
Commun Nonlinear Sci Numer Simulat 57 (2018) 342–351 

Contents lists available at ScienceDirect 

Commun Nonlinear Sci Numer Simulat 

journal homepage: www.elsevier.com/locate/cnsns 

Research paper 

Reconstruction of coupling architecture of neural field 

networks from vector time series 

Ilya V. Sysoev 

a , b , ∗, Vladimir I. Ponomarenko 

a , b , Arkady Pikovsky 

c , d 

a Saratov State University, 83, Astrakhanskaya str., Saratov, Russia 
b Saratov Branch of Institute of Radioengineering and Electronics of RAS, 38, Zelyonaya str., Saratov, Russia 
c University of Potsdam, Institute for Physics and Astronomy, Karl-Liebknecht-Str. 24–25, Potsdam 14476, Germany 
d Institute for Supercomputing, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhni Novgorod, Russia 

a r t i c l e i n f o 

Article history: 

Received 11 July 2017 

Revised 5 October 2017 

Accepted 11 October 2017 

Available online 13 October 2017 

Keywords: 

Network reconstruction 

Time series 

Neurooscillators 

Time delay 

a b s t r a c t 

We propose a method of reconstruction of the network coupling matrix for a basic voltage- 

model of the neural field dynamics. Assuming that the multivariate time series of obser- 

vations from all nodes are available, we describe a technique to find coupling constants 

which is unbiased in the limit of long observations. Furthermore, the method is general- 

ized for reconstruction of networks with time-delayed coupling, including the reconstruc- 

tion of unknown time delays. The approach is compared with other recently proposed 

techniques. 
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1. Introduction 

Interaction mechanisms play a crucial role in the organization of complex networks. One of the main empirical ap-

proaches here, widely used in neuroscience, climatology, cardio-physiology, economics, social sciences etc [1–3] ., is infering

the properties of the network by virtue of the analysis of the available time series from the dynamics. Here, one particu-

larly aims at reconstruction of the properties of coupling and, possibly, of some properties of individual oscillators, from the

observations of all involved subsystems. For networks of oscillatory elements, these time series are typically represented by

records from all the nodes of a network. Special approaches of model reconstruction, suggested for cases when the data

are insufficient due to hidden variables [4,5] , or observations of some subsystems are not available [6] , or there is additional

unknown external driving [7] , are potentially interesting and practically important, but they lie beyond the scope of this

paper. 

Most approaches to the coupling analysis could be split in two groups: 

1. Pairwise approaches such as Granger causality [8] . We mention here various nonlinear extensions [9–11] , transfer entropy

[12] , mutual information [13] , different types of nonlinear correlation [14,15] . 

2. Full ensemble approaches, including partial directed coherence [16] , some linear autoregressive frameworks [17] , gen-

eralizations of nonlinear correlation [18] , approaches based on minimization of length (or some other functional) of
nonlinear functions, developed for time-delayed equations [19] . 
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The pairwise approaches consider each pair of elements of the network under study as independent of the rest. This

means that a model (e.g. for Granger causality) or a statistical distribution function (for transfer entropy or mutual infor-

mation function) are constructed only for individual nodes and pairs, but not for the whole ensemble. This simplification

allows one to reduce the demands for the amount of data (time series could be shorter), to use simpler models and to

increase robustness of estimates of coupling constants. On the other hand, in such setups indirect interactions or presence

of a common external driving could be falsely interpreted as a valid coupling, because information about other participating

nodes is not taken into account. 

To avoid this artifact, one modifies the approach to include information about possible third party. Conditional Granger

causality [21] and interaction information [22] are examples of such modifications. These techniques could be efficient, if

one deals with a small number of nodes, usually three or four. For larger ensembles, the model structure occurs to be too

complex and the number of unknown coupling coefficients becomes too large for a reliable estimation. 

The full ensemble approaches are usually protected from false positive results due to an indirect coupling or a common

force, since all subsystems that are important for the dynamics of the network are considered simultaneously. However,

the complexity of the problem appears to be high, and in most cases one needs to know model equations to apply these

techniques, otherwise the situation becomes too uncertain. It is therefore highly desirable to develop ensemble approaches

requiring minimal knowledge on the specific equations and/or assumptions, at least for practical important classes of oscil-

latory networks. 

Sompolinsky et al. [20] have formulated and analyzed the basic network model of an ensemble of oscillators, describ-

ing complex dynamics of neural bursting activity. The possibility of transition to chaos was theoretically proved in case

of D → ∞ , where D is the number of units. Here we propose a technique for reconstruction of coupling constants for this

model, given the time series of all elements. Furthermore, we consider a slightly modified system, which includes generally

different delays for all coupling links, and extend the technique for this generalized system, being able to reconstruct not

only all coupling constants, but also all the time delays. The asymptotic behavior of the estimates is also studied theoreti-

cally and numerically. 

2. Models and methods 

2.1. Voltage-based neural field network model 

Our basic model, described in [20] , belongs to a class of voltage-based neural field networks. Each node is described by

the membrane potential of a neuron x i , so that its activity (firing rate) h ( x i ) affects through j the connections the potentials

of other neurons: 

˙ x i = −x i + 

D ∑ 

j =1 , j � = i 
k i, j h (x j ) , (1)

i = 1 , 2 , . . . , D, 

h (x ) = tanh (gx ) . 

Here coupling constants k i, j — elements of the coupling matrix ˆ K — characterize the synaptic efficacy and are generated from

a normal distribution with zero mean and standard deviation J/ 
√ 

D , where J is a parameter defining the coupling strength.

It has been proved in [20] , that the ensemble (1) demonstrates chaotic behavior in the thermodynamic limit D → ∞ and

( Jg ) > 2, for an arbitrary typical matrix ˆ K . 

While it was not proved theoretically, a chaotic behavior could be found even for finite D , although here stable regimes

appear to be dominant for small D . For example, even for small networks with D = 16 , the numerical solution with 4th or-

der Runge–Kutta method revealed that 3 ensembles of 120 trial ones (ensembles differed one from another by the coupling

matrix ˆ K ) demonstrate irregular behavior, the example of which (time series and spectra) is plotted in Fig. 1 . To determine

the chaotic nature of oscillations, the largest Lyapunov exponent was calculated for all ensembles. However, with this ap-

proach it is not possible to distinguish between a strange attractor and very a long chaotic transient process. This difference

is not important for the reconstruction below, provided the chaotic part of the time series is used. The portion of matrices
ˆ K yielding a chaotic regime increases with the network size D . 

2.2. Technique of reconstruction 

Given a time series of all nodes { x i (t n ) } N n =1 of length N (a vector or multivariate time series), obtained with a sampling

time �t , let us denote x i (n ) = x i (t n ) and ˙ x i (n ) = ˙ x i (t n ) . The time series of the derivatives are calculated numerically from

x i ( n ). In these notations, Eq. (1) can be rewritten as: 

x i (n ) = − ˙ x i (n ) + 

D ∑ 

j =1 , j � = i 
k i, j h (x j (n )) (2)

As the next step, we, for a given i , sort all the values of { x i (n ) } N n =1 (e.g. in the ascending order, this in fact does not

matter). Let us introduce the map Q which maps the position of the point n in the original series to its position Q ( n ) in
i i 
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Fig. 1. Panel (a): time series of first 8 oscillations of ensemble (1) with D = 16 nodes; Panel (b): power spectrum of oscillations of first 8 oscillators out of 

16 in total. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the sorted one. Also, let us consider the inverse map Q 

−1 
i 

which maps the position Q i ( n ) in the sorted series to the position

n in the original one. So, Q 

−1 
i 

(Q i (n )) = n . 

Let us consider two neighbor values in the sorted series, which in the original time series have the positions n and

p n = Q 

−1 
i 

(Q i (n ) − 1) : in the sorted series x i ( p n ) just precedes x i ( n ). We denote the difference between these values as: 

δi (n ) = x i (n ) − x i (p n ) (3) 

Let us also consider the simultaneous values of all other series { x j }: x j ( n ) and x j ( p n ). Thus we can express δi ( n ) in (3) , using

(2) , as follows: 

δi (n ) = 

D ∑ 

j =1 , j � = i 
k i, j �h i, j (n ) − � ˙ x i (n ) , (4) 

� ˙ x i (n ) = 

˙ x i (n ) − ˙ x i (p n ) , (5) 

�h i, j (n ) = h (x j (n )) − h (x j (p n )) . (6) 

Since the amplitude of oscillations is finite, the values x i ( n ) and x i ( p n ), being neighbors in the sorted time series, are very

close to each other, if N is large enough. To characterize this smallness, we introduce the sum of squares of δi ( n ): 

S 2 i (k i ) = 

N ∑ 

n =1 

δ2 
i (n ) = 

N ∑ 

n =1 

( 

D ∑ 

j =1 , j � = i 
k i, j �h i, j (n ) − � ˙ x i (n ) 

) 2 

, (7) 

where k i = 

(
k i, 1 , . . . , k i,D 

)
, and additionally Q i ( n ) � = 1. 

Let us now examine the r.h.s. of Eq. (7) . Due to chaotic and asynchronous behavior, closeness of values x i ( n ) and x i ( p n )

does not lead to closeness of simultaneous values of other coordinates: x j ( n ) and x j ( p n ), as well as derivatives ˙ x i (n ) and

˙ x i (p n ) are generally not close. Therefore, �h i, j ( n ) and � ˙ x i (n ) are not small. Thus, the only way the r.h.s. of Eq. (7) could be

as small as the l.h.s., is the case, when the correct values of k i, j are employed and the terms k i, j �h i, j ( n ) and � ˙ x i (n ) cancel

each other. 

If we know the coupling functions h , the formula (7) can be considered as a linear least square problem, where S 2 
i 

is a

target function, which has to be minimized. Here � ˙ x i (n ) and �h i, j ( n ) are known from the time series (the former quantities

approximately as a result of numerical differentiation). Thus, the coupling matrix ˆ K can be estimated from the time series

as a solution of the linear least square problem (7) . 

To check that this method indeed works for long time series, let us consider behavior of the target function (7) in the

limit N → ∞ . In such a case, if the oscillation amplitude is limited, all δi ( n ) decay as ∼ N 

−1 on average, so the squares δ2 
i 
(n )

decay as ∼ N 

−2 . Therefore, the sum (7) has to decay as ∼ N · N 

−2 = N 

−1 . This means that S 2 
i 
(k ) tends to zero in the limit

N → ∞ , and thus the estimates ˜ k i, j of the coupling constants k i, j obtained with the proposed algorithm are asymptotically

unbiased. 

2.3. Interpolation approach 

There is a possibility to improve the proposed technique if high order derivatives can be calculated with enough pre-

cision. As one can see from the analysis above, the main error for finite N comes from the finiteness of the differences

δ (n ) = x (n ) − x (p n ) . The idea is to use an interpolation between x ( n ) and x ( p n ), to construct the nearly equal points. 
i i i i i 
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Let us consider the value X i ( n ), located somewhere between x i ( n ) and x i ( p n ). For simplicity, let it be in the middle: 

X i (n ) = 

1 

2 

( x i (n ) + x i (p n ) ) . (8)

Considering x as a function of time, one can replace X i ( n ) by its Taylor’s series, calculated near the point x i ( n ) ( Eq. (9 )), and

a similar Taylor’s series but calculated near the point x i ( p n ) ( Eq. (10 )): 

X i (n ) = x i (n ) + 

˙ x i (n ) T i (n ) + 

ẍ i 
2 

T 2 i (n ) + . . . , (9)

X i (n ) = x i (p n ) + 

˙ x i (p n ) T 
′ 

i (n ) + 

ẍ i 
2 

T 
′ 2 

i (n ) + . . . . (10)

Here T i ( n ) is a small time step, needed by oscillator with index i to move to the state X i ( t ) from the state x i ( t ), while

continuing to follow the same trajectory on which the measured value x i ( n ) was located (the time T i ( n ) may be negative,

i. e. one can move back along the trajectory). Similarly, T ′ 
i 
(n ) is another small time step, needed to move to the point X i ( t )

from the point x i ( p n ), following the trajectory on which x i ( p n ) is located. 

Since T i ( n ) and T ′ 
i 
(n ) are rather small time intervals (in typical case they are less or much less than one sampling time

unit), all the terms of the second and higher orders in Eqs. (9) and (10) can be neglected. Thus, T i ( n ) and T ′ 
i 
(n ) can be easily

calculated from formulae ( 8,9 ) and ( 8,10 ) respectively: 

T i (n ) = 

x i (p n ) − x i (n ) 

˙ x i (n ) 
, (11)

T ′ i (n ) = 

x i (n ) − x i (p n ) 

˙ x i ( p n ) 
. (12)

Next, we substitute the interpolated value X i ( n ) in Eq. (2) : 

X i (n ) = 

D ∑ 

j =1 , j � = i 
k i, j h (X j (n )) − ˙ X i (n ) . (13)

Let us substitute (9) and (10) in (13) , keeping only the first-order terms: 

X i (n ) ≈
D ∑ 

j =1 , j � = i 
k i, j h 

(
x j (n ) + 

˙ x j (n ) T i (n ) 
)

−
(

˙ x i (n ) + ẍ i (n ) T i (n ) 
)

, 

X i (n ) ≈
D ∑ 

j =1 , j � = i 
k i, j h 

(
x j (p n ) + 

˙ x j (p n ) T 
′ 

i (n ) 
)

−
(

˙ x i (p n ) + ẍ i (p n ) T 
′ 

i (n ) 
)
. 

In this way we get equations for δi ( n ) similar to Eqs. (4 –6 ) 

δi (n ) = 

D ∑ 

j =1 , j � = i 
k i, j �h i, j (n ) − � ˙ x i (n ) − �ẍ i (n ) ≈ 0 , (14)

�h i, j (n ) = h 

(
x j (n ) + 

˙ x j (n ) T i (n ) 
)

− h 

(
x j (p n ) + 

˙ x j (p n ) T 
′ 

i (n ) 
)
, (15)

� ˙ x i (n ) = 

˙ x i (n ) − ˙ x i (p n ) , (16)

�ẍ i (n ) = ẍ i (n ) T i (n ) − ẍ i (p n ) T 
′ 

i (n ) . (17)

The advantage of this model are much smaller values of δi ( n ). In fact, because we used the first-order approximation, we

can estimate δ ∼ N 

−2 . Actually, one can generalize this interpolation by using derivative of higher order, but numerical

calculation of high order derivatives leads to large errors and is hardly feasible. Moreover, we expect this interpolation

method to be practical only for data with small amount of noise. 

2.4. Delay coupled model 

The model (1) can be slightly modified and generalized by introducing delays in coupling terms: 

˙ x i (t) = −x i (t) + 

D ∑ 

j =1 , j � = i 
k i, j h (x j (t − τi, j )) , (18)

where τ i, j are delay times, individual for each coupling. 

Introduction of coupling delays increases model complexity and forces it to generate chaotic behavior for smaller number

of nodes, as it is illustrated in Fig. 2 . The main frequency moves to significantly higher values for most nodes (see Fig. 2 (b)),

and the spectrum demonstrates a plateau at the frequency range f ∈ [0.3; 0.7], which means that more degrees of freedom

become involved into the dynamics. 
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Fig. 2. Panel (a): time series of first 8 oscillations of ensemble (18) with D = 16 nodes; panel (b): spectrum of oscillations of first 8 oscillators of 16 in 

total. Delays were chosen to be random integer numbers, uniformly distributed in the range θ i, j ∈ [50; 70] with �t = 0 . 05 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Technique for reconstruction of the delay coupled model 

Reconstruction of the modified model (18) can be performed mainly in the same way as for the original one, if delay

times are known. Let us denote θi, j = τi, j / �t — integer time of delay in terms of the discrete time series. Then, Eq. (2) can

be rewritten as (19) : 

x i (n ) = − ˙ x i (n ) + 

D ∑ 

j =1 , j � = i 
k i, j h (x j (n − θi, j )) . (19)

Eq. (3) does not change, but the position of the nearest previous sorted point in the original series r i, j, n (instead of p n )

becomes: 

r i, j,n = Q 

−1 
i 

(Q i (n − θi, j ) − 1) . 

Eq. (6) is to be rewritten as 

�h i, j (n ) = h (x i (n − θi, j )) − h (x i (r i, j,n )) , (20)

while (4) and (5) do not change, except for replacement p n → r i, j, n . In formula (7) , the indexing changes from n = 1 to

n = θi + 1 , where θi = max 
j =1 , ... ,D, j � = i 

(θi, j ) : 

S 2 i (k i ) = 

N ∑ 

n = θi +1 

δi (n ) = 

N ∑ 

n = θi +1 

( 

D ∑ 

j =1 , j � = i 
k i, j �h i, j (n ) − � ˙ x i (n ) 

) 2 

. (21) 

Thus, the same approach as above can be applied to the reconstruction of a delayed-coupled network. 

2.6. Reconstruction of time delays 

To reconstruct the delay times, if these are unknown, one can scan over all possible combinations of θ i, j for each i

separately, like it was proposed for time-delayed oscillators in [23] . One can perform reconstruction with the proposed

method for all trial delay times in the range, and the true values of delay times should minimize the target function (21) .

Such a search is feasible, since delay times ˜ θi, j can be only nonnegative integers and values larger than the length of time

series do not have sense. However, for large networks it is very CPU-time consuming, since it is necessary to scan in the

(D − 1) -dimensional space. 

We propose to use an iterative algorithm, similar to the gradient descent method. First, some initial trial values for all θ i, j 

are set for fixed i . Then, the reconstruction is performed for this set. Then trial guesses are changed to explore the closest

neighbors: each component of the vector ˜ θi is shifted by ± 1 with respect to the original trial — this is an elementary 

perturbation (only one component is changed for each neighbor). For each of the 2(D − 1) perturbed values of the time

delay ˜ θi , the reconstruction is performed, and the neighbor corresponding to the smallest value of S 2 
i 

is chosen. If this S 2 
i 

is

lower than that for the original trial ˜ θi, j , the new vector is adopted and all the steps are repeated until a set of delays ˜ θi, j 

is arrived which yields the value of the target function S 2 
i 

smaller than those of all the neighbors. 
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Fig. 3. Panel (a): the histogram of relative deviations �˜ k i, j of coefficient estimates ˜ k i, j , normed to have a unity integral (the estimation of probability 

density function) for an ensemble of D = 64 nodes and its approximation with Gaussian (red line). Panel (b): p -value for Student’s t -test for zero mean 

for �˜ k . Panel (c): p -value for Kolmogorov–Smirnov test for normality. Panel (d): the dependency of the mean �˜ k on the dimension of ensemble D with 

errorbars, indicating standard deviation of �˜ k from 〈 �˜ k 〉 . On panels (b–d), the blue circles correspond to the original method (see Section 2.2 ), while red 

crosses — to the interpolation approach (see Section 2.3 ). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

3.1. Reconstruction of networks in the Sompolinsky et al. model 

We generated 100 networks (1) with D = 16 , D = 24 , D = 32 , D = 48 and D = 64 oscillator (500 samples in total). Equa-

tions of motion were solved numerically using adaptive Runge–Kutta algorithm of 4th order with sampling time of time

series �t = 0 . 01 . The transient process of 2 17 points was omitted. To determine the dynamic regime, the largest Lyapunov

exponent was calculated using the classical Benettin’s algorithm [24] . Only ensembles with chaotic behavior (for the con-

sidered setups there were 3, 6, 8, 20 and 38 such ensembles, respectively) were considered for reconstruction. 

Then, the multivariate time series of N = 2 14 data points from all D oscillators were stored from each network, and the

reconstruction of coupling constants ˆ K was performed with the method described in Section 2.2 . 

To characterize the accuracy of coupling matrix reconstruction, the histogram of relative deviations from the original

values calculated as (22) is plotted in Fig. 3 . Here the values ˜ k i, j indicate how much the reconstructed value deviates from

the original one: 

�˜ k i, j = ( ̃ k i, j − k i, j ) / (J 
√ 

D ) , (22)

where k i, j are the original coupling constants, and 

˜ k i, j are the reconstructed ones. Since for different D the standard devi-

ation of the original coupling constants was different and equal to J/ 
√ 

D , we included the corresponding normalization to

formula (22) . 

Visually, the distribution of �˜ k ( Fig. 3 a) seems to be very similar to a Gaussian distribution. The statistical tests were

performed to characterize, whether this distribution has a zero mean (Student’s t -test) — see Fig. 3 (b), and whether it is

Gaussian (classical Kolmogorov–Smirnov test with empirically estimated variance and zero mean) — see Fig. 3 (c) for all

considered ensembles for different number of nodes. One can see that the hypothesis of a zero mean cannot be rejected in

most cases on level 0.05 — see gray line in Fig. 3 (b). The hypothesis of zero mean has to be adopted for all cases for D = 64

and for all cases except one if D = 48 . The hypothesis of Gaussian distribution is rejected in 40% of cases — see Fig. 3 (c).

This means that estimates of coefficients are unbiased (that is good), but the proposed method does not provide a maximal

likelihood estimation, otherwise errors �˜ k i, j would follow the Gaussian law. 
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Fig. 4. Panel (a): the histogram of relative deviations �˜ k i, j of coefficient estimates ˜ k i, j , normed to have a unity integral (the estimation of probability 

density function) for an ensemble of D = 32 nodes and its approximation with Gaussian (red line). Panel (b): p -value for Student’s t -test for zero mean 

for �˜ k . Panel (c): p -value for Kolmogorov–Smirnov test for normality. Panel (d): the dependency of the mean �˜ k on the dimension of ensemble D with 

errorbars, indicating standard deviation of �˜ k from 〈 �˜ k 〉 . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For generality, the same approach was applied for networks of D = 32 nodes, but with coefficients k i, j distributed uni-

formly with the same variance as considered previously and zero mean. Such a coupling was not considered in the original

paper [20] . Seven of 100 randomly generated ensembles demonstrated well pronounced chaotic behavior. The errors of

resulting estimates �˜ k i, j occurred to be distributed similar to the errors in the case when the original coefficients were

normally distributed. 

Generally, adopting the interpolation procedure did not give an advantage, possibly due to errors in the calculation of

the derivative — compare blue and red points in Fig. 3 (b–d). In all the cases the results of the straightforward approach

( Section 2.2 ) and of its modification (2.3) are very similar. However, for small networks (e. g. D = 16 ) the results of the

modified algorithm appear to be slightly better than of the original one. The advantage of the modification could be possibly

found if the second or higher derivative could be directly measured or calculated with higher precision. 

3.2. Reconstruction of delayed coupled networks 

We generated 40 networks of D = 16 , D = 24 , and D = 32 oscillators (120 in total). All delays were chosen to be uni-

formly distributed in the range [2.5; 3.5]. From these networks 19, 34, and 38 respectively demonstrated chaotic behavior.

Equations were solved numerically using the Euler algorithm with sampling time �t = 0 . 01 and step of integration equal to

�t /100. Such an approach was chosen due to delay in the equations, and was rather CPU-time-consuming. Therefore, larger

networks were not studied. The transient process of 2 17 points was omitted. Only ensembles with chaotic behavior were

considered for reconstruction. Multivariate time series of N = 2 14 data points from all D oscillators were recorded from an

each ensemble, and the reconstruction of coupling constants ˆ K was performed using the method described in Section 2.5 . 

Results of the coupling matrix reconstruction in the case of known delay times are shown in Fig. 4 in the same manner as

in Fig. 3 . For small values of D , the mean error of the coupling constant reconstruction is much less for delayed ensembles

(18) than for ones without delay (1) . This could be explained by the fact that only very week chaos with small largest

Lyapunov exponent can be found in the system (1) for small D , while with delay, chaos is stronger. In stronger chaotic

regime the same errors in coupling coefficients lead to larger errors in the target function. Therefore, the method becomes

more sensitive to errors and estimates of coupling coefficients can be achieved with better precision. 
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Fig. 5. Panel (a): the maximal absolute error in delay over all considered delays in the ensemble — max ( �θ err ). Panel (b): the percentage νrel of correctly 

detected delays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Reconstruction of delay times 

To reconstruct delayed time networks as described above, one has to know all the delay times τ i, j , or their discrete

analogs θ i, j . One can, however, hardly assume that all of them can be directly measured or calculated from first principles.

Therefore, in Section 2.6 we proposed an iterative technique for reconstructing delay times, to be tested below. To illustrate

its efficiency, the reconstruction was performed for different initial trial values of the time delays, to check convergence to

the true values. In the considered case of D ≥ 16 oscillators in the ensemble (1) , there are 240 or more delays in the links,

so it is unlikely to test all possible variations of starting guesses for them, even assuming that starting guesses can attain

only discrete values with the step equal to the sampling interval, rather than continuous values. 

We restricted ourselves to a most realistic starting guesses that all the delays are equal; let us denote the value of such

an initial guess as ˆ θ0 . To test quality of reconstruction, two measures were evaluated for different ˆ θ0 : 

1. The number νabs (and percentage νrel ) of correctly detected delays. 

2. The maximal absolute error in delay times, calculated from all considered delays in the ensemble: max ( �θ err ). 

The results for these two quantities are plotted in Fig. 5 . The original values of delays τ i, j were generated uniformly

distributed in the range [2.5; 3.5] (i. e. θ i, j ∈ [50; 70]). One can see that there is a large domain of ˆ θ0 values around the

center of this range ( ̂  θ0 = 60 ), from which the coupling delays are reconstructed very precisely: 2 errors of value ± 1 for

D = 16 of 240 couplings in total, one error equal to 2 for d = 24 of 554 couplings in total, and six errors not exceeding ± 6

for D = 32 of 992 couplings in total. In contradistinction, reconstruction started from very small or very large initial guesses

typically failed. Reconstruction of larger networks tends to be more erroneous at the same time series length. For a network

with D = 32 nodes, the maximal error max ( �θ err ) is achieved for the estimation of delay of one particular coupling, for

all starting guesses in a wide range of from 

ˆ θ0 = 32 to ˆ θ0 = 69 , while delays for other couplings are reconstructed equally

fine in the whole range. This particular coupling corresponds to a relatively small coupling constant, with absolute value 2.5

times less than the mean value. 

The results of reconstruction of coupling delays severely depend on the dynamical regime. For plots in Fig. 5 , only chaotic

regimes with the largest Lyapunov exponent �> 0.12 were chosen. For smaller �, the number of errors could be signifi-

cantly larger, e. g. for an ensemble of D = 24 oscillators with �≈ 0.04, all coupling coefficients can be reconstructed correctly

with all delays only for 6 oscillators from 24, and total percentage of errors νrel > 60% even for the best initial guesses ˆ τ0 = 3 .

4. Conclusion and discussion 

4.1. Comparison with Granger causality and other approaches 

To compare the proposed technique with already existing ones, let us consider Granger causality first. Usual pairwise

approach [8] is not applicable for the problem to be solved since each node has too many links with others, so it will cause

very large errors. However, one can consider the so called “conditional Granger causality” [25] . The general multivariate

forecasting models to be constructed in order to estimate coupling coefficients can be written in the form (23) . 

x i (n + 1) = 

j= D ∑ 

j=1 

c i, j x j (n ) + ξi (n ) , (23)

where ξ i ( n ) are model residuals and c i, j are unknown coefficients of coupling, but different from the original coefficients

k i, j . If we take into account that we exactly know the model structure (1) and the coupling functions h , the model (23) can
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be rewritten as (24) by approximating the derivative with a simple difference. Let us denote such an approach as “specified

Granger technique”. 

x i (n + 1) ≈ c i,i x i (n ) + 

D ∑ 

j =1 , j � = i 
c i, j h (x j (n )) , (24) 

c i,i = 1 − �t, 

c i, j = �t ̃  k i, j , j � = i. 

The model (24) can be fitted to data, so the estimates of coupling coefficients ˜ k i, j can be easily found. 

We tested specified Granger technique for all ensembles of 32 nodes, exactly the same as for the proposed method in

the Section 2.2 , and estimates of coupling coefficients ˜ k i, j were found to be better for the proposed approach. The reason for

this is the fact that the main source of errors for the proposed approach is a difference between nearby values of x i ( n ) in

the sorted series, which is going to zero for N → ∞ , while the main source of errors for the specified Granger technique is

the finite sampling rate, which is usually constant. But for short series the Granger causality can give even better estimates.

The other techniques which in principle are able to give some coupling estimation for the considered system are partial

directed coherence [16] and transfer entropy [12] . But they cannot give the direct estimates of coupling coefficients since

there is not possible to take into account the information about the exact structure of the system considered. A new ap-

proach based on residual analysis was proposed in [28] but it also aims to estimate only the fact of coupling presence.

Additionally, the transfer entropy should be applied pairwise, or too many data must be used for estimating the proba-

bility densities, even if the advanced algorithms based on nearest neighbors (like one proposed in [13] ). There are many

approaches specialized for some particular system type (many of them one can find in the review [26] ), which also can-

not be applied directly. For example, for stochastic oscillators see [27] , for hidden variables see [4] , for low dimensional

nonautonomous ODEs see [7] . 

4.2. General conclusion 

In this paper we propose a technique for reconstruction of neural networks described in [20] . The network should oper-

ate in a chaotic regime, and we demonstrate that all the coupling constants in the ensemble can be estimated with a high

precision if time series of all elements are provided and nonlinear function of coupling is known. The numerical considera-

tion was performed for different distributions of coupling coefficients. In addition, we consider the generalized form of the

original equations, for which delay times (generally different for all the links) are present in all the couplings. The proposed

approach is applicable for such a generalized system with minor changes, if all delay times are given. 

To find delay times if these are unknown, we proposed to use an iterative search approach similar to gradient decent,

but adopted to the discrete case, since delay time may be set only as integer multipliers of sampling intervals. Initial guess

values for all delays are important parameters, here we assigned them to be equal. This technique showed a rather extended

domain of convergence in the space of starting guesses, for networks of different sizes. This domain is possibly dependent

on the main time scales and regimes of the network. Remarkably, for all three different choices for number of nodes:

D = 16 , D = 24 and D = 32 , the domains of convergence are very similar; they differ in some minor details only (actually,

they are slightly different for different ˆ K and τ i, j even for the same D ). This could indicate that this domain originates from

the fundamental properties of the system (18) such as structure of equations and the way how the coupling is introduced,

rather than from individual parameters of the network. 

The proposed technique can be easily extended to the case where a smooth unknown nonlinear function of the variable

x i is present in the right side of equations (1) or (18) instead of simple term −x i , using the same approach as in [23] , even

if this function is different for different oscillators. 

The technique proposed here differs from the approach described in [29] , while having the same basic idea. In Ref. [29] , a

single coupling function from all inputs is considered (firing-rate neural network), while here we consider separate coupling

functions for each input, so direct implementation of the approach from [29] is not possible. Also, here a delay time in

coupling is considered, and this delay is reconstructed for each coupling link, while there is no delay in coupling in the

system considered in Ref. [29] . Another difference is that here the standard least squares minimization routine is used, with

estimates of coupling coefficients being asymptotically unbiased, while in Ref. [29] homogeneous linear equations are solved,

using singular value decomposition approach. 
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