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We propose a method for the recovery of coupling architecture and the parameters of elements in networks
consisting of coupled oscillators described by delay-differential equations. For each oscillator in the network,
we introduce an objective function characterizing the distance between the points of the reconstructed nonlinear
function. The proposed method is based on the minimization of this objective function and the separation of
the recovered coupling coefficients into significant and insignificant coefficients. The efficiency of the method is
shown for chaotic time series generated by model equations of diffusively coupled time-delay systems and for
experimental chaotic time series gained from coupled electronic oscillators with time-delayed feedback.
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I. INTRODUCTION

The study of networks of interacting oscillators has at-
tracted a lot of attention in diverse fields of science and
engineering. The network topology and intensity of couplings
between the network elements define the features of collective
dynamics, such as synchronization [1–4]. Moreover, the
architecture of couplings has important consequences on the
network responses to external perturbations. Therefore, to
understand the functionality of the network, it is important
to determine the network connectivity. However, in many
real-world systems, direct measurement of the connectivity
is not possible. Because of this, estimation of the network
connectivity from the time series of the network elements has
become an active area of research in recent years.

Several approaches have been developed for the recovery
of couplings between the network elements. A method for
estimating the network connectivity has been proposed that
exploits the response properties of the network to external
driving signals [5]. A limitation of this approach is the neces-
sity of disturbing oscillators in the network. Some methods
exploit an auxiliary response network with the same intrinsic
dynamics of the individual nodes as the drive network under
study [6–8]. These methods use adaptive feedback control
for synchronizing the drive and response networks, thus
estimating the network connectivity. However, these methods
assume that parameters of nodes are known a priori. Several
methods for the recovery of couplings between the network
elements are based on the phase modeling approach [9–11],
Granger causality approach [12–14], or other techniques
[15–18].

Most methods for estimating the network connectivity are
valid only for networks with known parameters of nodes.
However, in many practical situations, the system parameters
are not known beforehand. Therefore, it is important to develop
methods for estimating the network connectivity and node
parameters simultaneously.

The problem of network reconstruction becomes more
difficult if the network consists of time-delay systems. Delays
are inherent in many real-world systems [19–21] and time-
delayed networks are widely used for modeling various

realistic multielement systems with delays [22–26]. For the
recovery of time-delay systems from time series, a variety of
methods have been proposed [27–53]. However, the majority
of these methods were applied to the recovery of a single
time-delay system.

The problem of reconstruction of networks consisting of
coupled time-delay systems has received much less attention.
The methods for the recovery of both the architecture of
couplings and node parameters in networks of time-delay sys-
tems have been proposed recently in Refs. [54,55]. Although
these methods have certain merits, they are not devoid of
drawbacks. For example, the method considered in Ref. [54]
requires invertibility of the node functions, the absence of
noise, and the choice of initial conditions for unknown
delays in the neighborhood of true values. The method we
proposed in Ref. [55] exploits a separate procedure [42,48]
for the reconstruction of delay times in the elements and
an iteration algorithm for the recovery of couplings, which
requires significant time for computation. Moreover, the result
of the coupling architecture recovery may depend on the choice
of the method parameters.

In the present paper, we propose a method for the
reconstruction of networks composed of coupled time-delay
systems, which is devoid of the above-mentioned shortcom-
ings. The method is based on the minimization of a special
objective function for each element in the network and on
the employment of different algorithms for separating the re-
covered coupling coefficients into significant and insignificant
coefficients.

The paper is organized as follows. In Sec. II, the idea of the
method is presented. Using the proposed method, in Sec. III,
we recover the parameters of the elements and coupling
architecture in various networks of time-delay systems from
both numerical and experimental time series. The results are
summarized in Sec. IV.

II. METHOD

We consider a network consisting of D coupled nodes, with
each node being an oscillating time-delay system described by
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the following delay-differential equation:

εi ẋi(t) = −xi(t) + fi(xi(t − τi))

+
D∑

j=1(j �=i)

ki,j [xj (t) − xi(t)], (1)

where i = 1, . . . ,D. Here, xi(t) denotes the state variable of
the ith node. A nonlinear function fi describes the intrinsic
dynamics of the ith node. The delay time and parameter of
inertia of the ith node are denoted as τi and εi , respectively. The
coupling coefficients ki,j characterize the coupling strength of
the link from the j th element to the ith element. In the general
case, a bidirectional coupling takes place between any two
oscillators in the network.

Let us assume that we have the simultaneously recorded
time series xi = {xi(n)}Nn=1, where n is the time index and N

represents the total number of samples for each oscillator. We
can define the discrete delay time as θi = τi/�t , where �t is
the sampling time. Then we can rewrite Eq. (1) in the following
form:

fi(xi(n)) = εi ẋi(n + θi) + xi(n + θi)

−
D∑

j=1(j �=i)

ki,j [xj (n + θi) − xi(n + θi)], (2)

where n = 1, . . . ,N − θi . For each oscillator, we sort the
values of xi(n) in ascending order and denote this sorting
as transformation Q, which assigns a point with the index
Q(xi ,n) in the sorted time series to a point with the index n in
the original time series. We denote the inverse transformation
as Q−1, which assigns a point with the index n in the original
time series to a point with the index Q(xi ,n) in the sorted time
series. Then we have n = Q−1(Q(n)). For brevity, we omit the
dependence of Q and Q−1 on xi .

In the case in which some point has the index n in the origi-
nal time series and the index Q(n) in the sorted time series, the
neighbor point to the right of this point in the sorted time series
has the index Q(n) + 1. The index of this neighbor point in the
original time series is pn = Q−1(Q(n) + 1). Note that pn is not
close to n in the general case. Since the points with the indices
Q(n) + 1 and Q(n) in the sorted time series are neighbors,
the values of the dynamical variable in these points are close.
Consequently, the values of function fi in these points are also
close, under the assumption that fi is a continuous function.
We denote the absolute value of the difference between the
values of function fi in these points as δi(n):

δi(n) =|fi(xi(pn)) − fi(xi(n))|. (3)

Using Eq. (2), Eq. (3) may be written as follows:

δi(n) =
∣∣∣∣∣∣
⎧⎨
⎩xi(pn + θi) −

D∑
j=1(j �=i)

ki,j [xj (pn + θi) − xi(pn + θi)] + εi ẋi(pn + θi)

⎫⎬
⎭

−
⎧⎨
⎩xi(n + θi) −

D∑
j=1(j �=i)

ki,j [xj (n + θi) − xi(n + θi)] + εi ẋi(n + θi)

⎫⎬
⎭

∣∣∣∣∣∣. (4)

We introduce new notations and rewrite Eq. (4) as follows:

δi(n) =
∣∣∣∣∣∣�xi(n) −

D∑
j=1(j �=i)

ki,j [�xj (n) − �xi(n)] − (−εi)�ẋi(n)

∣∣∣∣∣∣, (5)

�xi(n) = xi(pn + θi) − xi(n + θi), (6)

�ẋi(n) = ẋi(pn + θi) − ẋi(n + θi). (7)

We denote the length of a line connecting successive points
of the nonlinear function fi in the sorted time series as Si . The
square of Si is defined as

S2
i =

N−θi−1∑
n=1

{
[xi(pn) − xi(n)]2 + δ2

i (n)
}
. (8)

Note that S2
i may be considered a function of parameters θi ,

ki,j , and εi , which are a priori unknown. The value of S2
i is less

at the true choice of these parameters than at their incorrect
choice. This is explained by the fact that, for a wrong choice
of θi , ki,j , and εi , the distances (4) are not small, even for the
neighbor points in the sorted time series.

The unknown parameter values can be found by minimiza-
tion of S2

i . Since the differences xi(pn) − xi(n) in Eq. (8)
cannot be optimized, it is convenient to minimize the simpler

measure L2
i , rather than S2

i , characterizing the sum of squares
of only the vertical components of distances between the points
of the nonlinear function:

L2
i =

N−θi−1∑
n=1

δ2
i (n) =

N−θi−1∑
n=1

{
�xi(n)

−
D∑

j=1(j �=i)

ki,j [�xj (n) − �xi(n)] − (−εi)�ẋi(n)

⎫⎬
⎭

2

.

(9)

For a fixed θi , the minimization of L2
i can be carried out

using the linear least squares method, where ki,j and (−εi) are
the required coefficients, �xj (n) − �xi(n) and �ẋi(n) are the

052207-2



RECOVERY OF COUPLINGS AND PARAMETERS OF . . . PHYSICAL REVIEW E 94, 052207 (2016)

basis functions, and �xi(n) are the values to be approximated.
In this case, L2

i may be considered the objective function.
The finding of its extremum is a standard problem that can be
solved in a nonrecursive way.

Since the delay time θi is a priori unknown, the mini-
mization of the objective function (9) can be carried out for
different trial discrete delay times θi

′ chosen in some range.
The minimum of the dependence L2

i (τi
′), where τi

′ = θi
′�t ,

will be observed at the true delay time τi .
With the increase of N , the number of terms in the sum (9)

increases in proportion to N . At the same time, the increase
of N leads to the decrease of distances between the points
in the sorted time series and, as a consequence, leads to the
decrease of δi(n). On the average, δi(n) decreases in proportion
to 1/N . Therefore, each term δ2

i (n) in the sum (9) decreases
in proportion to (1/N )2 with the increase of N . Consequently,
L2

i → 0 as N → ∞. Thus, for N → ∞, the proposed method
is asymptotically accurate and gives asymptotically unbiased
estimations of parameters.

The proposed algorithm is described in the general case,
where a bidirectional coupling is present between any two
oscillators in the network. Such a situation is not typical in
practice. If there is no influence of the j th element upon
the ith element, the corresponding coupling coefficient ki,j

in the model equation (1) should be set to zero. However,
application of the procedure of reconstruction described above
always gives us D − 1 nonzero coupling coefficients k′

i,j for
each element in the network. If some of the potential links
in the network are not present, then some of the recovered
coefficients k′

i,j are redundant. For separating the coefficients
k′
i,j into significant and insignificant coefficients, the K-means

clustering [56] can be used.
We carry out clustering of the recovered coupling coef-

ficients k′
i,j in one-dimensional space by separating them

into two clusters consisting of significant and insignificant
coefficients. The maximal and minimal values of k′

i,j are
chosen as the initial centers of the clusters. Since the significant
coefficients in the general case are much greater than the
insignificant coefficients, it is convenient to conduct clustering
on a logarithmic scale. After determination of insignificant
coupling coefficients, we remove the basis functions corre-
sponding to these insignificant coefficients from the objective
function (9) and recover all remaining ki,j once again in order
to increase the accuracy of reconstruction.

This approach allows us to recover the architecture of
couplings in the network. It should be noted that the considered
method operates much more quickly than the iteration method
we proposed in Ref. [55]. The iteration method employs a
successive trial elimination of coupling coefficients from the
model equation for testing the significance of links [55]. In
our method, all insignificant couplings are eliminated at once
from the model equation.

The method of detecting the insignificant couplings, based
on the K-means clustering, operates well in the absence of
noise in the case of a comparable number of significant and in-
significant coupling coefficients. However, if these conditions
are not fulfilled, the boundaries of clusters become close to
each other. As a result, the accuracy of the method decreases,
and it can detect spurious couplings or miss existing ones. In

such cases, for accurate recovery of coupling architecture, one
should use more than two clusters in the K-means algorithm.
Unfortunately, in the analysis of experimental data, the number
of connections between the network elements is a priori
unknown, and it is difficult to recommend the appropriate
number of clusters.

We propose another method for separating the recovered
coupling coefficients k′

i,j into significant and insignificant
coefficients. We sort the coefficients k′

i,j in descending order by
the absolute value. Then we consider the network containing
only one connection between D nodes (1). The coupling
coefficient that describes this connection has the greatest
absolute value among the recovered coefficients k′

i,j . For this
network, we calculate the following quantity:

� =
D∑

i=1

L2
i

/
(N − θi − 1). (10)

Note that � is normalized to N − θi − 1. Without this
normalization, the contribution of different oscillators to �

will be different because they have different delay times θi

and, as a consequence, will have a different number of terms
in the objective function (9). After that, we enter the coupling
coefficients into the model one by one in descending order of
their absolute value and calculate � at each step. Finally, we
plot the dependence of � on M , where M = 1, . . . ,D(D − 1)
is the number of coupling coefficients in the model equations.

As the model takes into account a greater number of
existing couplings, it becomes more accurate. In this case,
the quantities (5) characterizing the distance between the
points of the reconstructed nonlinear functions decrease, as
do the quantities (9) and (10). The decrease of � in the
�(M) plot will practically stop at M = W , where W is the
number of couplings in fact existing in the network. Further
adding the coefficients k′

i,j , which correspond to nonexistent
couplings, into the model has almost no influence on the value
of �. The dependence �(M) will remain almost constant for
M � W . The figures that clearly illustrate this approach are
presented in Sec. III. Note that this approach is not as fast
as the method that separates the coupling coefficients into
significant and insignificant coefficients based on the K-means
clustering. In practice, one can use both considered methods.
If they give the same result, it supports the conclusion that
the architecture of couplings between the network elements is
recovered accurately.

III. RESULTS

A. Examples of networks consisting of coupled
time-delay systems

We have applied the proposed method to the reconstruction
of the network connectivity and node parameters in model net-
works consisting of standard time-delay systems, such as the
Mackey-Glass system and Ikeda system and an experimental
network consisting of electronic oscillators with time-delayed
feedback.

First, we consider a network of coupled Mackey-Glass
equations. Each element in this network is described by Eq. (1)
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(a)

(b)

FIG. 1. (a) Coupling architecture in a network of 20 elements.
(b) The chaotic time series of x1(t) corrupted by Gaussian noise with
σi = 0.004 in the network of Mackey-Glass equations.

with the following nonlinear function:

fi(xi(t − τi)) = aixi(t − τi)

bi

[
1 + xc

i (t − τi)
] . (11)

The Mackey-Glass equation has been introduced in
Ref. [57] as a model of blood production. This equation has
been studied in detail in Ref. [58] under variation of delay time
τi and the fixed values of other parameters in function (11), in
which ai = 0.2, bi = 0.1, and c = 10. The high-dimensional
chaotic attractor of a single Mackey-Glass system was studied
at τi = 300 [58]. Subsequently, the same set of parameters of
the Mackey-Glass equation has been used by many authors in
numerical studies of chaotic time-delay systems.

We consider a network consisting of 20 coupled Mackey-
Glass equations with a random architecture of couplings. Any
two nodes in this network can be uncoupled, coupled in one
direction, or coupled in both directions. Figure 1(a) shows
the case in which 60 couplings from 380 possible couplings
are present. All elements in the network are nonidentical. The
parameters of function (11) in the Mackey-Glass equations
are assigned arbitrary values in the vicinity of the above-
mentioned parameter values used in Ref. [58]. We choose
τi ∈ [250,400], ai ∈ [0.20,0.25], εi ∈ [7.5,12.5], and c = 10
corresponding to chaotic oscillations of the elements. Note

that εi = 1/bi for the Mackey-Glass equation. The coupling
coefficients are chosen such that ki,j ∈ [0.02,0.06].

Each time series contains N = 10 000 points recorded with
the sampling time �t = 0.5. We consider the case of the
absence of noise and the case in which each time series
is corrupted by additive independent Gaussian noise ξi(t)
with a zero mean and standard deviation σi = 0.004. In this
case, the additive noise has a standard deviation of about
1%–2% of the standard deviation of the data without noise
(the signal-to-noise ratio is about 34–40 dB). The elements in
the network have different amplitudes of oscillations because
of the nonidentical parameters. Thus, the level of noise differs
for different oscillators. Figure 1(b) shows the time series of
the first element with the parameters τ1 = 263, ε1 = 12.32,
a1 = 0.218, k1,4 = 0.0475, k1,15 = 0.0294, k1,18 = 0.0292,
and k1,j = 0, j �= 4,15,18.

As a second example, we study a network consisting of
coupled Ikeda equations described by Eq. (1) with εi = 1 and
the following function:

fi(xi(t − τi)) = μi sin[xi(t − τi) − x0i], (12)

where the parameter μi characterizes the amplitude of oscil-
lations and where x0i is a constant. The Ikeda equation [59],
which describes the dynamics of an optical bistable resonator,
is another standard equation widely used in the simulation of
time-delay systems.

We consider a network composed of 16 Ikeda equations
with 50 randomly generated couplings between them. The
total number of possible couplings in this network is equal
to 240. All elements are nonidentical. Their parameters are
assigned arbitrary values in the following ranges: τi ∈ [2,5],
μi ∈ [15,25], x0i ∈ [0,2π ], and ki,j ∈ [0.1,0.5]. With these
parameters, all elements oscillate in a chaotic regime. The
length of each time series is 10 000 points. The sampling
time is �t = 0.01. Each time series is corrupted by additive
independent Gaussian noise ξi(t) with a zero mean and
standard deviation σi = 0.003, which is about 0.1%–0.2%
of the standard deviation of the data without noise (the
signal-to-noise ratio is about 54–60 dB). This level of noise is
rather small.

At last, we examine a network consisting of coupled ex-
perimental electronic oscillators with time-delayed feedback.
Each oscillator represents a ring system containing an analog
low-pass first-order RC filter, digital delay line, and digital
nonlinear device. A block diagram of such an oscillator is
presented in Fig. 2. The analog and digital elements of the
oscillator are connected with the help of analog-to-digital and
digital-to-analog converters.

Each oscillator in the network is described by Eq. (1),
where xi(t) and xi(t − τi) are the voltages at the delay line
input and output, respectively, and εi = RiCi , where Ri is the
resistance and Ci is the capacitance. The digital nonlinear
devices in our scheme provide a quadratic transformation
fi . To connect the oscillators in the network, we use the
resistors Ri,j and voltage followers. It allows us to provide
unidirectional coupling between the oscillators in contrast to
our paper [55], where the coupling in the experimental scheme
could be only bidirectional. The coupling coefficients in Eq. (1)
are calculated as ki,j = Ri/Ri,j .

052207-4



RECOVERY OF COUPLINGS AND PARAMETERS OF . . . PHYSICAL REVIEW E 94, 052207 (2016)

FIG. 2. (a) Block diagram of the ring oscillator with time-delayed
feedback. The analog-to-digital converter and the digital-to-analog
converter are denoted as ADC and DAC, respectively. (b) The
experimental chaotic time series of voltage x1(t) in the first oscillator.

We consider a network representing a chain of ten
unidirectionally coupled experimental oscillators. The chain
comprises nonidentical chaotic oscillators whose parameters
take the values in the following ranges: τi ∈ [2.50,4.75]
ms, εi ∈ [203,536] μs, and ki,j ∈ [0.10,0.23]. For j �= i + 1,
ki,j = 0. We simultaneously record the signals xi(t) using
a ten-channel analog-to-digital converter with the sampling
frequency fs = 100 kHz. The time series of voltage x1(t) is
shown in Fig. 2(b) for the first oscillator with the parameters
τ1 = 2.5 ms, ε1 = 203 μs, k1,2 = 0.21, and k1,j = 0 where
j �= 2.

B. Reconstruction of delay time in the network elements

First, we illustrate the results of application of our method
to the reconstruction of delay times inherent in the intrinsic
dynamics of the network oscillators. For each element in the
network, we calculate the objective function (9) under variation
of the delay time and construct the L2

i (τi
′) plot. The time

derivatives necessary for calculating the objective function (9)
are estimated from the time series by applying a local parabolic
approximation.

Figure 3 shows the dependences L2
i (τi

′) for each of the 20
elements in the network of coupled Mackey-Glass equations
for the cases of the absence and presence of noise. The L2

i

values are normalized to N − θi − 1. The global minima of
all L2

i (τi
′) in Fig. 3 take place at the true delay times of the

network oscillators. In the absence of noise, these minima are
deeper and narrower than in the case of the presence of noise.

Figure 4 depicts the dependences L2
i (τi

′) normalized to
N − θi − 1 for each of the 16 elements in the network of
coupled Ikeda equations in the presence of small noise. The
absolute minima of all L2

i (τi
′) are very well pronounced. They

are observed exactly at the true delay times of the network
elements.

The dependences L2
i (τi

′) for each of the ten elements in
the chain of coupled experimental electronic oscillators are
presented in Fig. 5. The L2

i values are normalized to N − θi −
1. For nine oscillators, the global minima of L2

i (τi
′) take place

at the true delay times. For only one oscillator, the absolute

FIG. 3. Dependences L2
i (τi

′) for each of the 20 elements in the
network of Mackey-Glass equations in the absence of noise (a) and
in the presence of Gaussian noise with σi = 0.004 (b).

minimum of L2
i (τi

′) is shifted from the true delay time by the
time ts = 10 μs, which is equal to the sampling time.

C. Recovery of couplings in the network

We now illustrate the efficiency of the method for the
recovery of the network connectivity. As a result of the
reconstruction of model equation (1) for each oscillator in the
network, we obtain D − 1 nonzero coupling coefficients k′

i,j .
Some of these coefficients are redundant. At first, we define
the significant coefficients k′

i,j using the K-means clustering.

FIG. 4. Dependences L2
i (τi

′) for each of the 16 elements in the
network of Ikeda equations in the presence of small Gaussian noise
with σi = 0.003.
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FIG. 5. Dependences L2
i (τi

′) for each of the ten elements in
the chain of experimental electronic oscillators with time-delayed
feedback.

Since the insignificant coefficients k′
i,j are close to zero and

may take negative values, we use the absolute values of k′
i,j

for separation of coefficients into significant and insignificant
coefficients.

In Fig. 6, the distribution of |k′
i,j | values for all 20 elements

in the network of Mackey-Glass equations is plotted in
a logarithmic scale along the horizontal axis. As seen in
Fig. 6, |k′

i,j | are clearly separated into two clusters consisting
of significant (at the right) and insignificant (at the left)
coefficients. The presence of noise deteriorates the separation
of coefficients. This can be explained by the fact that noise
reduces the accuracy of the parameter reconstruction. Since
the insignificant coupling coefficients in Fig. 6 are several
orders of magnitude less than the significant coefficients, their
absolute values undergo greater changes in the presence of
noise than the absolute values of the significant coupling
coefficients. With the increase of noise above some critical
level, the absolute values of some insignificant coefficients
k′
i,j become comparable with the values of significant coeffi-

FIG. 6. Distribution of the absolute values of the recovered
coupling coefficients for all elements in the network of Mackey-Glass
equations in the absence of noise (at the top) and in the presence of
noise (at the bottom). The significant coefficients are shown by black
crosses located inside the circle. The insignificant coefficients are
shown by gray circles located inside the rectangle.

FIG. 7. Dependences �(M) for the network of Mackey-Glass
equations. �(M) is shown in gray in the absence of noise and in
black in the presence of Gaussian noise with σi = 0.004.

cients k′
i,j . As a result, the method begins to detect spurious

couplings or miss some of the existing couplings.
After detecting the insignificant coupling coefficients, we

remove them from Eq. (9) and recover ki,j once again. It
allows us to recover the coupling architecture accurately [see
Fig. 1(a)] in both the absence and presence of noise. The
values of the coupling coefficients are reconstructed with good
accuracy. For example, for the first element in the network,
in the presence of noise, we obtain the following values
of recovered coupling coefficients: k′

1,4 = 0.0467, k′
1,15 =

0.0288, and k′
1,18 = 0.0287. The recovered parameter of inertia

takes the value ε′
1 = 11.29. The true values of the first element

parameters are given in Sec. III A. In the absence of noise, the
accuracy of their reconstruction is higher.

Then we separate the recovered coupling coefficients into
significant and insignificant coefficients using the method
based on the construction of the dependence �(M). In
Fig. 7, the dependences �(M) are constructed for both the
absence and presence of noise. The quantity � practically
reaches the minimal value at M = 60 and remains almost
constant as M increases. Note that, in the absence of noise,
� is close to zero for M � 60. We leave only 60 coupling
coefficients, which have the greatest absolute values among
the recovered coefficients, and remove all the other k′

i,j , which
are insignificant. This approach, as well as the previous one,
allows us to reconstruct the coupling architecture accurately.
Thus, both employed methods for the recovery of the network
connectivity give the same result.

Next, we recover the couplings in the network of Ikeda
equations. Again, at first, we apply the K-means algorithm for
clustering k′

i,j into significant and insignificant coefficients. In
Fig. 8, the distribution of |k′

i,j | values for all 16 elements
is plotted in a logarithmic scale. Two clusters of |k′

i,j |
consisting of significant (at the right) and insignificant (at
the left) coefficients are clearly seen in Fig. 8. We remove
the insignificant coupling coefficients and recover ki,j one
more time. Such an approach allows us to reconstruct the
architecture of couplings in the network accurately.

The accuracy of estimation of the coupling coefficients
is good enough. For example, for the first element in the
network, we obtain the following values of the recovered
parameters: k′

1,7 = 0.2276, k′
1,8 = 0.3308, k′

1,9 = 0.4478,
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FIG. 8. Distribution of absolute values of the recovered coupling
coefficients for all elements in the network of Ikeda equations in the
presence of small Gaussian noise with σi = 0.003. The significant
coefficients are shown by black crosses located inside the circle. The
insignificant coefficients are shown by gray circles located inside the
rectangle.

and k′
1,10 = 0.3102. These values are close to the true

values k1,7 = 0.2293, k1,8 = 0.3321, k1,9 = 0.4492, and
k1,10 = 0.3114. For the other elements, the accuracy of the
reconstruction of parameters is about the same. Inaccuracy
of the parameter estimation is mainly caused by the presence
of noise. It increases with the increase of the level of noise.
The recovered parameter of inertia for the first element is
ε′

1 = 1.002. Note that the parameter εi is absent in an explicit
form in the Ikeda equation.

Figure 9 depicts the dependence �(M). The quantity �

practically reaches the minimal value at M = 50 and remains
almost constant for M � 50. Leaving only 50 coupling
coefficients, which have the greatest absolute values among
the recovered coefficients, and removing all the other insignif-
icant k′

i,j , we obtain the accurate recovery of the coupling
architecture. Thus, both methods of reconstructing the network
connectivity give the same result as well as in the case of the
coupled Mackey-Glass equations considered above.

We investigated the efficiency of the proposed method in the
case in which all oscillators in the network of Ikeda equations
are in a periodic regime. The delay time of oscillators is
recovered accurately in this case. This is explained by the

FIG. 9. Dependence �(M) for the network of Ikeda equations in
the presence of small Gaussian noise with σi = 0.003.

FIG. 10. Dependence �(M) for the chain of experimental oscil-
lators with time-delayed feedback.

fact that the delay time plays a crucial role in the system
dynamics. Even a small error in the delay time estimation
substantially increases the objective function (9). However,
the accuracy of the estimation of the coupling coefficients is
an order of magnitude less in a periodic regime than in a chaotic
regime. Moreover, the method missed several links in the case
of periodic time series. These errors are mainly caused by two
reasons. The first reason is the small amount of information in
the periodic time series in comparison with the chaotic time
series. The second reason is the presence of synchronization
between the periodic oscillators with close parameter values.

As the third example, we illustrate the recovery of couplings
in the chain of ten unidirectionally coupled experimental
oscillators. Nine oscillators in the chain are affected by only
one neighboring oscillator and are described by Eq. (1) with
only one coupling coefficient ki,i+1. The tenth oscillator at the
edge of the chain is an autonomous one, and its model equation
contains no coupling coefficients. However, the minimization
of the objective function (9) gives us nine recovered coupling
coefficients k′

i,j for each oscillator in the chain. Most of
these coefficients are redundant. Since the number of
significant coefficients is an order of magnitude less than the
number of insignificant coefficients, the K-means clustering
is not efficient for separation of k′

i,j .
Figure 10 shows the dependence �(M). The quantity �

practically reaches the minimal value at M = 9 and remains
almost constant for M � 9. We leave only nine coupling
coefficients, which have the greatest absolute values among the
recovered coefficients, and remove all the other insignificant
k′
i,j . This approach allows us to reconstruct the architecture of

couplings in the chain accurately.
For the first oscillator in the chain, the recovered coupling

coefficient k′
1,2 = 0.22 is close to the true value k1,2 = 0.21.

The recovered parameter of inertia ε′
1 = 204 μs is also very

close to the true value ε1 = 203 μs. The accuracy of the
reconstruction of parameters for the other oscillators in the
chain is about the same.

D. Reconstruction of the nonlinear function
of the network elements

After the recovery of the delay time, the parameter of
inertia, and the coupling coefficients for each of the network
oscillators described by Eq. (1), we can reconstruct all the
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FIG. 11. Function f1 (black) recovered in the plane
(y1,z1), where y1 = x1(t − τ ′

1) and z1 = ε′
1ẋ1(t) + x1(t) −∑20

j=2 k′
1,j [xj (t) − x1(t)], for the network of Mackey-Glass

equations in the absence of noise (a) and in the presence of Gaussian
noise with σi = 0.004 (b). The true function f1 is shown in gray in
the background in (a) and in the foreground in (b).

nonlinear functions fi . We write Eq. (1) as

fi(xi(t − τi)) = εi ẋi(t) + xi(t) −
D∑

j=1(j �=i)

ki,j [xj (t) − xi(t)].

(13)

We denote xi(t − τi) as yi and the right-hand side of Eq. (13)
as zi . To recover the function fi , we plot the dependence of zi

on yi . Instead of the unknown parameters τi , εi , and ki,j , we
use their estimations τ ′

i , ε′
i , and k′

i,j , respectively.
Figure 11 shows the recovered nonlinear function f1 (in

black) of the first element in the network of coupled Mackey-
Glass equations for the cases of the absence and presence of
noise. In the absence of noise, the recovered function coincides
closely with the true nonlinear function of the Mackey-Glass
equation [Fig. 11(a)]. The true function f1 is shown in gray
in Fig. 11. In the case of the presence of noise, the quality
of the nonlinear function recovery is worse [Fig. 11(b)]. The
nonlinear functions of the other elements are reconstructed in
a similar way.

Figure 12 shows the reconstructed nonlinear function f1 of
the first element in the network of coupled Ikeda equations
in the presence of small noise. It coincides closely with the
true nonlinear function of the Ikeda equation that is also
presented in Fig. 12. The true and recovered functions are
practically indistinguishable in Fig. 12. However, for higher
levels of noise, the quality of the reconstruction of the nonlinear
function becomes worse. The approximation of the recovered
function f1 with a first-order trigonometric polynomial gives
us the following estimation of the function (12) parameters:
μ′

1 = 14.97 and x ′
01 = 2.5631. These values are very close to

the true values μ1 = 15 and x01 = 2.5629.
The nonlinear function f1 of the first oscillator in the chain

of coupled experimental electronic oscillators is reconstructed
in Fig. 13. It provides a sufficiently good approximation
of the true transfer function of the nonlinear device in the
first oscillator. In a similar way, we reconstruct the nonlinear
functions of other oscillators in the chain.

FIG. 12. Function f1 (black) recovered in the plane
(y1,z1), where y1 = x1(t − τ ′

1) and z1 = ε′
1ẋ1(t) + x1(t) −∑16

j=2 k′
1,j [xj (t) − x1(t)], for the network of Ikeda equations in the

presence of small Gaussian noise with σi = 0.003. The true function
f1 is shown in the background in gray.

IV. CONCLUSION

We have proposed the method that allows one to reconstruct
from time series the architecture of couplings and parameters
of elements in networks consisting of coupled oscillators
described by delay-differential equations. The method is based
on minimizing the objective function for each element in
the network using the least squares method. The introduced
objective function characterizes the distance between the
points of the recovered nonlinear function of the network
element. The proposed approach allows one to reconstruct
the delay times, parameters of inertia, nonlinear functions, and
coupling coefficients for all elements in the network with good
accuracy. The method operates considerably more quickly than
the iteration method we exploited earlier for the recovery of
coupling architecture [55].

FIG. 13. Function f1 (black) reconstructed in the plane
(y1,z1), where y1 = x1(t − τ ′

1) and z1 = ε′
1ẋ1(t) + x1(t) −∑10

j=2 k′
1,j [xj (t) − x1(t)], for the chain of experimental oscillators

with time-delayed feedback. The true function f1 is shown in the
foreground in gray.
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We used two algorithms for separating the recovered cou-
pling coefficients into significant and insignificant coefficients.
The first of them is based on the K-means clustering. The
second algorithm is based on constructing the dependence
of the sum of objective functions for all elements in the
network on the number of coupling coefficients in the model
equations.

The proposed method can be applied to networks consisting
of nonidentical time-delay systems with different coupling
architectures. In particular, any two nodes in the analyzed
network can be uncoupled, coupled in one direction, or coupled
in both directions. The efficiency of the method is shown for
chaotic time series of the model and experimental networks
described by diffusively coupled delay-differential equations.

The considered method can be applied to periodic time series
of time-delay systems, but in this case, the accuracy of the
network reconstruction is worse. It is possible to extend the
proposed method to the recovery of networks with other types
of coupling between the elements. For example, the method
can be applied to networks consisting of time-delay systems
coupled by derivatives of dynamical variables or coupled
through the mean field.
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