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a b s t r a c t

The problem of determining the presence and direction of coupling between experimentally

observed time series is of immediate interest in many relevant areas of knowledge. One of

the approaches to its solution is the method of nonlinear Granger causality. The algorithm is

based on the construction of predictive models and its effectiveness depends on the proper

selection of model parameters.

The most important of them for signals with a characteristic time scale fluctuations are the

time lag used in the reconstruction of the state vector, and the range forecast. In this paper, we

propose two criteria for evaluating performance of the method of nonlinear Granger causality,

which allows one to select the lag and range forecast and achieves the best sensitivity and

specificity. The sensitivity is determined by range of weakness the method can detect and

specificity means the ability to avoid false positive results. Because of the proposed criteria

on the example of several unidirectionally coupled reference systems were received practical

advice on the selection of the following model parameters: lag and range forecast.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Detection of the presence and direction of interactions

between subsystems of complex systems from their exper-

imentally observed time series is an up-to-date problem,

which has applications in various fields of knowledge. A vari-

ety of methods were developed in order to solve this task, in-

cluding the cross-correlation function, coherence, phase syn-

chronisation index, information based measures [1,2], a par-

tial directed coherence [3] and approaches based on build-
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ing predictive models, which include the Granger causality

approach [4], and phase dynamics approach [5,6]. The main

idea of approaches Granger causality method, transfer en-

tropy and partial directed coherence is similar, and in some

cases they can be shown to be completely equal [7]. However

in general this is not the case [8].

The author developed Granger causality in relation to eco-

nomical studies, but now it is successfully applied, for exam-

ple, in neuroscience to identify the coupling between differ-

ent brain regions [9–14], in climatology—to predict the be-

haviour of the monsoon [15]. There are a number of studies,

where the Granger causality is used to indicate the evolution

of coupling in time [16–18].

Despite the transparency of the idea of the method, its

efficiency depends critically on the details of the implemen-

tation. For example, the special attention has to be paid to

effects of measurement noise [19–21].
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In this paper, we propose a new approach to choose the

method parameters for the case, when the measured time se-

ries have a single main time scale which can be detected, for

example, by using auto-correlation function. Such systems

are quite common in nature, e.g. rhythmic changes in solar

activity (sunspot number), oscillatory changes of brain po-

tentials (for example, spike-wave discharges at the absence

epilepsy, or θ-rhythm during the sleep), the signals of the

heart (the main heart rate at the cardiogram) etc. The idea

of the approach is that the parameters of the model, with the

meaning of time: the time lag l, used for the reconstruction of

the state vector [22–24], and the prediction time τ should be

associated with the characteristic scale of the observed os-

cillations. Some research in this direction has already been

held: in [25] it was shown that the lack of sample rate and,

therefore, too large values of τ and l lead to systematic, fatal

errors in determining the direction of coupling, primarily to

the appearance of false positive conclusions. Similarly, in the

paper [26] it was shown that mistakes can be caused by too

small values of the prediction time, therefore it was proposed

to use the value of τ equal to a quarter of the characteristic

period of the observed oscillations.

In general, however, the question of the optimal choice

of τ and l is still open, even for individual narrow classes

of signals, including the class considered in this paper, since

the previously used numerical criteria took into account only

one parameter of the Granger causality method: either pre-

diction time, as in [26], or sampling interval, as in [25], or

a kind of approximation functions, as in [27]. Therefore, in

this paper we propose two new numerical criteria character-

ising the performance of the method according to τ and l and

test them in a number of nonlinear coupled reference sys-

tems. The application of these criteria helped to make gen-

eral conclusions about the best and worst values of τ and l

for the models used in the method of Granger causality to

determine the coupling of signals having a distinct time scale

(oscillation period). The degree of efficiency of the method is

shown according to the level of nonlinearity of the original

data, which is determined by the highest Lyapunov exponent

and the effective coefficient of phase diffusion.

In the original study [4] linear approximating functions

were used, but now nonlinear functions of different type:

polynomials [27,28], radial basis functions [29] and kernel

Granger causality [30] can be used instead. The other way to

solve the problem of approximation function choice is to use

local linear models, as it was proposed in [31]. We examined

the model with polynomial nonlinearity of the general form

and the local linear models, since they are most frequently

used in practice due to simplicity and generality. In this re-

gard, we chose the small values of both the model dimension

and polynomial order. So, the models do not require many co-

efficients and can be reliably estimated from the short time

series. This helps to make the results useful from a practical

point of view, when the amount of data is very limited due

to the features of the experiment, nonstationarity, or a desire

for acceptable temporal resolution, when constructing mod-

els in a time window, as is done, for example, in [14,17,32].

2. Granger causality

Let us remind the key point of Granger causality. Suppos-

ing that we have time series of two systems—a series {xn}N

n=1
from the system X and a series {yn}N
n=1 from the system Y,

where n = 1, 2, . . . , N is discrete time, N is the length of the

series. It requires to determine whether the system Y drives

the system X or not by analysing realisations {xn}N
n=1

and

{yn}N
n=1. To solve this problem an individual model (dynami-

cal system) is constructed on the first step:

x′
n+τ = f (xn, xn−l, . . . , xn−(Ds−1)l, cs), (1)

where x′
n is a predicted value at the time moment n and

it may differ from the measured value xn, f is an approxi-

mating function (if it is nonlinear, method is called a non-

linear Granger causality), l—lag of the model, i.e. the num-

ber of discrete time points between the two subsequent val-

ues from {xn}N
n=1

, forming Ds-dimensional state vector of the

model xn(xn, xn−1, . . . , xn−(Ds−1)l , τ is the prediction time—

the distance in time between the predicted point and the

closest point of the state vector, Ds—dimension of the indi-

vidual model (the number of points of the time series which

form the state vector, which is being reconstructed by the

time delay method [23,24]), cs—unknown vector of coeffi-

cients which is chosen using least squares fit to minimise the

standard error of approximation (1):

ε2
s = 1

N

N∑
n=τ+(Ds−1)l+1

(x′
n − xn)

2 (2)

The next step is to build the joint model, in which Da

members from the series {yn}N
n=1 are used besides the data

of the series {xn}N
n=1

:

x′′
n+τ = g(xn, xn−l, . . . , xn−(Ds−1)l, yn, yn−l, . . . , yn−(Da−1)l, c j),

(3)

where x′′
n is a model predicted value, cj—joint model coeffi-

cients. The standard prediction error of the joint model sim-

ilarly to (2) has the form:

ε2
j = 1

N

N∑
n=τ+( max (Ds,Da)−1)l+1

(x′′
n − xn)

2. (4)

If ε2
j

< ε2
S
, the system Y is considered to drive the system

X (systems are coupled). Prediction improvement index is typ-

ically used as a measure of coupling:

PI = 1 −
ε2

j

ε2
S

. (5)

If PI = 0 (considering the signal {yn}N
n=1

did not help in pre-

dicting {xn}N
n=1

), it is considered that Y has no effect on X. If

the PI → 1 (considering the signal {yn}N
n=1 has significantly

improved the prediction of {xn}N
n=1

), it should be regarded as

Y drives X.

Practice shows that the choice of the parameters of the

described procedure (lag l, prediction time τ , dimensions Ds

and Da, type of nonlinear functions f and g) significantly de-

termines the efficiency of the method. For example, the use of

too small or too large τ may cause a large number of errors:

positive conclusions about the coupling that in fact does not

exist [25,26]. Neglecting the nonlinearity in the modelling

often leads to a situation, when really existing links are not

detected [27,33]. The problem seems to be major since most

coupling analysis techniques are very model-dependent [8].
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Fig. 1. The dependency of the prediction improvement PI on the coupling coefficient k for unidirectionally coupled oscillators. Fig. 1(a) is the typical plot of PI on

k, where ktrue is the minimum value at which coupling is found significantly in the right direction, and kfalse is the minimum value of k at which the coupling is

found significantly in the wrong direction (grey line). Fig. 1(b) illustrates the criterion (6). Fig. 1(c) illustrates the criterion (7), dots indicate the values at which

δ = 1.
Efficiency of the method can be achieved by developing

specialised technologies of its implementation for the se-

lected fairly narrow class of systems. This can be done due to

additional considerations, such as a priori information about

the properties of the system, or based on the results of an-

alytic and numerical analysis of the etalon oscillators. Here,

the systems having main characteristic time scales are con-

sidered.

3. Method efficiency investigation technique

The efficiency of methods for detecting the coupling of the

two systems is commonly characterised by their sensitivity

and specificity. The sensitivity is determined by the weak-

est coupling that method can detect. Various factors: finite

length of observed time series, measurement noises, the use

of improper basis functions, insufficient accuracy of calcula-

tions, etc. do not allow detecting the coupling at the arbi-

trarily low level. Specificity means the ability of the method

to avoid false positive results. Good specificity corresponds

to a relatively small number of false couplings (found where

in fact they do not exist), and bad—to the large number of

them. Typically, the method of Granger causality (Fig. 1) gives

a non-zero PI both ways, even for unidirectionally coupled

systems [34]. Such errors are often caused by the finite vol-

ume of experimental data or the unfortunate choice of the

method parameters. Therefore, when calculating the PI one

should test the significance of these values—the probability

that non-zero values of the prediction improvement index

were received not accidentally. The significance can be mea-

sured in different ways, for example, based on consideration

of the theoretical properties of the residuals of the model [25]

or through the generation of various surrogate time series

[26,32,34].

In [26] an approach for evaluating the effectiveness of

Granger causality in the coupled equations systems was pro-

posed. This approach consists in determining the critical val-

ues of the coupling coefficient k, for which the value of PI be-

comes significant. Let k = ktrue be the minimum value of k at

which method significantly detects the coupling in the right

direction, and k = k false—minimum value of k, for which the

coupling is significantly detected in a false direction. Since

the dependency PI(k) is usually not smooth (see Fig. 1(a))

due to the presence of noise, different initial conditions and

finite length of considered time series (non-uniform bypass
of an attractor), it is often necessary averaging over realisa-

tions.

However, for our goal—studying dependency of the re-

sults on two parameters: l and τ—obtained curves PI(k) re-

quire further processing, because in fact one has to consider

the 3-dimensional dependency PI(k, l, τ ). This dependency

is impossible to submit in a chart using an intuitive manner.

Therefore it is necessary to develop additional, integral cri-

teria. In the practical application the value of the coupling

strength is unknown, so the widest possible range of val-

ues k should be considered for research purposes. The lowest

boundary of this range corresponds to the lack of coupling—

k = 0. The upper one—to the synchronisation of the driving

and the driven systems, since in this case to detect the cou-

pling direction is no longer possible due to the fact that the

two measured time series become equal or functionally de-

pendent. The phase synchronisation index was estimated to

evaluate the upper boundary value of the coupling coefficient

k = kmax by the method proposed in [35], since the phase

synchronisation is typical for the systems with the main time

scale and usually precedes other types of synchronisation

[36].

Practice shows that, when choosing the model parame-

ters, one have to comply with the optimal balance between

high sensitivity and high specificity, since an improvement

in one of these model properties usually leads to a deterio-

ration of another. To select the optimal value of l and τ two

numerical criteria are proposed here. In some way they are

similar to well known Schwartz criterion [37], since they are

based on the number of successful coupling findings in the

actual direction, but introduce the penalty for findings in the

opposite (wrong) direction.

1. The first criterion is given by the formula (6):

S1 = 〈PItrue(k) − PIfalse(k)〉k. (6)

It takes into account the average difference between the

values of PItrue(k) and PIfalse(k) for all possible values of k.

Visually, it matches the average width of the shaded area

in Fig. 1(b). Since, according to (5), PI is a standardised

value which ranges from 0 to 1, the value of S1 can vary

from 1 to −1. If for all values of k PItrue = 1 (coupling in

the actual direction was detected ideally for any strength

of coupling) and PIfalse = 0, (coupling in wrong direction

is always absent), than according to (6) S = 1. If it turns
1
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1 The same �t, N and Ttrans were used for all considered further systems.
out that 〈PItrue〉k = 〈PIfalse〉k—the average prediction im-

provement in the actual and the false directions are the

same, i.e. the method is not able to determine the direc-

tion of the coupling—S1 = 0. If PIfalse = 1 and PItrue = 0,

coupling is always found in the false direction and never

in the actual one, S1 = −1.

2. The second criterion (see Fig. 1(c)) takes into account the

significance of the PI, but it does not consider its abso-

lute value. For this the binary function δ(k) is introduced.

If the coupling in the actual side is defined as a signifi-

cant, and in the false one—as insignificant δ(k) = 1, oth-

erwise δ(k) = 0. The lowest possible value of S2 is 0, that

corresponds to the case, when for all k at least either the

coupling in the actual direction detected as insignificant,

or coupling in the coupling in the wrong direction is de-

tected as significant. The highest S2 = 1, that means cou-

pling to be always significantly detected in the actual di-

rection and there is no significant results in the wrong

one.

S2 = 1

Zk

∑
δ(k),

δ(k) =
{

1, PItrue > PIsign ∧ PIfalse < PIsign,

0, PItrue ≤ PIsign ∨ PIfalse ≥ PIsign,
(7)

where Zk is the number of considered values of the cou-

pling coefficient; PIsign is the 95% significance level ob-

tained by using surrogate time series, derived from the

same systems as studied, but without coupling (similar

to [34]).

Criteria (6) and (7) complement each other. If the criterion

S1 reaches a value close to 1, it is arguable that the method

works well with the given parameters, and if it is close to

0 or negative—works poorly. In this case test of significance

may be waived. If the criterion S1 takes some intermediate

values between 0 and 1, testing the significance is important,

and efficiency is determined by the criterion S2.

4. Numerical experiments on different systems

4.1. Coupled Kiyashko–Pikovsky–Rabinovich generator

equations

Let us consider the equations of Kiyashko–Pikovsky–

Rabinovich radio-engineering generator [39]:{
ẋ1 = 0.15x1 + x2 − 0.93x3 + ky1

ẋ2 = −x1

0.2ẋ3 = x1 − f (x3),{
ẏ1 = 0.23y1 + y2 − 0.755y3

sẏ2 = −y1

0.2ẏ3 = y1 − f (y3),

f (p) = 8.592p − 22p2 + 14.408p3 (8)

These equations are very interesting since they demonstrate

the chaotic regimes which are very regular, so the only main

time scale in the spectrum is present (see Fig. 2 (a)), the auto-

correlation function decreases very slow (see Fig. 2 (b)) and

phase can be easily introduced.

Equations of coupled systems were solved numerically

with Runge–Kutta 4th order method with sampling rate
�t = 0.01. Series of N = 20480 points were considered, the

transient process of Ttrans = 1000 unit of dimensionless time

was cut1. The main timescale T is equal approximately to 611

time points (6.11 unit of dimensionless time). Coupling co-

efficient ranged from 0 to 0.038. The positive Lyapunov ex-

ponent of both driving and driven systems was equal �1

≈ 0.059, while their parameters were slightly different. The

effective coefficient of phase diffusion of the driven system

D < 10−5.

From Fig. 2(d)–(g) one can see that the values of l approx-

imately equal to one or one half of the driven system main

time scale are absolutely pessimal for both types if models.

This is not a big surprise, because in such a case the com-

ponents of the reconstructed state vector are close to be lin-

early dependent, since the signal is very regular. Also one can

see that the value of τ equal to one time point is not a good

choice, at least for the polynomial model, as it was shown in

[26].

Actually the local-linear model performs badly as it can

be seen from Fig. 2(g). Even the best choice of l and τ cor-

respond only to 20% of successful coupling detections (when

the coupling in the actual direction is found and the coupling

in the wrong one is considered as insignificant). For the poly-

nomial model the choice of l and τ occurs to be very impor-

tant, since the number of successful coupling recognitions

may vary from 18% in the worst considered case to 72% in

the best one (4 times).

The dependencies plotted on Fig. 2(d)–(g) were obtained

for Ds = 2, but for Ds = 3 they are similar. We also used com-

bination of Ds = 3 and polynomial order ν = 2 for the poly-

nomial model with the same effect.

4.2. Coupled Rössler oscillators

The Rössler oscillator [38] is one of the fundamental mod-

els of nonlinear dynamics. Two Rössler oscillators coupled as

shown in (9) were considered:{
ẋ1 = −x2 − x3

ẋ2 = x1 + a1x2 + ky2

ẋ3 = b1 − (c1 − x1)x3{
ẏ1 = −y2 − y3

ẏ2 = y1 + a2y2

ẏ3 = b2 − (c2 − y1)y3

(9)

The time series of coordinates x2 and y2 were observed. The

first Lyapunov exponent for both driving and driven subsys-

tems was approximately equal to 0.060. The effective coeffi-

cient of diffusion equal to ≈ 0.003. There is a single main peak

in the spectrum (see Fig. 9(a)) corresponding to one main

timescale, that is 620 time points (the same value can be

obtained from auto-correlation function, see Fig. 9(b)). How-

ever the correlation function decreases faster and the spec-

tral peak is wider than for Kiyashko–Pikovsky–Rabinovich

generator.

For the polynomial model the (Fig. 9(d) and (e)) pro-

nounced minima present in both dependencies of S1 and S2

on l for all considered values of τ . These results match the re-

sults for equation of coupled Kiyashko–Pikovsky–Rabinovich
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Fig. 2. Spectrum (a), auto-correlation function (b) and dependency of phase synchronisation index 	xy on coupling coefficient k for driven Kiyashko–Pikovsky–

Rabinovich oscillator. Dependencies of criteria (6) and (7) for unidirectionally coupled Kiyashko–Pikovsky–Rabinovich generator equations on model lag l for

different values of prediction time: (d) and (f) for the criterion S1, (e) and (g) for the criterion S2. Dependencies (d, e) correspond to the polynomial approximating

functions with polynomial order ν = 3, while dependencies (f, g)—to the local linear ones. Ds = 2, Da = 1 for all cases.

Fig. 3. The typical dependency of the prediction improvement PI on the cou-

pling coefficient k for unidirectionally coupled Rössler oscillators for differ-

ent types of predicting model: (a) polynomial; (b) piecewise linear.
generators. At the same time, the local-linear model gave

completely opposite results. Mainly it is inappropriate due to

very low specificity and sensitivity, but for l = T/2 and l = T

the method demonstrates significant improvement.

The detailed consideration of results achieved using local-

linear models showed that for most values of l the main prob-

lem is insensitivity of the method to growth of coupling,

i. e. PI does not increase with rise of k, as it is illustrated in

Fig. 3. The local-linear model does not benefit from intro-

ducing the coupling term in most cases. Since using l = T/2

or l = T makes information accumulated in the state vector
insufficient, using the coupling term largely improves the

forecasting capabilities of the model. But for these values

of l not only PItrue but also PIfalse increase in all considered

examples except coupled Rössler oscillator in combination

with local-linear models. The atypical dependency of PIfalse

on l for local-linear models caused by individual properties

of Rössler attractor leads to the fact that values pessimal in

most cases become optimal in this one.

4.3. Coupled Anishchenko–Astakhov generator equations

Let us consider the coupled equations of another popular

radio-engineering chaotic generator [40]:{
ẋ1 = 1.106x1 + x2 − x1x3 + ky1

ẋ2 = −x1

εẋ3 = −0.68x3 + θ(x1)x2
1{

ẏ1 = 1.111y1 + y2 − y1y3

ẏ2 = −y1

ẏ3 = −0.7y3 + θ(y1)y2
1

θ(x) =
{

0, at x <= 0
1, at x > 1

(10)
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Fig. 4. Spectrum (a), auto-correlation function (b) and dependency of phase synchronisation index 	xy on coupling coefficient k for driven Rössler oscillator.

Dependencies of criteria (6) and (7) for unidirectionally coupled Rössler systems on model lag l for different values of prediction time: (d) and (f) for the

criterion S1, (e) and (g) for the criterion S2. Dependencies (d, e) are correspond to the polynomial approximating functions with polynomial order ν = 3, while

dependencies (f, g)—to the local linear ones. Ds = 2, Da = 1 for all cases.
The values of coupling coefficient were limited to 0.15. The

positive Lyapunov exponent of the driven subsystem was

�1 = 0.136.

The auto-correlation function (see Fig. 5(b)) shows one

main timescale approximately equal to 683 time points (6.83

units of dimensionless time), while the power spectrum

indicates two main peaks (Fig. 5(a)). Also auto-correlation

function is explicitly asymmetric, that was not the case for

Kiyashko–Pikovsky–Rabinovich and Rössler systems (com-

pare to Figs. 4(b) and 2(b)).

In Fig. 5 (d), the results of S1 criterion for the polynomial

model are plotted. One can see the same two minima as for

previously considered systems, however they are shifted to

the lower values of l than T/2 and T. Also they are not so

sharp and their position differs for different τ . This can be ex-

plained by the presence of the second peak in the spectrum.

The same picture can be seen for the second proposed cri-

terion (Fig. 5(e)), while minima being better localised at the

values T/2 and T. The best results are in the range T/4 < l <

T/3 that is mainly the same range as for Kiyashko–Pikovsky–

Rabinovich and Rössler systems.

The dependencies calculated for local-linear models

(Fig. 5(f) and (g)) do not demonstrate any pronounced min-

imum in most curves. A minimum is still present at both

curves S1(l) and S2(l) at l = T for τ = 1. The value τ = 1 seems
to be pessimal. The detailed analysis shows that a lot of false

positives occur for τ = 1, that is in a good correspondence

with the results reported in [26].

4.4. Coupled 3D generator equations

Let us consider other systems which demonstrate com-

plex non-linear dynamics—equations of coupled 3D genera-

tor [41] (also known as generator with 1.5 degrees of free-

dom).{
ẋ1 = (F1(x3) − x1)/3 + ky3

ẋ2 = x1 − x3

ẋ3 = x2 − 0.21x3{
ẏ1 = (F2(y3) − y1)/3
ẏ2 = y1 − y3

ẏ3 = y2 − 0.22y3

(11)

F1(z) = 26z exp (−z2)

F2(z) = 28z exp (−z2) (12)

Values of k were limited to 0.2. The first Lyapunov expo-

nent was �1 = 0.148. Coordinates x1y1 were considered as

observables. The sampling interval was chosen to be equal

to 0.03 in order to have approximately the same number of
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Fig. 5. Spectrum (a), auto-correlation function (b) and dependency of phase synchronisation index 	xy on coupling coefficient k for driven Anishchenko–

Astakhov oscillator. Dependencies of criteria (6) and (7) unidirectionally coupled Anishchenko–Astakhov generator equations on model lag l for different values

of prediction time: (d) and (f) for the criterion S1, (e) and (g) for the criterion S2. Dependencies (d, e) are correspond to the polynomial approximating functions

with polynomial order ν = 3, while dependencies (f, g)—to the local linear ones. Ds = 2, Da = 1 for all cases.

2 a1 = 0.146, b1 = 0.3, c1 = 10, a2 = 0.16, b2 = 0.2, c2 = 16
3 a1 = 0.176, b1 = 0.19, c1 = 11, a2 = 0.172, b2 = 0.2, c2 = 10
4 a1 = 0.2, b1 = 0.3, c1 = 10, a2 = 0.2, b2 = 0.15, c2 = 7.5
5 a1 = 0.205, b1 = 0.05, c1 = 20, a2 = 0.20, b2 = 0.05, c2 = 11
data points for each main timescale as in previously consid-

ered examples. The main timescale cannot be estimated from

power spectrum (Fig. 6(a)) since there were many peaks.

However its value T = 20.2 (i.ė. 673 time points) can be ex-

tracted from auto-correlation function (Fig. 6(b)).

From Fig. 6(d) and (e) one can see that there are minima

at both dependencies S1(l) and S2(l) for the values of l close to

T/2 and T, though they are less pronounced due to more com-

plex, in comparison with the previously considered systems,

dynamics of coupled 3D generators. Also the value τ = 140

that is close to T/4 seems to be much preferable in compari-

son to other considered values based on S1, that confirms the

outcomes of [26].

The local-linear model seems to be less efficient and

mainly insensitive to the choice of l, though there are local

minima for S1(l) (Fig. 6(f)) and S2(l) (Fig. 6(g)) dependencies

for values of l not far from T/2 and T, and these minima are

common for all three considered values of τ .

4.5. Dependency of optimal choice of l and τ on first Lyapunov

exponent

Comparing the results obtained for different systems one

can see that the dependencies S (l) and S (l) are affected by
1 2
the value of the largest Lyapunov exponent: with increase

of � minima and maxima become less pronounced. To test

this fact again and to exclude possible influences of individ-

ual properties of considered system, the coupled Rössler os-

cillators (9) in different chaotic regimes correspondent to the

different values of first Lyapunov exponent are considered:

� = 0.062, � = 0.083, � = 0.14, and � = 0.125 (these val-

ues were calculated for k = 0). Power spectra of oscillators

for different values of � are shown on Fig. 7(e)–(h), with

main peak locating at ∼ 0.18. the main timescale can be cal-

culated using auto-correlation function (Fig. 7(a)–(d)) as a

position of first local maximum. For �1 = 0.06, �1 = 0.08,

and �1 = 0.10 T ≈ 6.2 (620 time points with sampling inter-

val �t = 0.01), for �1 = 0.12 T = 6.55. One can notice that

signal regularities decrease with the increase of � that can

be seen analysing auto-correlation function which first local

maximum is lower for larger values of �.

Since the local-linear models demonstrated atypical de-

pendencies S1(l) and S2(l) for coupled Rössler oscillators we
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Fig. 6. Spectrum (a), auto-correlation function (b) and dependency of phase synchronisation index 	xy on coupling coefficient k for driven 3D generator oscil-

lator. Dependencies of criteria (6) and (7) for unidirectionally coupled 3D generator equations on model lag l for different values of prediction time: (d) and (f)

for the criterion S1, (e) and (g) for the criterion S2. Dependencies (d, e) are correspond to the polynomial approximating functions with polynomial order ν = 3,

while dependencies (f, g)—to the local linear ones. Ds = 2, Da = 1 for all cases.
focus here only on results for polynomial models. Compar-

ing different curves on Fig. 8 one can see that the four curves

plotted for S1 for all free values of τ behave similar, but ex-

trema are better pronounced for lower values of �1.

Following criterion (6) the best results of method applica-

tion correspond to l near but less T/2 for all values of τ . The

criterion (7) approves this idea, though low (but not equal

to one) values of l and large τ give the best results: > 80%

of correct findings in the actual direction for which the cou-

pling in the opposite one is considered to be insignificant.

The 3D plots of S1(τ , l) and S2(τ , l) (see Fig. 9), constructed

for �1 = 0.1 demonstrate the same outcomes. One has to no-

tice that both criteria show the method to be ineffective for

τ = 1 in combination with low values of lag (l < T/4), that

proves the conclusions made in [26].

It can be noticed that the dependency S2(l) at �1 = 0.06

differs from dependencies for other values of �1 and mainly

lies lower. The detailed analysis of curves PI(k) in this case

indicates the role of relatively (in comparison to other val-

ues of �1) high phase synchronisation (	xy = 0.7 for most

values of k). The relatively high synchronisation prevents the

coupling direction from being established since signals of the

driving and the driven systems become too similar. Therefore

the specificity test usually fails (the coupling is detected as
bidirectional), while PI in the actual direction is higher than

in the wrong one.

The results similar to plotted on the Fig. 8 were obtained

for other values of dimension Ds and polynomial order ν ,

namely for Ds = 3, ν = 3 and Ds = 2, ν = 2.

5. Conclusion and discussion

The active use of coupling estimation methods directly

raises the questions of their reliability. Among other prob-

lems, the dependency of achieved results on method param-

eters is one of the most important. Here, some solution is

provided for the Granger causality approach in application

to the signals with one main timescale.

The general idea is to link the model parameters which

have the meaning of time with the characteristic timescale

of the measured signals. These parameters are: lag l, used to

reconstruct the state vector from the scalar observable with

the method of delays, and prediction time τ .

To implement this idea, we have developed two integral

criteria of method efficiency, allowing to determine the best

and the worst value of τ and l for a wide range of coupling

strengths for unidirectionally coupled systems. These criteria

were applied to different etalon systems. The first criterion is
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Fig. 7. Auto-correlation functions (a–d) and power spectra (e–h) of driven Rössler system for different values of �1. Dependencies of phase synchronisation

index on coupling coefficient 	xy(k) (i–l). Plots (a, e, i) correspond to � = 0.06, plots (b, f, j)—to � = 0.08, plots (c, g, k)—to � = 0.1, and plots (d, h, l)—to

� = 0.12.

Fig. 8. Dependencies of criteria (6) and (7) on model lag l for different prediction times τ calculated for polynomial models.



20 M.V. Kornilov et al. / Chaos, Solitons and Fractals 82 (2016) 11–21

Fig. 9. 3D dependencies of criteria (6)(a) and (7)(b) on τ and l for unidirectionally coupled Rössler oscillators (9), constructed using polynomial approximation

with Ds = 2, Da = 1 and ν = 3.
based on the average difference between the prediction im-

provement in the actual direction and in the false one. The

second criterion mainly takes into account the level of signif-

icance of prediction improvement values. Here, to calculate

significance level surrogate time series were used, while any

other way to obtain significance level can be implemented.

To make decisions more general, the entire range of cou-

pling strength from zero to the level, at which synchronisa-

tion occurs, was considered, while calculating proposed cri-

teria. Consideration of larger coupling is usually senseless

since synchronisation makes the measured series indistin-

guishable, preventing any attempt to detect coupling direc-

tionality.

We limited enumeration of other parameters of Granger

causality in the research, otherwise it would be too exten-

sional. Also one has to keep in the mind that arbitrary small

models (i. e. models with lesser amount of coefficients) are

more suitable for evaluation in moving window, since their

coefficients can be estimated more reliably. Biological data

are of primary interest nowadays, and since criticality was

multiple times mentioned as a major problem of the biolog-

ical signal analysis [42,43], using compact models can solve

the problem of non-stationary series, at least partly, as it was

illustrated for fast transient processes in [18]. However, in a

number of examples we performed the similar calculations

for systems with larger dimensions and polynomial order to

improve the reliability. The results were very similar.

Since the polynomial models usually demonstrate the

better specificity and sensitivity, it is preferable to focus on

main issues for this class of models:

1. Selecting l equal or close to a half (or any integer or semi-

integer number) of characteristic timescale of oscillations

is unsuccessful. This is due to the high correlation (large

linear dependence) between the selected components of

the state vector, since the resulting vector carries too lit-

tle (insufficient) information on the studied time series.

This conclusion is reliable, as demonstrated in most of the

considered systems.

2. The dependency of the efficiency of Granger causality

method on l and τ is expressed more strongly (its min-

ima are deeper and its maxima are higher) at lower val-
ues of first Lyapunov exponent of driven subsystem. This

conclusion is based on the consideration of both the same

systems with different Lyapunov exponents (with differ-

ent parameter values), and by comparing the results ob-

tained for different etalon systems.

3. One can suggest two strategies for choosing the optimal

values of l and τ . The first one is to choose the value of lag

less than half the characteristic period, for example T/ 4 or

T/3, because for most systems there is a global maximum

of values of the proposed criteria in this range. In the first

strategy the value of prediction improvement is not very

important, however choosing τ ≈ T/4 is still preferable for

number of cases. To realise the second strategy it is nec-

essary to focus on a combination of long-range prediction

(around T/2) and small lag, for example, l = T/10. Which

strategy is preferable—largely depends on the specifics of

the object.

These recommendations have a certain range of applica-

tion related to how well the regarded time series fit in the

selected class. They are more applicable for weakly nonlinear

systems (largest Lyapunov exponent is small, say, less than

0.15) with an obviously expressed peak in the spectrum in

which the auto-correlation function decays slowly (no more

than twice during the period).

Comparing results achieved for polynomial and local-

linear models, we have to say that the approximating func-

tions are of great importance. While for systems close to reg-

ular with very low effective coefficient of phase diffusion,

the conclusions are the same for both considered functional

bases, for more irregular systems the local-linear models oc-

cur less effective or demonstrate untypical results originat-

ing from the individual properties of considered objects. For

local-linear model the dependency of method efficiency on l

and τ disappears for lesser values of Lyapunov exponent and

effective coefficient of phase diffusion than for polynomial

one. This shows that only the different approaches to cou-

pling analysis cannot be completely reduced one to another

as it was shown in [8], but even for the same method the

results depend on all details of its realisation. In particular,

for the Ganger causality method, the choice of approximat-

ing functions, l and τ cannot be done separately.
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