)? It is a bad idea to
specify a very small polynomial order since a model function could not reasonably reproduce
an observed nonlinearity (Fig. 1.4,a, the thin line). It is a bad idea to choose very big order
as well: e.g., atK = N − 2 the graph of the model polynomial on the plane(ηn, ηn+1) can
pass through all the experimental data pointsexactly, but typically it would extremely badly
predict additional (test) observations. In the latter case, the model is said to beoverlearned
or overtrained[28]. It does not generalize, rather it just reproduces the observedN − 1 data
points (Fig. 1.4,a, the thick line).

Figure 1.4: Approximation based on the noisy quadratic map data. a) Observed data points
are shown with circles. Graphs of model polynomials of different ordersK are presented.
The dashed line forK = 2, the thin line forK = 1, the thick line corresponds toK =

15. b) Different cost functions (1.8) versus a model size: Circles for the Akaike criterion and
triangles for the Schwartz criterion. Both cost functions indicate an optimal model sizeP = 3

corresponding to the true polynomial orderK = 2

In practice, one often tries different polynomial orders, starting from a very small one and
successively increasing it. One stops when a model gives more or less satisfactory descrip-
tion of an object dynamics and/or the results of approximation saturate. This is a subjective
criterion, but it is the only one which is generally applicable, since any “automatic” approach
to the order selection is based on a specific well-formalized practical requirement and may
not recognize the most adequate model. Such automatic criteria were developed, e.g., in the
framework of the information theory. They are obtained from different considerations, but
formally reduce to minimization of a cost function

Φ(P ) = (model error) + (model size) → min . (1.8)

Here, the model error rises monotonously with the mean squared approximation errorε2 =
S/(N − 1). The model size is an increasing function of the number of model parametersP .
Thus, the first term in the sum (1.8) may be very large for small polynomial orders, while the
second term dominates for big orders. One often observes a minimum of the cost function
(1.8) for an intermediateK. The minimum corresponds to an optimal model size. The cost
functionΦ(P ) = (N/2) ln ε2(ĉ)+P is called the Akaike criterion,Φ(P ) = (N/2) ln ε2(ĉ)+
P ln N/2 is the Schwartz criterion, andΦ(P ) = ln ε2(ĉ) + P is a model entropy [5]. More
“cumbersome” is a formula for a cost function nameddescription length[33]. Description
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length minimization is currently the most widely used approach to the model size selection,
e.g. [34]. It is based on the ideas of optimal information compression, the Schwartz criterion
is an asymptotic expression for the description length. In Fig. 1.4,b we present an example of
a polynomial order selection for approximation of quadratic function from a short time series
of the quadratic map (1.3) with dynamical noise.

If an approximating function is defined in a closed form for the entire range of the argu-
ment (e.g., an algebraic polynomial) then the approximation and the model are calledglobal
[9]. An alternative approach is alocal (piecewise) approximation where a model function is
defined through a simple formula whose parameters values differ for different small domains
within the range of the argument [7, 9]. The most popular examples of the latter approach
are piecewise-constant functions, piecewise-linear functions, and cubic splines. Local models
are superior for the description of “complicated” nonlinear dependencies (strongly fluctuating
dependencies, dependencies with knees and discontinuities, etc), but they are less robust to
noise influence and require larger amount of data than global models of moderate size.

1.4.2 Model structure selection

As a rule, one needs to supplement a procedure for model size selection with a technique to
search for an optimal model of a specified size. Thus, according to the technique described
above the polynomial order is increased starting from zero and the procedure is stopped at
a certain value ofK, i.e. the terms are added to a model structure in a pre-defined order.
Therefore, a final model inevitably comprises all power ofx up toK, inclusively. However,
some of the low-order terms might be “superfluous”. Hence, it would be much better to
exclude them from the model. Different approaches have been suggested to realize a more
flexible way of the model structure selection. They are based either on successive selective
complication of a model [34] or its selective simplification starting from the biggest size [35,
37, 36, 16], see also [38]. Let us describe briefly a version of the latter strategy [37].

One of the efficient principles to recognize “superfluous” model terms is to look at the
behavior of the corresponding coefficient estimates when reconstruction is performed from
different segments of a time series, i.e. from the sets of data points occupying different do-
mains in the model state space. Typically, it is realized in the most efficient way of a time
series corresponding to a transient process is used. The idea is that the parameter values of an
adequate global model of adynamically stationarysystem must not depend on the reconstruc-
tion segment. On the other hand, the estimates of parameters corresponding to superfluous
terms may exhibit significant changes when a reconstruction segment is moved along a time
series. A procedure for model structure selection can be based on successive removal of the
terms whose coefficients are the least stable being estimated from different segments. In [37]
the degree of instability of a coefficient is defined as the ratio of its standard deviation to its
empirical mean. Removal is stopped, e.g., when model ability to reproduce an object behavior
in a wide domain of state space starts to worsen.

1.4.3 Reconstruction of regularly driven systems

In many cases uncertainty in a model structure can be reduced ifa priori knowledge about
an object properties is taken into account. We illustrate it with an example of systems under
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regular (periodic or quasiperiodic) driving. Indication to the presence of external driving can
be often seen in the power spectrum which typically exhibits pronounced discrete peaks for
regularly driven systems, even though it is neither a necessary nor a sufficient sign. Having
the hypothesis about the presence of external regular driving, one can incorporate functions
explicitly depending on time into the model structure to describe the assumed driving. For the
first time, it was done for nonlinear two-dimensional oscillators under sinusoidal driving in
[39]. In the same work successful reconstruction of nonlinear dynamical characteristics of a
capacitor with ferroelectric was demonstrated.

In a more general setting, reconstruction of regularly driven systems was considered in
[40, 41]. For harmonical additive driving, it is reasonable to construct a model in the form

dDx/dtD = f(x, dx/dt, . . . , dD−1x/dtD−1, c) + a cos ωt + b sin ωt, (1.9)

wheref is an algebraic polynomial and the number of variablesD is less than for a corre-
spondingstandardmodel by 2 (see Sec. 1.5 about the standard structure).

In case of arbitrary additive regular driving (either complex periodic or quasi-periodic
one), it is convenient to use the model form

dDx/dtD = f(x, dx/dt, . . . , dD−1x/dtD−1, c) + g(t, c), (1.10)

where the functiong describes driving and also depends on unknown parameters. It may take
the form of a sum of trigonometric polynomials [41]

g(t, c) =
k∑

i=1

Ki∑

j=1

ci,j cos(jωit + ϕi,j). (1.11)

We note that adequate models with trigonometric polynomials can be obtained even for a
very large number of involved harmonics (Ki of the order of hundreds), while the use of a
high-order algebraic polynomialK leads typically to model orbits diverging to infinity.

Besides, the explicit time dependence can be introduced into all the coefficients of the
algebraic polynomialf to allow the description of not only additive driving [40], Fig. 1.5.
Efficiency of all these approaches was shown in numerical experiments with reconstruction
of equations of exemplary oscillators from their noise-corrupted chaotic time series for pulse
periodic, periodic with subharmonics, and quasiperiodic driving.

1.5 “Black box” problems

If nothing is known about an appropriate model structure, one must appeal to universal con-
structions. They usually involve huge number of parameters that does not allow the use of
majority of the estimation techniques described in Sec. 1.3. In particular, the hidden variables
problem is unsolvable in such a case. Therefore, time series of all dynamical variables must
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Figure 1.5: Reconstruction of the driven Toda oscillatord2x/dt2 = −0.45dx/dt + (5 +

4 cos t)(e−x − 1) + 7 sin t: a) an attractor of the original system; b) an attractor of a model
of the type (1.9) withD = 2, K = 9, and sinusoidal dependence of time introduced into all
polynomial coefficients, c) a diverging phase orbit of a standard model (1.13) and (1.14) with
D = 4, K = 6

be either measured directly or calculated from the observed data. The latter is called “recon-
struction of state vectors”. Then, one constructs a multidimensional model of the form (1.1)
or (1.2) where the multivariate functionf takes one of the universal forms comprising many
parameters. In practice, to estimate these parameters is reasonable with the aid of the OLS
technique. To simplify the problem further, it is desirable to choose functionsf which are
linear in parametersc (pseudo-linear models). Considerable efforts of many researchers were
devoted to the development of such techniques.

1.5.1 Universal structures of model equations

A theoretical background for different approaches to reconstruction of model state variables
from a scalar observable time realization is the celebrated Takens theorems [42]. One of them
states that for almost any deterministic dynamical system of the form (1.1) or (1.2) with a
sufficiently smooth function in the right-hand side, its dynamics on anm-dimensional smooth
manifold can be topologically equivalently described in terms of vectors constructed asD-
plets of successive values of almost any observableη = h(x) separated with an almost arbi-
trary fixed time intervalτ . The equivalent description is (almost) guaranteed if dimensionality
of these vectors is high enough, namely,D > 2m. One says that the original manifold is
embeddedinto the new state space which is often called “embedding space”. Rigorous formu-
lations, detailed discussions, and generalizations of the theorems can be found in [43, 44, 45].

Thus, the vectors(ηn, ηn+τ , . . . , ηn+(D−1)τ ), whereτ is a time delay, can serve as state
vectors. This approach is very popular since it does not involve any transformation of the
observed time series. It is usually employed for construction of model maps in the form

ηn = f(ηn−τ , . . . , ηn−Dτ , c) (1.12)

Theoretically, the value ofτ may be almost arbitrary. However, in practice it is undesirable
to use both very small delays (to avoid strong correlations among the state vector compo-
nents) and very big ones (to avoid complication of the structure of the reconstructed attractor).
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Therefore, an optimal choice ofτ is possible. There are several recipes such as to take the first
zero of autocorrelation function of the time series [46], the first minimum of the mutual infor-
mation function [47], etc [48]. It was also suggested to use a non-uniform embedding where
time intervals separating successive components of a state vector are not the same [49, 50].
Finally, a variable embedding is possible where the set of time delays and even dimensionality
of a state vector depends on the location in state space [50].

Since the value ofm is not knowna priori, it is not clear what value of model dimension to
specify. There are several approaches which can give a hint: false nearest neighbors technique
[51], correlation dimension estimation [52], principal component analysis [53]. However,
in practice one usually tries different model dimensions, starting from a very small value
and successively increasing it until a satisfactory model is obtained or the results saturate.
Therefore, the choice of the model dimension and even of the time delays may become an
integral part of a monolithic modeling process, rather than a separate first stage.

There have been suggested different approaches to choose the form of the functionf in
(1.12). Algebraic polynomials perform extremely badly already for approximation of bivariate
functions [40, 16], while for the “black box” problem one must often exploit the value ofD
in the range5 ÷ 10. Therefore, algebraic polynomials are rarely used in practice. They
represent an example ofweak approximationtechnique [34] since their number of parameters
and errors rise very quickly with model dimensionD. Weak approximation techniques involve
also trigonometric polynomials and wavelets.

Much attention has been paid to the search forstrong approximationtechniques which
behave almost equally well for small and rather big model dimensions. They involve, in
particular, local methods [7, 9, 10, 54]. Strong global approximation can be achieved using
radial, cylindrical, and elliptic basis functions [34, 50, 55], and artificial neural networks [8].
See also [56] for examples of different approaches. We do not discuss them in details but note
that these constructions involve many parameters and the problem of model structure selection
(Sec. 1.4.2) is especially important here.

Another Takens theorem considers continuous-time dynamical systems (1.2) with much
smoother functions in their right-hand side. It states that one can perform embedding into
the space of successive derivatives of the observable, i.e., state vectors can be constructed
asη, dη/dt, . . . , dD−1η/dtD−1. This approach does not involve a parameterτ which is an
advantage. However, it is more difficult to realize in practice since even weak measurement
noise is a serious obstacle in calculation of high-order derivatives. Sometimes, this problem
can be solved with the aid of filtering, e.g., Savitsky – Golay filter, but for a sufficiently strong
noise it becomes unsolvable. In practice, it is realistic to use the values ofD = 2 ÷ 3, rare
successes are reported forD = 5 [16]. In combination with these state vectors, one constructs
usually a model ODE in the form

dDη/dtD = f(η, dη/dt, . . . , dD−1η/dtD−1, c). (1.13)

The situation with the choice of approximating function is the same as discussed above
for the model (1.12). However, when using the successive derivatives, there are more chances
to observe a gradually varying experimental dependency (1.13). Therefore, additional reasons
to use algebraic polynomials appear. So, in (1.13)f often takes the form
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f(x1, x2, . . . , xD, c) =
K∑

l1,l2,...,lD=0

cl1,l2,...,lD

D∏

j=1

x
lj
j ,

D∑

j=1

lj ≤ K. (1.14)

The structure (1.13) with algebraic polynomial (1.14) or rational function in the right-hand
side is even calledstandard[57] since, theoretically, any smooth dynamical system can be
transformed into such a form for a sufficiently largeD andK. The values of coefficients in
both (1.12) and (1.13) are estimated with the aid of the OLS technique. This is valid for a
sufficiently low measurement noise level.

Successful results of constructing a model in the form (1.12) can be found, e.g., in [50,
54, 56]. Examples of successful modeling with the aid of (1.13), we are aware of, are even
more rare [16]. As a rule, the structure (1.13) and (1.14) leads to very cumbersome equa-
tions tending to exhibit orbits diverging to infinity. It is especially inefficient in the case of
multidimensional models. We stress that all the approaches described in this section are rig-
orously justified only in the case of absence of both measurement and dynamical noise. Their
generalizations to the noisy cases are quite problematic [58].

1.5.2 Choice of dynamical variables

Let us pay more attention to the important problem of the choice of dynamical (state) vari-
ables, i.e. components of the state vectorsx. There are very many techniques to obtain time
series of state variables from an observableη. Having only a scalar observable, one can use
either successive differentiation or time delay embedding (Sec. 1.5.1). Besides, there are tech-
niques of weighted summation [59] and integration [60] appropriate for strongly non-uniform
signals. Further, one can restore a phase of the signal as an additional variable using the an-
alytic signal approach implemented either via the Hilbert transform or the complex wavelet
transform [61]. It is also possible to use combinations of all the techniques, e.g., to obtain
several variables with the time-delay embedding, several others with integration, and the rest
with differentiation [59]. If one observes more than one quantity characterizing a process
under investigation, then it is possible to obtain dynamical variables from a time realization
of each observable using any combination of the mentioned techniques so that the number of
variants rises extremely quickly, see also [62]. It may appear possible that some of the ob-
servables should better be ignored in modeling. For example, it may well happen that a better
model can be constructed with successive derivatives of the only observable if it turns out easy
to find an appropriate approximating functionf in (1.13) for such a choice.

After reconstruction of state vectors{x(ti)}, an experimental time series of “left-hand
sides” of model equations{y(ti)} is obtained from the time series{x(ti)} via the numerical
differentiation of{x(ti)} for model ODEs (1.2) or the time shift of{x(ti)} for model maps
(1.1). “Unlucky” choice of dynamical variables can make approximation of the model de-
pendencyy(x) with a smooth function more difficult, or even impossible if the relationship
amongy andx appears non-unique.

Taking into account the importance of the stage of the state variables selection [63, 64]
and multiple alternatives available, an actual problem is to look for the best (or, at least, for
a reasonable) set of state variables. It is, of course, possible just to try different variants and
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look for the best model in each case. However, this procedure would be too time-consuming.
Moreover, it may remain unclear why a good model is not achieved for a given set of dynam-
ical variables: Whether it is due to inappropriate model function or due to inappropriate state
variables.

A procedure suggested in [65] allows to test different sets of dynamical variables and se-
lect variants which are more promising for the global modeling purposes. It is based on the
ideas of [66, 67] and consists in a non-parametric test of an approximated dependencyy(x)
for uniqueness and continuity. A domainV comprising the set of vectors{x(ti)} is divided
into “hypercubic” boxes of the sizeδ (Fig. 1.6,a). Then, all the boxess1, s2, . . . , sM compris-
ing at least two vectors are selected. The difference between maximal and minimal values of
the “left-hand side” variabley within a boxsk is calleda local variationεk. Maximal local
variationεmax = max{ε1, ε2, . . . , εM} and the plotεmax(δ) are used as the main character-
istics of the investigated dependencyy(x). Suitability of the considered quantitiesx andy
for global modeling is estimated as follows. One must choose the variables so that the plot
εmax(δ) tend to the origin gradually, without “knees” (Fig. 1.6,b, the lowest curve) for each
of the approximated dependenciesy(x).

Figure 1.6: a) An illustration for the technique of testing a dependencyy(x) for uniqueness and
continuity,D = 2. b) The plotsεmax(δ) for different sets of dynamical variables. The thick
line corresponds to the best variant, the dashed line to the worst one (non-uniqueness)

1.6 Applications of empirical models

Probably, the most famous application is a forecast of the future evolution based on the avail-
able time series. This intriguing task is considered, e.g., in [4, 7, 9, 10, 11, 54, 55, 56]. Weather
and climate forecasts, prediction of earthquakes, currency exchange rates and stock prices are
often in the center of attention. Up to now, empirical models of the type described here are
rarely useful to predict such complex processes due to “the curse of dimensionality” (diffi-
culties in modeling quickly grow with dimensionality of the investigated dynamics), deficit
of experimental data, and noise. But chances for a successful forecast are higher in simpler
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situations.
An adequate empirical model may provide a deeper insight into mechanisms underlying

the process under investigation [5, 16]. A positive result of model construction (high model
quality) may validate physical ideas underlying the model structure. Such a conclusion is of
an all-sufficient basic value and may inspire later practical applications.

Below, we consider other applications of empirical models. Namely, we focus on the
problem of determination of a directional coupling between oscillators from short time series
(Sec. 1.6.1) and present its applications to climatic signals (Sec. 1.6.2) and electroencephalo-
grams (Sec. 1.6.3). Finally, we mention different practical applications and give references
for further reading (Sec. 1.6.4).

1.6.1 Method to reveal weak directional coupling between oscillatory
systems from short time series

One can extract different useful information from the estimates of model parameters. Thus,
a sensitive approach to determination of directionality of coupling between two oscillatory
systems solely from their bivariate time series, a problem which is important in many practical
and scientific fields, was suggested recently in [68]. It is based on construction of model
equations forthe phase dynamicsof the systems. Its main idea is to estimate how strong future
evolution of the first system’s phase depends on the second system’s phase and vice versa. A
detailed discussion can be found in the chapter written by M. Rosenblum (this volume). We
describe only several points necessary to explain our modification of the method for the case
of short time series and its applications.

First, one restores time series of the oscillations phases{φ1(t1), φ1(t2), . . . , φ1(tN )}
and{φ2(t1), φ2(t2), . . . , φ2(tN )} from the original signals{x1(t1), x1(t2), . . . , x1(tN )} and
{x2(t1), x2(t2), . . . , x2(tN )}. We do it below with the analytic signal approach implemented
via complex wavelet transform [61]. Given a signalX(t), one defines signalW (t) as

W (t) =
1√
s

∞∫

−∞
X(t′)ψ∗ ((t− t′)/s) dt′, (1.15)

whereψ(η) = π−1/4 exp (−jω0η) exp (−η2/2s2) is Morlet wavelet,s is a fixed time scale.
For ω0 = 6 used below,ReW (t) can be regarded asX(t) band-pass filtered around the fre-
quencyf ≈ 1/s with the relative bandwidth of1/8. The phase is defined asφ(t) = arg W (t).
It is the angle of rotation of the radius-vector on the plane(ReW, ImW ) which increases by
2π after each complete revolution. To avoid edge effects while estimating (1.15) from a time
series, we ignore segments of the length1.4s at each edge after the phase calculation.

Second, one constructs a global model relating phase increments over a time intervalτ to
the phases. Similarly to [68, 36], we use the form

φ1(t + τ)− φ1(t) = F1(φ1(t), φ2(t + ∆1)) + ξ1(t),
φ2(t + τ)− φ2(t) = F2(φ2(t), φ1(t + ∆2)) + ξ2(t),

(1.16)
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whereξ1,2 are zero-mean random processes,∆1,2 stand for possible time delays in coupling,
F1 is a trigonometric polynomialF1 =

∑
m,n

[am,n cos(mφ1+nφ2)+bm,n sin(mφ1+nφ2)], F2

is defined analogously. The strength of the influence of the system 2 on the system 1 (2 → 1)
is quantified as

c2
1 =

1
2π2

2π∫

0

2π∫

0

(∂F1/∂φ2)
2
dφ1 dφ2

=
∑
m,n

n2
(
a2

m,n + b2
m,n

)
. (1.17)

The influence1 → 2 is quantified “symmetrically” (c2
2). We use the third-order polynomials

for F1,2 and setτ equal to a basic oscillation period.
Given a time series, one estimates the coefficientsam,n, bm,n via the OLS technique.

Then, one can get the estimate ofĉ2
1 by replacing the true values ofam,n, bm,n in (1.17) with

their estimates. A reliable detection of the weak directional coupling can only be achieved in
non-synchronous regimes. The latter can be diagnosed if the mean phase coherenceρ(∆) =√
〈cos(φ1(t)− φ2(t + ∆))〉2t + 〈sin(φ1(t)− φ2(t + ∆))〉2t [69] is much less than 1.
The estimatorŝc1 and ĉ2 are quite precise only for long signals (about 1000 basic peri-

ods for moderate noise levels). However, in practice one must often deal with much shorter
signals of about several dozens of basic periods. Thus, to analyze a nonstationary time series
(e.g. in physiology) one must divide it into relatively short segments and estimate coupling
characteristics from each segment separately. An attempt to apply the technique without mod-
ifications to such short series leads to biased estimates. Unbiased estimatorsγ1 andγ2 have
been proposed in [70] instead ofĉ2

1 andĉ2
2, respectively, and an indexδ = γ2 − γ1 is used to

characterize coupling directionality. Expressions for their95% confidence bands have been
also derived. The latter allows to trace significance of the estimates obtained from each short
segment. (We do not show the formulas here since they are rather cumbersome.) For mod-
erate coupling strength and phase nonlinearity,γ1 andγ2 guarantee probability of erroneous
conclusions about the presence of coupling less than 0.025 [71]. Additional tests with exem-
plary oscillators show thatγ1(∆1) andγ2(∆2) are applicable for a time series as short as 20
basic periods ifρ(∆) < 0.4. The latter condition excludes synchronous-like signals. Other
available techniques for coupling direction identification and conditions for superiority of the
described technique are reported in [72].

1.6.2 Application to climatic data

Using the above technique, we investigated the dynamics of the North Atlantic Oscillation
(NAO) and El Nĩno/Southern Oscillation (ENSO) processes for the second half of the twen-
tieth century. ENSO and NAO represent the leading modes of interannual climate variability
for the globe and NH, respectively [73, 74]. Different tools have been used for the analysis of
their interaction, in particular, cross-correlation function and Fourier and wavelet coherence,
e.g. [75]. However, all the climatic signals are rather short that has made confident inference
about the character of interaction between those processes difficult.
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Here, we present the results only for a specific pair of climatic indices. The first one is
NAO index [http://www.ncep.noaa.gov] defined as the leading decomposition mode of the
field of 500 hPa geopotential height in NH based on the “Rotated Principal Component Anal-
ysis” [76]. The second one is T(Niño-3,4) which characterizes sea surface temperature in
an equatorial region of the Pacific Ocean (5oN-5oS, 170oW-120oW) [77]. These time series
cover the period 1950-2004 (660 monthly values).

Fig. 1.7 demonstrates individual characteristics of the NAO index (Fig. 1.7,a) and T(Niño-
3,4) (Fig. 1.7,d). Global wavelet spectra of NAO index and T(Niño-3,4) exhibit several peaks
(Fig. 1.7,b,e). One can assume that the peaks correspond to some oscillatory processes for
which the phase can be adequately introduced. To extract phases of “different rhythms” in
NAO and ENSO, we tried several values ofs in (1.15) corresponding to the different spectral
peaks. We estimated coupling between all the rhythms pairwise. The only case when sub-
stantial conclusions about the presence of coupling are inferred is the “rhythm” withs = 32
months for both signals, see the dashed lines in Figs. 1.7,a and 1.7,d. The phases of 32-months
rhythms in both signals are well-defined since clear rotation of the orbits around the origin on
the complex plane takes place (Figs. 1.7,c and 1.7,f).

Figure 1.7: Individual characteristics of the NAO index and T(Niño-3,4). a) NAO index (the
gray line) andReW for s = 32 months (the dashed line). b) Global wavelet spectrum of the
NAO index. c) An orbitW (t) for the NAO index,s = 32 months. (d)-(f) The same as (a)-(c),
but for T(Niño-3,4)

The results of the phase dynamics modeling are shown in Fig. 1.8 fors = 32 and model
(1.16) with τ = 32. Fig. 1.8,a shows that the technique is applicable only for∆1 > −30
whereρ < 0.4. The influence ENSO→ NAO is pointwise significant for−30 ≤ ∆1 ≤ 0 and
maximal for∆1 = −24 months (Fig. 1.8,b). Apart from the pointwisep-level, one can infer
the presence of the influence ENSO→ NAO as follows. Probability of a random erroneous
conclusion about coupling presence based only on a pointwise significantγ1 for a specific∆1

is 0.025. Taking into account that the values ofγ1(∆1) separated with∆1 less thanτ are
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strongly correlated, one can consider as “statistically independent” the values ofγ1 from the
two groups:−30 ≤ ∆1 ≤ 0 and0 < ∆1 ≤ 32. Then, the probability of erroneous conclusion
based on pointwise significantγ1 at least in one of the two groups as observed in Fig. 1.8,b is
approximately twice as large and, hence, equal to 0.05. Thus, we conclude with confidence
probability of 0.95 that the influence ENSO→ NAO is present. Most probably, it is delayed
by 24 months. However, the latter conclusion is not so reliable. No signs of the influence
NAO → ENSO are detected (Fig. 1.8,c).

Figure 1.8: Analysis of coupling from the NAO index and T(Niño-3,4). a) Mean phase coher-
ence. b),c) The estimators of the strength of the influence ENSO→ NAO (∆ means∆1) and
NAO→ ENSO (∆ means∆2), respectively, with their95% confidence bands

We note that largeρ for ∆ < −30 do not indicate strong coupling. For such short time
series and close basic frequencies of oscillators, the probability to getρ > 0.4 for uncoupled
processes is greater than 0.5 as observed in numerical experiments with exemplary oscillators.
More details can be found in [78].

We stress that the conclusion about the presence of the influence ENSO→ NAO is quite
reliable here. Confidence probability 0.95 was not accessible for traditional techniques. It can
be attributed to high sensitivity of the phases to weak coupling.
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1.6.3 Application to electroencephalogram data

Here, we present an application of the estimators to analyze a two-channel human intracranial
epileptic electroencephalogram (EEG) recording with the purpose of epileptic focus localiza-
tion.

The data were recorded from intracranial depth electrodes implanted in a patient with
medically-refractory temporal lobe epilepsy as part of routine clinical investigations to deter-
mine candidacy for epilepsy surgery (provided by Dr. Richard Wennberg, Toronto Western
Hospital). The recordings included several left temporal neocortical→ hippocampal seizures
that occurred over the course of a long partial status epilepticus, see an example in Fig. 1.9,a,b.
Two channels were analyzed: the first channel situated in the left hippocampus, the second
channel in the left temporal neocortex, where the “interictal” activity between seizures at
the time was comprised of pseudoperiodic epileptiform discharges. Visual analysis of the
interictal-ictal transitions (shown with vertical dashed lines) determined that the seizures all
started first in the neocortex, with an independent seizure subsequently beginning at the ipsi-
lateral hippocampus. We analyzed four recordings, but here we present the results for only
one of them for the sake of brevity, as an illustration of application of the method to a nonsta-
tionary real-world system.

The time series of Fig. 1.9,a,b contains 4.5 minutes of depth electrode EEG (referential
recording to scalp vertex electrode) recorded at a sampling frequency of 250 Hz. There are
more or less significant peaks in power spectra for both channels (not shown). For the hip-
pocampal channel: at frequency 3.2 Hz before the seizure (starting approximately at the100th
second and finishing approximately at the 220th second), 2.3 Hz after the seizure, and 7.1 Hz
during the seizure. For the neocortex channel: at frequency 1.4 Hz before the seizure, 1.6 Hz
after the seizure, and 7.1 Hz during the seizure. We have computed coupling characteristics
in a running window. The length of running window was changed fromN = 103 data points
to N = 104 data points. Time delays∆1,2 were set equal to 0. The phases were determined
using (1.15) withω0 = 2 and different time scaless. In particular, we tried the time scales
corresponding to the main peak of the scalogram for each signal which iss = 0.14 sec for
the hippocampal signal, ands = 0.19 sec for the neocortex signal, see Fig. 1.9,c (where
τ = 33∆t).

We present only one set of results in Fig. 1.9,c (gray tail denotes 95% confidence bands)
obtained forN = 6000. Coupling is regarded as significant if the confidence band does not
include zero, e.g., gray tail does not intersect the abscissa axis. The preliminary results seem
promising for localization of the epileptic focus, because a long interval (30 second length for
the example shown) of significant predominant coupling direction neocortex→ hippocampus
is observed before the seizure. It can be considered as an indication that epileptic focus is
located near the neocortex channel that agrees witha priori clinical information. Despite we
presented only one example, we note that the results are sufficiently robust and are observed
for a significant range of values of the above mentioned window lengths and parameters.

Similar results are observed for the three of the four analyzed recordings and not observed
for one of them. Right now, we do not draw any definite conclusions about applicability of
the method to localize epileptic focus. This is only the first attempt and, of course, more EEG
recordings should be processed to quantify the method’s sensitivity and specificity. This is a
subject of ongoing research. Therefore, the results presented here should not be overestimated,
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Figure 1.9: Intracranial EEG recordings: a) from the hippocampus, b) from the temporal lobe
of the neocortex. c) Coupling directionality indexδ with its 95 % confidence band (the gray
train), t is the starting time instant of a running window of the length of 8 sec. Negative values
of δ indicate influence of the neocortex on the hippocampus. The vertical dashed lines indicate a
seizure onset and offset. Indexδ is significantly less than zero during a period of 25-55 seconds
before the seizure

being rather an illustration of the way how to apply the method in practice and what kind of
information one can expect from it.

1.6.4 Other applications

We should mention several other useful applications of the reconstruction methods. They in-
clude detection of quasistationary segments in nonstationary signals [79, 80, 81, 82], predic-
tion of bifurcations in weakly nonautonomous systems [83], multichannel confidential trans-
mission of information [84, 85], signal classification [86], testing for nonlinearity and deter-
minism [87], and adaptive nonlinear noise reduction [88, 89, 90]. Among the very interesting
applications, we stress again the reconstruction of characteristics of nonlinear elements in
electric circuits and other systems with the aid of a modeling procedure in the “gray box” set-
ting when such characteristics may not be accessible to direct measurements. This approach
is successfully brought about during investigation of dynamical properties of a ferroelectric
[39], semiconductor diodes [92], and optical fiber ring [93].

1.7 Conclusions

Seemingly, mathematical modeling will always remain an art to a significant extent. However,
there may be developed some general principles and particular recipes increasing our chances
to obtain a “good” model. Some results of this type related to the time series modeling are
discussed in this chapter. Besides, we systematized many available techniques based on the
scheme of Fig. 1.1 whose different items were illustrated with different problem settings:
from “white box” via “gray box” to “black box” problems. We outlined different techniques
which were tested in numerical experiments with reconstruction of exemplary equations from
their noise-corrupted solutions. Many of the techniques were already successfully applied to
investigation of laboratory and real-world systems such as nonlinear electric circuits, climatic
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processes, functional systems of living organisms, etc. In particular, we reported the results of
the analysis of the interaction between complex processes in climatology and neurophysiology
based on their empirical modeling.

We have not discussed modeling of spatially distributed systems, even though it attracts
considerable attention [91, 94, 95, 96, 97]. As well, we have omitted discussion of time-delay
systems [93, 98, 99] and only briefly touched on stochastic nonlinear models [29, 100]. Many
methods for construction of finite-dimensional deterministic models are also just mentioned.
Instead, we have tried to give simple illustrations of some key points and provide multiple
references to the works comprising more detailed discussion for the further reading. There-
fore, this survey is only an “excursus into. . . ”, rather than an irrefragable treatment of the
empirical modeling problems.
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