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Chimeralike states in networks of bistable time-delayed feedback oscillators coupled
via the mean field
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We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback
systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field
on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in
the network results from the presence of bistable states with substantially different frequencies in coupled
oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike
states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators
remain asynchronous.
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I. INTRODUCTION

The spatiotemporal dynamics of networks of coupled
oscillators has been intensively studied by many authors for
several decades. These investigations have revealed many
nonlinear phenomena, including the formation of various
structures, clusterization, and synchronization of oscillators
in the network [1–3]. It was believed for a long time that
the regions of synchronous behavior of network elements
can coexist with the regions of asynchronous behavior
only in heterogeneous networks, in which oscillators with
close frequencies become synchronized, while oscillators
with appreciably different frequencies exhibit asynchronous
dynamics. Afterwards, it was found out that coexistence
of synchronous and asynchronous groups of oscillators is
possible also in networks of coupled identical oscillators [4].
Such state was named in Ref. [5] as the chimera state.

Chimera states were first discovered in a network of
nonlocally coupled identical phase oscillators [5]. Since
then, chimera states have been found in networks with local
coupling (only to nearest neighbors) of oscillators [6,7] and
networks of globally coupled oscillators [8–10]. Besides the
networks of phase oscillators, chimera states can occur in
networks composed of other types of oscillators [11–17] and in
coupled map lattices [18,19]. Chimera states have been shown
to be robust against inhomogeneities of the local dynamics
of oscillators [20,21]. In recent years, a lot of theoretical and
numerical studies have been devoted to chimera states [22–31].

Chimera states have also been observed in various ex-
periments [32–40]. For example, they have been found in
a spatial light modulator feedback system [32], populations
of coupled chemical oscillators [33], mechanical systems of
metronomes [34,35], experimental realization of a modified
Ikeda time-delayed equation [36], chains of electronic circuits
with neuronlike spiking dynamics [37,38], an optoelectronic
delayed-feedback system [39], and a network of coupled
chaotic optoelectronic oscillators [40].

In the present paper, we investigate experimentally and
numerically the collective dynamics of oscillators, including
chimera states, in a network of identical bistable oscillators
with time-delayed feedback globally coupled via the mean

field. Global coupling leading to synchronization of oscillators
is typical in systems of various natures, including groups
of insects [41], living cells [42], hand-clapping individuals
in a large audience [43], pedestrians on footbridges [44],
electrochemical oscillators [45], and many others. As for time
delays, they are inherent in many real-world systems [46,47].
We consider different ways of formation of the mean field and
study the influence of delay and inertial properties of the mean
field on the collective dynamics of globally coupled oscillators.

In experimental studies, we implemented time-delayed
feedback oscillators as electronic time-delay systems. In
contrast to experiments dealing with a single electronic
time-delay system in Refs. [36,39], we examine a network
composed of eight experimental electronic delayed-feedback
oscillators globally coupled via the mean field. A network
consisting of six electronic time-delay systems coupled via
the mean field has been studied experimentally in Ref. [48].
In the present paper, we investigate an experimental scheme
that is different from the scheme considered in Ref. [48] and
exploits another type of forcing the oscillators by the mean
field.

The paper is organized as follows. In Sec. II, we describe
the object of investigation representing a network of identical
bistable time-delay systems coupled via the mean field and
consider the oscillation regimes in this network for different
ways of the mean field formation. In Sec. III, the results of the
network experimental investigation are presented for the case
where the network elements represent electronic self-sustained
oscillators with time-delayed feedback. Section IV presents
the results of numerical simulation of collective dynamics
of oscillators in the network under study. The results are
summarized in Sec. V.

II. NETWORK OF TIME-DELAY SYSTEMS COUPLED VIA
THE MEAN FIELD

We consider a network consisting of coupled identical time-
delay systems, with each system described in the absence of
coupling by the following delay-differential equation:

εẋ(t) = −x(t) + f [x(t − τ )], (1)
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FIG. 1. Block diagram of a ring system with time-delayed
feedback. Numerals 1, 2, and 3 designate points where an external
signal can be fed into the system.

where τ is the delay time, the parameter ε characterizes
the inertial properties of the system, and f is a nonlinear
function. In the general case, Eq. (1) is a mathematical model
of an oscillating system composed of a ring with three ideal
elements: nonlinear, inertial, and delay (Fig. 1).

Let the nonlinear element in the oscillator have a cubic
function:

f (x) = a + b(x − d) − c(x − d)3. (2)

The function (2) is plotted in Fig. 2 for a = 1.5, b = 2.3,
c = 1.78, and d = 1.57. With this nonlinearity, the system (1)
shows bistability. Depending on the initial conditions, it can
exhibit two regimes of oscillations, which occur in the vicinity
of unstable fixed points A and B (Fig. 2). Nearby the fixed point
A, periodic oscillations in the fundamental mode take place at
a frequency close to ν1 = 1/(2τ ). Nearby the fixed point B,
chaotic oscillations at the third harmonic of the fundamental
mode take place at a basic frequency close to ν2 = 3/(2τ ).
Typical time series of such oscillations in the region of
bistability will be considered below. Qualitatively similar
regimes of periodic and chaotic oscillations are observed in
a time-delay system (1) with a sinusoidal nonlinearity. A
detailed investigation of oscillation regimes corresponding to
the fundamental solution and higher-harmonic solutions of
delay-differential equation (1) with a sine function f has been
carried out in Ref. [49].

We couple the oscillators (1) via the mean field G(t),
which acts on each element in the network and provides
global coupling. The signal G(t) can be fed into the ring

FIG. 2. Plot of function (2) for a = 1.5, b = 2.3, c = 1.78, and
d = 1.57. A, B, and C are unstable fixed points.

delayed-feedback oscillator at various points [50] indicated
by numerals 1, 2, and 3 in Fig. 1. Depending on the point
at which the mean field acts on oscillators, their dynamics is
described by one of the following equations:

εẋi(t) = −xi(t) + f [xi(t − τ ) + kG(t − τ )], (3)

εẋi(t) = −xi(t) + f [xi(t − τ ) + kG(t)], (4)

εẋi(t) = −xi(t) + f [xi(t − τ )] + kG(t), (5)

where i = 1, . . . ,N , with N being the number of oscillators,
and k is the strength of coupling. The oscillators are governed
by Eq. (3), if the signal G(t) acts on these oscillators at point
1. Equations (4) and (5) describe the network oscillators for
the cases where G(t) is fed at points 2 and 3, respectively.

In the simplest case, the mean field is formed by the sum-
mation of signals xi(t) from all oscillators and normalization
of the summary signal to N:

G(t) = 1

N

N∑

i=1

xi(t). (6)

The type of oscillation regime in the considered network
is determined by initial conditions in coupled oscillators. If
we specify the initial conditions in such a way that some
of the oscillators perform oscillations in the fundamental
mode (first harmonic), while the other oscillators perform
oscillations at the third harmonic of the fundamental mode,
then the oscillators in the network will be separated into two
clusters, which differ by the frequency of oscillations. The
value of phase shift �ϕ between the signals G(t) and xi(t)
determines the collective behavior of oscillators in the network.
For |�ϕ| < π/2, the coupling via the mean field is attractive
and the oscillators synchronize between themselves after a
transient process, while for π/2 < |�ϕ| < 3π/2, the coupling
is repulsive and the oscillators remain asynchronous [8,51].

Let us consider the case where the signal G(t) acts on the
network oscillators at point 1 (Fig. 1) affecting the variable
xi(t). If the mean field is described by Eq. (6), the phase shift
between the signals G(t) and xi(t) is absent (�ϕ = 0) and
oscillators are synchronized both in the first and in the second
clusters.

In general case, the mean field can be formed in a
complicated way. For example, a medium that couples the
oscillators can possess inertial properties or have its own delay
induced by finite velocity of signal propagation and processing.
A complication of the mean field signal may result in greater
diversity of oscillation regimes in the network of coupled
oscillators.

First, we consider the influence of the mean field inertial
properties on the collective dynamics of coupled oscillators
described by Eq. (3). Assume that inertial properties of the
mean field are due to a linear filtering of the summary signal (6)
by a low-pass first-order filter, and the mean field is described
by the following equation:

γ Ġ(t) + G(t) = 1

N

N∑

i=1

xi(t), (7)

022209-2



CHIMERALIKE STATES IN NETWORKS OF BISTABLE . . . PHYSICAL REVIEW E 96, 022209 (2017)

FIG. 3. Dependencies �ϕ1(γ ) and �ϕ2(γ ) described by Eqs. (11) and (12) (a), Eqs. (13) and (14) (b), and Eqs. (15) and (16) (c) for
ν1 = 1/200 and ν2 = 3/200. Regions with synchronous behavior of oscillators in both clusters are denoted by SS. Regions with asynchronous
behavior of oscillators in both clusters are denoted by AS. Regions in which chimeralike states take place are denoted by CS1 and CS2.

where γ = 1/fF is the time constant of the filter and fF is
the filter cutoff frequency. Since all oscillators in the network
take part in the formation of the mean field, the signal (6) has
two main components with the frequencies close to ν1 and
ν2. Each of these components, as it passes through a linear
low-pass first-order filter, undergoes a phase shift,

�ϕ = − arctan(2πνγ ), (8)

whose value depends on the frequency ν. For the low-
frequency component of G(t), ν = ν1 and �ϕ = �ϕ1 in
Eq. (8), while for the high-frequency component of G(t),
ν = ν2 and �ϕ = �ϕ2.

Since for the phase shift �ϕ defined by Eq. (8) the condition
|�ϕ| < π/2 is always fulfilled, the coupling via the mean field
is attractive for the oscillators in both clusters. Therefore, the
oscillators in the first cluster become synchronized as well as
the oscillators in the second cluster.

Let us consider a more complicated situation, in which one
filter is not enough for modeling the inertial properties of the
mean field. Assume that inertial properties of the mean field
are due to a linear filtering of the summary signal (6) by two
series-connected low-pass first-order filters, and the mean field
is described by the following equation:

γ1γ2G̈(t) + (γ1 + γ2)Ġ(t) + G(t) = 1

N

N∑

i=1

xi(t), (9)

where γ1 = 1/fF1 and γ2 = 1/fF2 are the time constants of
the filters and fF1 and fF2 are the cutoff frequencies for the
first and second filter, respectively. If γ1 = γ2 = γ , Eq. (9)
may be written as follows:

γ 2G̈(t) + 2γ Ġ(t) + G(t) = 1

N

N∑

i=1

xi(t). (10)

Under this filtering, the signal (6) components with the
frequencies close to ν1 and ν2 undergo the phase shifts �ϕ1

and �ϕ2, respectively:

�ϕ1 = −2 arctan(2πν1γ ), (11)

�ϕ2 = −2 arctan(2πν2γ ). (12)

For the phase shifts (11) and (12), the condition |�ϕ1,2| <

π is always fulfilled. In the case π/2 < |�ϕ1,2| < π , the

coupling via the mean filed is repulsive and oscillators exhibit
asynchronous behavior. Figure 3(a) shows the dependencies
�ϕ1(γ ) and �ϕ2(γ ) for τ = 100 (ν1 = 1/200 and ν2 =
3/200). Since ν1 < ν2, the phase shift (11) is less by the
absolute value than the phase shift (12). Depending on γ , three
qualitatively different situations can take place: (i) |�ϕ1| <

π/2 and |�ϕ2| < π/2, (ii) |�ϕ1| < π/2 and π/2 � |�ϕ2| <

π , and (iii) π/2 � |�ϕ1| < π and π/2 � |�ϕ2| < π . In
Fig. 3(a), the regions corresponding to these three situations
are denoted by SS, CS1, and AS, respectively.

For γ values from the SS region, synchronization is
observed between oscillators in the first cluster and between
oscillators in the second cluster. In the AS region, the
oscillators in both clusters exhibit asynchronous oscillations.
In the CS1 region, the oscillators in the first cluster performing
oscillations in the fundamental mode exhibit synchronous
behavior, while the oscillators in the second cluster performing
oscillations at the third harmonic of the fundamental mode
exhibit asynchronous behavior. This situation corresponds to
a chimeralike state, in which a cluster with synchronized oscil-
lators coexists with a cluster with desynchronized oscillators.
It should be noted that according to Refs. [8,13], this type of
oscillation regime in a network of globally coupled oscillators
should be called a chimeralike state rather than a chimera state,
since it is reminiscent of the typical chimera state [4,5] under
the nonlocal coupling.

If the signal G(t) is fed into the network oscillators at point
2 (Fig. 1), it affects the variable xi(t − τ ). Under this forcing,
a phase shift between the signals G(t) and xi(t) is present. The
value of this phase shift is about π for the oscillations in the
fundamental mode and about 3π for the oscillations at the third
harmonic of the fundamental mode. This phase shift should be
taken into account at calculating the total phase shift between
the signals G(t) and xi(t) in the presence of inertial properties
of the mean field. Since the phase shift is a periodic function
with the period 2π , Eqs. (11) and (12) take the following form:

�ϕ1 = −2 arctan(2πν1γ ) + π, (13)

�ϕ2 = −2 arctan(2πν2γ ) + π. (14)

The dependencies �ϕ1(γ ) and �ϕ2(γ ) described by
Eqs. (13) and (14) are constructed in Fig. 3(b) for ν1 = 1/200
and ν2 = 3/200. Depending on γ , three different situations
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can take place: (i) |�ϕ1| < π/2 and |�ϕ2| < π/2, (ii) π/2 �
|�ϕ1| < π and |�ϕ2| < π/2, and (iii) π/2 � |�ϕ1| < π and
π/2 � |�ϕ2| < π . In Fig. 3(b), the regions corresponding to
these three situations are designated as SS, CS2, and AS,
respectively. For γ values from the CS2 region, a chimeralike
state is observed. However, in contrast to the chimeralike
state in the region CS1 [Fig. 3(a)], the oscillators in the first
cluster performing oscillations in the fundamental mode
exhibit asynchronous behavior, while the oscillators in the
second cluster performing oscillations at the third harmonic of
the fundamental mode exhibit synchronous behavior.

In the case where the signal G(t) acts on the oscillators at
point 3 (Fig. 1), the phase shifts �ϕ1 and �ϕ2 are described
by the following equations:

�ϕ1 = −2 arctan(2πν1γ ) − arctan(2πν1ε), (15)

�ϕ2 = −2 arctan(2πν2γ ) − arctan(2πν2ε). (16)

Figure 3(c) shows the dependencies �ϕ1(γ ) and �ϕ2(γ )
described by Eqs. (15) and (16) for ν1 = 1/200, ν2 = 3/200,
and ε = 8. Similarly to Fig. 3(a), there are three regions
denoted by SS, CS1, and AS in Fig. 3(c), in which the
synchronous regime, chimeralike state, and asynchronous
regime, respectively, take place.

Let us consider now the influence of delay in the mean field
on the collective dynamics of coupled oscillators described by
Eq. (3). Assume that the mean field is described as follows:

G(t) = 1

N

N∑

i=1

xi(t − τm), (17)

where τm is the delay time of the mean field. The phase shifts
�ϕ1 and �ϕ2 for both components of G(t) corresponding to
oscillations in the fundamental mode and oscillations at the
third harmonic of the fundamental mode, respectively, have a
linear dependence on τm:

�ϕ1 = −2ν1τm, (18)

�ϕ2 = −2ν2τm. (19)

Figure 4 shows the dependencies �ϕ1(τm) and �ϕ2(τm) for
ν1 = 1/200 and ν2 = 3/200. Depending on τm, four different
regions are identified in Fig. 4 designated as SS, CS1, CS2,
and AS. In the presence of delay in the mean field, two
different chimeralike states (one in region CS1 and another
in region CS2) can take place in the network in contrast to
the case considered above, in which only one chimeralike
state is observed in the network. Note that for the oscillators
in the second cluster performing oscillations at the third
harmonic of the fundamental mode, the coupling is repulsive
for π/2 < |�ϕ2| < 3π/2 and attractive for 3π/2 < |�ϕ2| <

5π/2. Since the phase is a periodic function with the period
2π , the last relation is equivalent to the relation |�ϕ2| < π/2.

Thus the collective dynamics of oscillators globally coupled
via the mean field depends on the delay and inertial properties
of the mean field. If we have a possibility to vary the parameters
of the mean field, then we can control the behavior of

FIG. 4. Dependencies �ϕ1(τm) and �ϕ2(τm) for ν1 = 1/200 and
ν2 = 3/200. Regions with synchronous behavior of oscillators in both
clusters are denoted by SS. Regions with asynchronous behavior of
oscillators in both clusters are denoted by AS. Regions in which
chimeralike states take place are denoted by CS1 and CS2.

oscillators in clusters, including the formation of chimeralike
states. In the general case, the mean field can possess both delay
and inertial properties, but we do not consider this situation in
the present paper.

III. EXPERIMENTAL RESULTS

We study experimentally a network composed of eight
bistable time-delay systems described in the absence of
coupling by Eq. (1). Each element in the network represents
a ring electronic oscillator with time-delayed feedback. In the
block representation of this oscillator (Fig. 1), a delay for time
τ is provided by a delay line, the role of a nonlinear element
is played by an amplifier with the transfer function f , and the
system inertial properties are defined by a low-pass first-order
RC filter, whose parameters specify ε. For this oscillator, x(t)
and x(t − τ ) in Eq. (1) are the voltages at the delay line input
and output, respectively, and ε = RC, where R is the resistance
and C is the capacitance.

Our electronic oscillators contain an analog RC filter
and digital delay line and a nonlinear element implemented
on programmable microcontrollers. We used 32-bit Atmel
microcontrollers based on the ARM Cortex-M3 processor. The
analog and digital elements of the oscillators are connected
with the help of analog-to-digital converters and digital-to-
analog converters.

A block diagram of the network of coupled oscillators
under investigation is depicted in Fig. 5. The mean field is
formed by the summation of signals xi(t) from all oscillators
using the summing amplifier with the transfer coefficient k and
normalization of the summary signal to N. The resulting signal
passes through a linear phase-shifting chain comprising two
series-connected low-pass first-order RC filters. In this case,
the mean field G(t) is described by Eq. (9), where γ1 = R1C1

and γ2 = R2C2. The signal G(t) is fed into each oscillator
between the filter and delay line as an external forcing. This
type of forcing corresponds to the case where G(t) acts on the
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FIG. 5. Block diagram of a network of time-delayed feedback
oscillators globally coupled via the mean field. The first and Nth
oscillators are depicted. The delay lines, nonlinear elements, and
filters are denoted by DL, NE, and F, respectively. The summary
amplifier is denoted by 	.

network oscillators at point 1 (Fig. 1). In this case, the coupled
oscillators are governed by Eq. (3).

The parameters of the oscillators are τ = 1 ms and ε =
0.08 ms and the transfer function is described by cubic function
(2) depicted in Fig. 2. The transfer coefficient of the summing
amplifier is k = 0.01. By programming the microcontrollers,
we specify the initial conditions as a constant value on the time
interval equal to τ . For four oscillators, the initial conditions
are set equal to 2 V, while for the four other oscillators they are
set equal to 0.5 V. These initial conditions fall into the basin
of attraction of periodic and chaotic attractor, respectively. As
a result, four oscillators perform periodic oscillations in the
fundamental mode, while the four other oscillators perform
chaotic oscillations at the third harmonic of the fundamental
mode. In this case, the oscillators in the network are separated
into two clusters. One of these clusters contains oscillators
with periodic behavior at a frequency close to ν1 and another
cluster contains oscillators with chaotic dynamics at a basic
frequency close to ν2.

Varying the values of resistors R1 and R2 (Fig. 5), we change
the phase shifts �ϕ1 and �ϕ2 and observe three qualitatively
different situations: (i) |�ϕ1| < π/2 and |�ϕ2| < π/2, (ii)
|�ϕ1| < π/2 and π/2 � |�ϕ2| < π , and (iii) π/2 � |�ϕ1| <

π and π/2 � |�ϕ2| < π , described in Sec. II.
In the first case, synchronization takes place between

periodic oscillators in the first cluster and between chaotic
oscillators in the second cluster. Figure 6(a) shows parts of the
experimental time series of voltage in eight coupled oscillators
for |�ϕ1| = 0.002π and |�ϕ2| = 0.006π . As seen in Fig. 6(a),
the time series of periodic oscillators are slightly different. It is
explained by the fact that it is practically impossible to ensure
the absolute identity of analog RC filters in experimental
electronic oscillators. In the ideal case of identical oscillators,
one would observe complete synchronization of periodic
oscillators (see Sec. IV). The chaotic oscillators in Fig. 6(a)
exhibit phase synchronization, but the amplitude of oscillations
can be different.

The second situation is illustrated in Fig. 6(b) showing
parts of the time series of voltage in all coupled oscillators
for |�ϕ1| = 0.47π and |�ϕ2| = 0.51π . The periodic oscil-
lators exhibit synchronization similar to the case depicted
in Fig. 6(a). The chaotic oscillators exhibit asynchronous

FIG. 6. Experimental time series of voltage in eight coupled
electronic oscillators for |�ϕ1| = 0.002π and |�ϕ2| = 0.006π (a),
|�ϕ1| = 0.47π and |�ϕ2| = 0.51π (b), and |�ϕ1| = 0.8π and
|�ϕ2| = 0.99π (c). The time series of periodic and chaotic oscillators
are shown at the top and at the bottom of the figures, respectively. The
same set of colors is used for both periodic and chaotic time series.

behavior. This situation corresponds to a chimeralike state.
It should be noted that chimeralike states are identified in the
considered network in spite of the employment of only eight
coupled oscillators. As it was shown recently in Refs. [40,52–
55], chimera states can be identified even in small networks
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FIG. 7. Space-time plots of the network of eight coupled ex-
perimental oscillators for |�ϕ1| = 0.002π and |�ϕ2| = 0.006π

(a), |�ϕ1| = 0.47π and |�ϕ2| = 0.51π (b), and |�ϕ1| = 0.8π and
|�ϕ2| = 0.99π (c).

of coupled oscillators. Only four identical coupled oscillators
are sufficient for observation of chimera states [40,52,54].

The last situation is illustrated in Fig. 6(c). This figure
shows parts of the time series of voltage in eight coupled
oscillators for |�ϕ1| = 0.8π and |�ϕ2| = 0.99π . In this case,
the oscillators in both clusters exhibit asynchronous behavior.

Figure 7 shows the space-time plots of the network of eight
coupled experimental electronic oscillators for each of the
three situations depicted in Fig. 6. The oscillators performing
periodic oscillations are denoted by the numbers from 1 to
4, while the oscillators performing chaotic oscillations are de-
noted by the numbers from 5 to 8. Since the analog RC filters in
the real oscillators cannot be absolutely identical, the periodic
oscillators 1–4 exhibit slightly different oscillations even in
the synchronous regimes [Figs. 7(a) and 7(b)]. In Fig. 7(a),
the chaotic oscillators 5–8 exhibit phase synchronization, but
the amplitude of oscillations can be different. In Figs. 7(b) and
7(c), the chaotic oscillators exhibit asynchronous behavior.

In this case, the difference between the amplitudes of their
oscillations is more pronounced than in Fig. 7(a).

For the other ratios between the number of periodic
oscillators and the number of chaotic oscillators in the network,
we observed qualitatively similar collective dynamics of
coupled oscillators. We could identify chimeralike states in the
network of eight coupled experimental electronic oscillators,
if the number of the network elements performing periodic (or
chaotic) oscillations was from two to six.

In our recent paper [48], we studied experimentally a
network composed of six electronic oscillators with time-
delayed feedback coupled via the mean field, which was fed
into oscillators between the nonlinear element and filter. This
type of forcing corresponds to the case where G(t) acts on the
ring oscillators at point 3 (Fig. 1), and the coupled oscillators
are modeled by Eq. (5). In this network, we have observed the
oscillation regimes qualitatively similar to those mentioned
above for the scheme depicted in Fig. 5.

IV. RESULTS OF NUMERICAL SIMULATION

We have also carried out numerical simulation of collective
dynamics of oscillators in networks of identical bistable
time-delay systems coupled via the mean field. To compare
the results of modeling with those of physical experiment
presented in Sec. III, we consider a network consisting of
eight bistable time-delayed feedback oscillators described by
Eq. (3) with τ = 100, ε = 8, and k = 0.01 and coupled via the
mean field G(t) described by Eq. (9). The nonlinear function of
the oscillators is described by Eq. (2) with the same parameter
values as in the physical experiment (see Fig. 2).

Depending on the initial conditions, the oscillators can
perform either periodic oscillations in the fundamental mode
at a frequency close to ν1 or chaotic oscillations at the third
harmonic of the fundamental mode at a basic frequency close
to ν2 = 3ν1. Similarly to the physical experiment, one can
specify the initial conditions as a constant value on the time
interval equal to τ . For example, if the initial conditions are set
equal to 0.5, the oscillator exhibits chaotic oscillations in the
vicinity of the fixed point B (Fig. 2). If the initial conditions
are set equal to 2, the oscillator exhibits periodic oscillations
in the vicinity of the fixed point A. Thus the number p of
periodic oscillators and the number n of chaotic oscillators in
the network are fully determined by initial conditions.

In the network consisting of N bistable oscillators, depend-
ing on the initial conditions, N + 1 different regimes can
take place, in which n and p take the values from 0 to N,
with n + p = N . For p = 0 and p = N , only one cluster is
formed in the network, which consists of chaotic or periodic
oscillators, respectively. Depending on the value of phase shift
between the signals G(t) and xi(t), the oscillators in this cluster
exhibit either synchronous or asynchronous behavior. For p =
1, . . . ,N − 1, the network contains both periodic and chaotic
oscillators. However, for p = 1 and p = N − 1, there is only
one periodic or only one chaotic oscillator, respectively, for
which the notion of synchronous or asynchronous collective
dynamics does not make sense. Therefore, chimeralike states
are not observed at p = 1 and p = N − 1. In the considered
network of N = 8 bistable oscillators, we could identify
chimeralike states for p = 2, . . . ,6.
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FIG. 8. Time series of oscillations in the coupled model time-
delay systems (3) for |�ϕ1| = 0.04π and |�ϕ2| = 0.12π (a), |�ϕ1| =
0.36π and |�ϕ2| = 0.69π (b), and |�ϕ1| = 0.64π and |�ϕ2| =
0.87π (c).

The initial conditions in the network oscillators can be
specified in a random way. For random choice of initial con-
ditions in oscillators, we affect each oscillator by independent
noise with the uniform distribution on the interval [0.7,2.5].
At such noise, the initial conditions can fall into the basin of
attraction of a periodic attractor, as well as into the basin of
attraction of a chaotic attractor. When the noise is switched
off, we have a random combination of oscillation regimes in

FIG. 9. Space-time plots of the network of eight coupled model
oscillators (3) for |�ϕ1| = 0.04π and |�ϕ2| = 0.12π (a), |�ϕ1| =
0.36π and |�ϕ2| = 0.69π (b), and |�ϕ1| = 0.64π and |�ϕ2| =
0.87π (c).

the network elements. One subset of the oscillators performs
periodic oscillations, while another subset performs chaotic
oscillations. By analogy with the real experiment, we consider
the case where four elements exhibit periodic oscillations at
a frequency close to ν1, while the four other elements exhibit
chaotic oscillations at a basic frequency close to ν2.

Parts of the time series of xi(t) in eight coupled model
oscillators are shown in Fig. 8 for different values of phase
shifts �ϕ1 and �ϕ2. Figure 8(a) illustrates the case where the
periodic oscillators are completely synchronized, while the
chaotic oscillators exhibit phase synchronization. In contrast to
the physical experiment (Fig. 6), all oscillators are absolutely
identical. Therefore, the time series of all periodic oscillators
in Figs. 8(a) and 8(b) completely coincide and it is not
possible to make a distinction between these time series.
Figure 8(b) shows a chimeralike state, in which the periodic
oscillators are synchronized, while the chaotic oscillators
are desynchronized. In Fig. 8(c), both periodic and chaotic
oscillators exhibit asynchronous oscillations.
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FIG. 10. Time series of oscillations in the coupled model time-
delay systems (4) for a chimeralike state for |�ϕ1| = 0.72π and
|�ϕ2| = 0.40π .

The space-time plots of the model network of coupled
oscillators are shown in Fig. 9. The oscillators performing
periodic oscillations are denoted by the numbers from 1 to
4, while the oscillators performing chaotic oscillations are
denoted by the numbers from 5 to 8. Figure 9 agrees well
with Fig. 7 constructed for coupled experimental electronic
oscillators. In Fig. 9(a), the periodic oscillators 1–4 exhibit
complete synchronization, while the chaotic oscillators 5–
8 exhibit phase synchronization. Figure 9(b) illustrates a
chimeralike state and Fig. 9(c) shows a situation where both
periodic and chaotic oscillators exhibit asynchronous behavior.

It should be noted that if the initial conditions are specified
in such a way that the oscillators denoted by the numbers
from 1 to 4 in Fig. 9 perform chaotic oscillations, while
the oscillators denoted by the numbers from 5 to 8 perform
periodic oscillations, then the left and right parts in Fig. 9
will change places. In this case, a chimeralike state will
take place, in which the periodic oscillators 5–8 exhibit
synchronization, while the chaotic oscillators 1–4 exhibit
asynchronous behavior. This situation will be opposite to the
situation depicted in Fig. 9(b).

In the general case, the oscillators performing periodic
or chaotic oscillations can have any number. For example,
the initial conditions can be specified in such a way that the
oscillators denoted by the numbers 1, 3, 6, and 7 in Fig. 9 will
perform periodic oscillations, while the oscillators denoted by
the numbers 2, 4, 5, and 8 will perform chaotic oscillations.
Since the elements of the network are not spatially ordered,
for the visualization of oscillation regimes in this case, it is
convenient to renumber the oscillators with respect to the
oscillation regime they display. As a result, we obtain a figure
similar to Fig. 9. If the coupling via the mean field is attractive
for periodic oscillators and repulsive for chaotic oscillators, a
chimeralike state will occur in such network.

For the network consisting of oscillators governed by
Eq. (5) and coupled via the mean field G(t) described by
Eq. (9), we obtain the results qualitatively similar to those
presented in Figs. 8 and 9. We investigate also the network
dynamics for the case where the behavior of each oscillator

FIG. 11. Space-time plot of the network of eight coupled model
oscillators (4) illustrating a chimeralike state for |�ϕ1| = 0.72π and
|�ϕ2| = 0.40π .

in the network is described by Eq. (4). Depending on the
phase shifts �ϕ1 and �ϕ2, different oscillation regimes are
observed in the network. We observed a regime in which the
periodic oscillators in the first cluster are synchronized and
the chaotic oscillators in the second cluster are synchronized,
and a regime in which both periodic and chaotic oscillators are
desynchronized. Moreover, we identified a chimeralike state
that was not observed in the network of coupled oscillators de-
scribed by Eq. (3). In this regime, the chaotic oscillators exhibit
synchronous behavior, while the periodic oscillators exhibit
asynchronous behavior. For this chimeralike state, Fig. 10
depicts parts of the time series of xi(t) in eight coupled
oscillators, and Fig. 11 shows the space-time plot of the
network. Note that boundaries of the regions with different
oscillation regimes in the numerical simulation agree well with
the boundaries of the regions in Fig. 3.

FIG. 12. Snapshots of variables xi(t) in eight coupled model
oscillators (3) in the presence of delay in the mean field for |�ϕ1| =
0.05π and |�ϕ2| = 0.15π (a), |�ϕ1| = 0.24π and |�ϕ2| = 0.72π

(b), |�ϕ1| = 0.63π and |�ϕ2| = 1.89π (c), and |�ϕ1| = 0.91π and
|�ϕ2| = 2.73π (d).
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Finally, we illustrate the collective dynamics of coupled
oscillators described by Eq. (3) in the presence of delay in
the mean field described by Eq. (17). In accordance with the
theoretical results presented in Sec. II, four different oscillation
regimes are observed in the network. For each of these regimes,
Fig. 12 shows the snapshots of variables xi(t). The periodic
oscillators are denoted by the numbers from 1 to 4, while the
chaotic oscillators are denoted by the numbers from 5 to 8.

The regime in which both periodic and chaotic oscillators
are synchronized is presented in Fig. 12(a). Figures 12(b) and
12(c) illustrate two different chimeralike states. In the first
chimeralike state, the periodic oscillators are synchronized,
while the chaotic oscillators are desynchronized [Fig. 12(b)].
In the second chimeralike state, on the contrary, the periodic
oscillators are desynchronized, while the chaotic oscillators
are synchronized [Fig. 12(c)]. Figure 12(d) shows the regime
in which both periodic and chaotic oscillators exhibit asyn-
chronous behavior.

V. CONCLUSION

We have studied the collective dynamics of oscillators in
the networks of identical bistable time-delay systems globally
coupled via the mean field. Different ways of formation of
the mean field are considered. The influence of delay and
inertial properties of the mean field on the collective behavior
of oscillators is investigated.

The variety of oscillation regimes in the considered
networks results from the presence of bistable states with
substantially different frequencies in coupled oscillators. One
of the bistable regimes takes place in the fundamental mode of
the time-delay system oscillations, while another regime takes
place at the third harmonic of the fundamental mode. This
feature of the bistable system under investigation allows us to
ensure different phase shifts of the signal of the mean field for
oscillators performing oscillations at different harmonics.

The type of oscillation regime in the network depends on
initial conditions in coupled oscillators. The initial conditions
can be specified in a required way for each oscillator separately
or can be specified in a random way with the help of noise. It
is shown that two clusters coexist in the network. Depending
on the phase shift of the mean field, each of these clusters
can exhibit either synchronous or asynchronous behavior of
oscillators in the cluster. In the case where the coupling via
the mean field is attractive for oscillators in one cluster and
repulsive for oscillators in another cluster, a chimeralike state
occurs in the network. In this state, clusters with synchronized
and desynchronized oscillators coexist in the network. Thus,
varying the parameters of the mean field, it is possible to
control the behavior of oscillators in clusters, including the
formation of chimeralike states.

We have considered the situation in which oscillators
perform periodic oscillations in one of the bistable states
and chaotic oscillations in another bistable state. However,
qualitatively similar results can be obtained in the cases
where both bistable states are periodic or both bistable states
are chaotic. It should be noted that in the case of attractive
coupling, the identical periodic oscillators exhibit complete
synchronization, while the chaotic oscillators exhibit phase
synchronization.

We have studied the features of the collective dynamics of
oscillators in the network of identical bistable time-delayed
feedback systems for the cases where the signal of the mean
field is fed into the ring time-delay systems at various points.
The similarities and distinctions of these cases are shown.
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