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h i g h l i g h t s

• To study non-stationary time series the Granger causality must be adapted to data.
• The instant of the evolution operator change can be found using the adapted method.
• One can detect if the oscillation properties changed due to the coupling or not.
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a b s t r a c t

The ability of the Granger causality method to detect directed coupling between subsystems of a com-
plex system in a moving time window is investigated on etalon oscillators. In particular, the time series
consisting of alternate stationary regimes characterised by the different amplitude and shape of oscilla-
tions with fast transient processes between these regimes are considered, with similar transitions being
possible due to changes either in the coupling or in the individual properties of subsystems. Two popular
approaches to surrogate times series generation are used to check the significance of the method results.
Two model structures: the standard linear and the special non-linear adapted to data are implemented.

The Granger causality method using the model structure adapted to data is shown to be significantly
advantageous in detecting coupling directionality and the instant time of the regime change than the
standard linear method, while in some cases the sensitivity and the specificity of the adapted approach
are insufficient.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Investigation of transition from one typical regime to another
in complex systems, composed from a number of subsystems, is
a fundamental task, because such systems are a corner-stone of
modern scientific conceptions. For instance, brain is considered
to be composed of large parts: cortex, cerebellum, thalamus, hip-
pocampus, etc., which consist of smaller areas such as different
thalamic nuclei or cortical layers. Another example is the Earth cli-
mate,which is considered to be composed of individual, but related
phenomena such as El-Niño and the North-Atlantic oscillation.

The evolution of such complex systems is commonly observed
throughmeasurement of time series from its subsystems. Through
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measuring the signals of individual subsystems one can try to find
out whether the changes in a complex system are result of the
changes in individual properties of its subsystems, or they occur
due to the changes in the coupling between different subsystems.
To answer this question one can use the existingmethods based on
construction of empirical forecasting models, which are adapted
to work in a moving time window. These methods are actively ap-
plied in the neurophysiology [1–5] and climatology [6,7]. Among
the most popular are the different kinds of Granger causality tech-
nique [8–11], information based measures [12,13], a partial di-
rected coherence [14], and approaches based on modelling phase
dynamics [15,16]. Themain idea of these approaches is similar, and
in some cases they can be shown to be completely equal [17].

The time varying Granger causality [18] seems to be very
promising for the investigation of non-stationary time series of
complex systems due to its significant advantages. First, it allows
to determine the coupling directionality,which is not possiblewith
simple measures such as correlation function, coherency function
and mutual information. Second, Granger causality demands the
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series of less length (both in number of data points and in number
of oscillations) than the transfer entropy or the phase dynamics
methods. This fact makes it possible to analyse the coupling in a
comparatively short moving time window, so the dependency of
the coupling on time can be estimated.

The approaches proposed in [19–21] are advantageous in com-
parisonwith the pairwise techniques since they candistinguish be-
tween the direct and mediate coupling if all the necessary signals
are provided. However, thesemethods demand a lot of data and are
not very suitable for the short and non-stationary series because
a large number of coefficients has to be estimated. To decrease
themodel dimension, and consequently the number of coefficients
in [22] it was proposed to use only the primary variables rather
than all measured ones (transfer entropy estimates were consid-
ered). The principle problem of multivariate techniques is that all
variables, considered to make a significant impact on the network
dynamics, have to bemeasured. If some of them are hidden, which
often occurs in real experiments (e.g. in the neurophysiology a lot
of brain areas are anatomically connected), distinguishing between
a directed and a mediate coupling becomes unreliable.

The main shortcoming of the Granger causality approach in
application to the task of diagnostics of time-related changes in
complex system is that it is heavily based on model construction,
therefore time series are assumed to be stationary, at least for
a length of a moving window. In some recent applications of
the methods similar to Granger causality to the neurophysiol-
ogy [23,24] the improved dual Kalman filter is combined with the
renormalised partial directed coherence (that can be treated as
a Granger causality resolved in the frequency domain) and lin-
ear phase space modelling to assess the coupling varying in time.
In general, such an approach is declared to be applicable to non-
linear, non-stationary noisy data of arbitrary nature. However,
the practical evidence of that is not completely clear, since orig-
inally [24] its efficiency was demonstrated on 4 coupled autore-
gressive processes of first order with additive Gaussian noise.

The transfer entropy and the partial directed coherence be-
came so popular in comparison with the straightforward Granger
causality approach (as implemented in [9,10,25]) due to the heavy
dependence of this straightforward approach on the structure of
the model and on a choice of the type and the number of non-
linear functions. However, this problem can be at least partially
solved using statistical criteria to choose polynomial order (or
number and type of other basis functions) and model dimension
(e.g. Schwarz criterion [26] (BIC) or Akaike criterion [27]), and tak-
ing into account signal properties, while constructing state vector,
as itwas demonstrated in [28]. So, in order to applyGranger causal-
ity to experimental data, it is important, first, to understand, how
the non-stationarity of an investigated series can affect themethod
efficiency. This task is divided into two: to measure method sensi-
tivity to changes in parameters of individual subsystems, and to
measure its sensitivity to changes in coupling between them. The
first step to this task solution can be done by investigating the se-
ries with fast transient processes, separating relatively long sta-
tionary stages. The investigation of applying the Granger causality
to such series is the goal of the current paper.

In the frames of the formulated goal, the following questions
were addressed in the numerical experiment using specially
constructed etalon systems:

1. Does themethod always detect coupling directionality? E.g. can
it show the coupling to be bidirectional, when is it really
unidirectional?

2. In what situation can the method sensitivity be insufficient,
e.g. due to the inappropriate account of non-linearity, as it was
previously mentioned in [9,29]?
3. Usually surrogate time series are constructed to estimate the
significance level of achieved results. How can an approach to
surrogates construction affect the method results?

4. How does the method perform with an increase of synchrony
level between considered time series? Does it allow to distin-
guish between situations when the synchrony is a result of an
interaction, and when it occurs due to some random factors? Is
it possible to understand whether the synchronisation is a re-
sult of unidirectional or bidirectional interaction?

5. What is the time resolution of Granger causality coupling esti-
mates? How does the Granger causality method perform, when
changes in the individual characteristics, such as mean or vari-
ance, delay comparatively to changes in coupling?

6. Can the method distinguish between the same changes in the
signal shape and amplitude caused by changes either in the cou-
pling or in individual parameters of subsystems?

Formulated issues are very complex and general, and they can-
not be solved within the single work. Therefore we only try to per-
form an example of an investigation for a certain class of systems
and signals in order to reveal the most common method features.

In order to realise the potential advantages of the Granger
causality method, one should be very careful with the choice of
used models and has to take into account the specifics of experi-
mental data even for stationary series. For instance, an insufficient
account of non-linearity leads to a loss in the sensitivity [9,29], too
low sampling rate [30], observation noise [31] and an inadequate
consideration of the time scales of observed series [32] lead to false
positive results, redundant variables lead to underestimation of
coupling strength, while synergetic ones—to overestimation [33].
However, sometimes even the most simple models are enough to
reveal the coupling, as shown in [3], and the qualitative reproduc-
tion of the observed dynamical regime is not necessary to suc-
ceed [34], as well as linear models can reveal a coupling between
non-linear systems [35]. Therefore two versions of the straightfor-
ward Granger causality approach were considered: the standard
linear algorithm (as regarded in many papers, e.g. [3,5]) and the
adaptedmethod developed in [28] in application to the problem of
the coupling estimation between the different brain structures for
WAG/Rij epileptic rats.

2. The etalon oscillators and the investigation technique

Oscillators which are well known in non-linear dynamics were
decided to be used as subsystems. They were modified to demon-
strate two different regimes: irregular oscillations with a low am-
plitude (regime 1) and more regular oscillations with a higher
amplitude (regime 2). Coupling was implemented in a special
manner to provide a possibility to switch between these regimes
either by changing individual parameters of subsystems or by
changing coupling intensity, while both of these ways lead to the
same changes in shape and amplitude of oscillations. Ensembles of
up to four subsystems were considered.

The etalon oscillator of the first type was a stochastic oscillator
with a threshold excitation (a variation of the van der Pol oscillator)
with a Toda potential (1):

dxi
dt

−

ri − x4i + ki(t)x2j

 dxi
dt

+ 1 − e−xi = ξi(t), (1)

where i is a current oscillator number, j is a driving oscillator num-
ber, ki(t) is a variant in time coupling coefficient, ri is a coefficient
of non-linearity, and ξi(t) is a realisation of normal white noise.
Coefficients ri ∈ [−0.14; −0.07] ∀i, which correspond to a stable
fixed point attractor in absence of noise.
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The etalon oscillator of the second type was a stochastic Rössler
oscillator:

ẋi = −yi − zi,
ẏi = xi + aiyi,

żi = bi − zi

ci − xi − 2.5kizj


+ ξ(t),

(2)

with i, j, and ξ having the same meaning, and ai, bi, and ci be-
ing individual subsystem parameters chosen to demonstrate a pe-
riodic regime with low amplitude oscillations: ai = 0.2, bi ∈

[0.12; 0.2], ci ∈ [2.6, 3.2].
Subsystems of two types were used to make the achieved re-

sults more general, since the subsystems (1) and (2) have different
dimensions and demonstrate different dynamics with default co-
efficients and zero coupling: under-threshold oscillations induced
by the noise for subsystems of type (1), and regular oscillations
for subsystems of type (2). It is important that oscillators (2) can
show latency in the oscillation amplitude and shape change when
switching regimes (see Fig. 1). The problem of the correspondence
lack between a change in parameters and a change in oscillation
characteristics was already discussed, e.g. in [36], and it is very im-
portant in practice. One needs to know whether the method al-
lows to reveal a time moment of an actual change in the coupling
or self parameters of individual subsystems, or it can only provide
an information that some statistical properties of a regime such as
a variance or an oscillation shape have changed.

All the considered etalon systems were solved numerically
with sampling rate 0.08. Then for the convenience of a further
consideration the arbitrary time was introduced with setting
1 s= 1024 sampling points. Time series of the x coordinate for both
subsystem types were recorded and analysed. The whole series
length was equal to 30 s. In all cases each oscillator with an index i
was driven by the only oscillator with an index j, with the coupling
architecture being different in order to test different hypotheses.

Series were divided into three stages. The first one (seconds
0–10, i.e. the first 10240 values) and the third one (seconds 20–30,
i.e. the last 10240 values) corresponded to the regime 1 with zero
(or low) coupling k = 0 (or k = 0.01), with other coefficients
being set to their default values. It has to be mentioned that
the individual time series characteristics, such as the probability
density, the power spectrum, and the autocorrelation function for
very low coupling (k = 0.01) were found to be statistically not
different (e.g. based on Kolmogorov–Smirnov test for probability
density) from the same characteristics in zero coupling case.
The coupling analysis, described further, also did not show the
difference between low and absent coupling. The main reasons for
this were high level of the noise and the relatively small length
of the considered time window (1024 points and only about 8
oscillations). Therefore these cases of the low coupling and the zero
coupling were addressed here together as uncoupled.

The second stage (the central one, i.e. seconds 10–20) corre-
sponded to the regime 2 and was obtained either by increasing the
coupling coefficient to the value k = 0.65, or by changing the in-
dividual parameters of the subsystems from their default values:
ri for (1) and ci for (2). If more than 2 subsystems were consid-
ered, all ki were set to be equal. During transient processes the co-
efficients ki were increased or decreased smoothly but fast with
a step 1k = 0.001 per 1/8192 s. Coefficients of individual sub-
systems were changed similarly. If the regime 2 was obtained by
changing the individual parameters of subsystems, the coupling
could remain either low (k = 0.01) or zero. No difference was
found between these cases. For each considered coupling architec-
ture an ensemble of 100 sets of realisations was considered, with
each realisation set generated under the individual random initial
conditions and using an independent realisation of the noise. The
analysis of such a large ensemble was performed to provide the
statistical reliability to the achieved results.
In all the cases Granger causality was calculated in a moving
window of length 1 s (1024 data points) with a time shift 0.1 s.
Such an approach is known in literature as ‘‘time-variant Granger
causality’’ [18].

To answer the questions, formulated in the Introduction section,
the large number of numerical experiments was performed.
Particularly, for the questions 1 and 2 the detailed investigation of
ensembles with the different coupling architecture was done (see
Section 4).

To answer the question 3 two popular approaches to surrogate
series generation [37] were used in all numerical experiments. The
first one is a randomisation of phases of components of the Fourier
transform. In this case, first, the direct Fourier transform of a signal
was performed, then the amplitudes of an obtained Fourier image
were kept, while its phases were set to be random numbers uni-
formly distributed in the semi-interval [0; 2π), and then a sur-
rogate series was calculated as an inverse Fourier transform. This
was repeated in each numerical experiment 100 times with differ-
ent random phases to obtain 100 surrogate time series. The sec-
ond approach was a permutation of different realisations from the
measured ensemble. This meant that for each investigated pair of
realisations 100 surrogate pairs were randomly composed of other
realisation pairs. Since signals in these surrogate pairs were taken
from different realisations, they were not coupled, but they still
kept the individual properties of the investigated processes, such
as a distribution density and a power spectrum. Though these
approaches actually address different null hypotheses, they are
widely used for coupling detection.

To answer the question 4 a method to detect synchrony has
to be used. Since the full synchronisation obviously prevents any
attempts to find the coupling direction, only a partial synchroni-
sation should be considered. For oscillatory signals with a charac-
teristic time scale the phase synchronisation seems to be the most
important. Therefore the phase synchronisation index was calcu-
lated as it was mentioned in [38]:

Φx,y =

expi(φx − φy)


n=1,...,N

 , (3)

where N is a number of points in a series or in its fragment, φx and
φy are phases of investigated signals. If the phase difference be-
tween signals is fixed in time (the phase synchronisation occurs),
then Φx,y = 1. If the phase difference is uniformly distributed in
semi-interval [0; 2π), i.e. all possible values of the phase difference
are equally probable (no phase synchrony), then Φx,y = 0.

For all considered cases the phase synchronisation index was
estimated in the moving window of the same length as the one
used for the Granger causality calculation. Its 95% confidence inter-
val was also estimated from its own surrogate series constructed
separately for each time window by randomising components of
the Fourier transform.

3. Granger causality method

Let there be twoobjects: the objectX fromwhich the time series
{x}Nn=1 is obtained, and the object Y from which the time series
{y}Nn=1 is obtained. The study of causal interactions between X and
Y with the Granger causality method includes three steps.

First, a univariate predictivemodel is constructed from the time
series {xn}Nn=1, e.g. in the form of model map (4).

x′

n+τ = f

xn, xn−l, . . . , xn−(Ds−1)l


, (4)

where xn =

xn, xn−l, . . . , xn−(Ds−1)l


is a state vector recon-

structed bymeans of themethod of delays [39], the components of
which are obtained from the same observable time series by shift-
ing it back in time by an interval of l time points (Ds − 1) times;



12 I.V. Sysoev, M.V. Sysoeva / Physica D 309 (2015) 9–19
Fig. 1. Time series of etalon oscillators (1) and (2).
l is a time delay (or lag), and Ds is a univariate model dimension
that is actually the number of components in the reconstructed
state vector {xn}

N−(D−1)l
n=1 ; x′

n is a predicted value corresponding to a
measured value xn, τ is a length of the prediction interval (the pre-
diction length), i.e. the time in data points between the last point
used for state vector reconstruction and the predicted point.Model
coefficients are estimated using the least-squares routine [40] by
minimising the squared prediction error (5), thatmeasures the dif-
ference between the predicted values x′

n+τ and the observed ones
xn+τ :

ε2
s =

1
N ′σ 2

x

N−τ
n=(Ds−1)l


x′

n+τ − xn+τ

2
→ min (5)

where σ 2
x is the variance of the time series {xn}Nn=1,N

′
= N − τ −

(Ds − 1)l is the efficient length of the time series.
Second, a bivariate model (6) is constructed from both time

series {xn}Nn=1 and {yn}Nn=1:

x′′

n+τ = g

xn, xn−l, . . . , xn−(Ds−1)l, yn, . . . , yn−(Da−1)l


, (6)

where Da is a dimension of the state vector yn =

yn, yn−l, . . . ,

yn−(Da−1)l

reconstructed from the scalar time series {yn}Nn=1 in (6).

So the total dimension of the bivariate model can be computed as
Dj = Ds + Da, and its prediction error is denoted as ε2

j .
Third, the value of the prediction improvement PI (7), that

is considered as a main characteristic of the Granger causality
method, is computed.

PI = 1 −
ε2
j

ε2
s
. (7)

The equality of ε2
j and ε2

s suggests that taking into account the
time series {yn}Nn=1 cannot improve the prediction of {xn}Nn=1. In
other words, Y does not drive X . A situation when ε2

s > 0 and
ε2
j → 0, providing PI → 1, suggests that the data from {yn}Nn=1

exceedingly improve prediction of {xn}Nn=1, so Y is said to drive X .
The outcomes of the Granger causality method depend on

model parameters, such as a type of basis function [9,10], their
number (in our case—polynomial order [29,34]), the time lag and
the prediction length [32]. Since these parameters are crucially
important for the practical application of the Granger causality
method, theyhave to be carefully chosen to achieve reliable results.
When applying Granger causality, the most often used models
are standard linear of type (8) like in [3], with the time lag
and the prediction length being equal to one sampling interval,
and the only optimised parameters being dimensions Ds and Da.
This optimisation is usually done based on the prediction error
saturation criterion (see, for example, [41]). However, it is often
hard to think out, with what values of Ds and Da the saturation
occurs. Therefore the Bayesian information criterion (BIC) [26] was
used to determine the dimension Ds. Ds = 7 was found to be
optimal for subsystems of type (1) and Ds = 6 was found to be
optimal for subsystems of type (2). Da = 1 was chosen for both
types of subsystems to prevent the increase in the number of false
positive results.

x′

n+1 = cs0 +

Ds
i=1

csi xn−(i−1),

x′′

n+1 = c j0 +

Ds
i=1

c jixn−(i−1) +

Ds+Da
i=Ds+1

c jiyn−(i−Ds−1),

(8)

where csi are empirically fitted coefficients of the univariate model
and c ji are coefficients of the bivariate model.

However, it was shown that non-linearmodelsmay provide the
significantly better sensitivity [9,10,29]. Our investigations in [42]
were aimed at developing the adapted to data non-linear model
(see (9)).

x′

n+τ =

P
k=0

Ck
Ds+k
q=1

csi
Ds

m=1

x
ws
k,m

n−(m−1)l + cZs+1xn−lT ,

∀k = 0, . . . , P
Ds

m=1

ws
k,m = k (9a)

x′′

n+τ =

P
k=0

Ck
Ds+Da+k
q=1

c ji
Ds

m=1

x
w

j
k,m

n−(m−1)l

Da
m=1

y
w

j
k,(m+Ds)

n−(m−1)l

+ cZj+1xn−lT + cZj+2yn−lT

∀k = 0, . . . , P
Ds+Da
m=1

w
j
k,m = k, (9b)

where Zs = (P + Ds)!/(P!Ds!) is the number of coefficients in
the univariate model (9a), Zj = (P + Ds + Da)!/(P!(Ds + Da)!)
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Fig. 2. The histogram of distribution of the dimension Ds and the polynomial order P for subsystems of the type (1) (a, b) and of the type (2) (c, d). The grey bars correspond
to the stage 1, while the black ones correspond to the stage 2.
is the number of coefficients in the bivariate model (9b), Ck
Ds+k

is the number of combinations varied from Ds + k to k, P is the
polynomial order, lT is the additional lag that takes into account the
value of the experimental data delayed from the predicted one on
a characteristic period T . This approach is known as a non-uniform
embedding procedure (see [43]) and it was used in [13]. Together
with determining the best dimension Ds and the polynomial order
P based on BIC it solves the problem of reducing the model size.
The BIC was calculated for the stages 1 and 2 (stage 3 is equivalent
to the stage 1) separately for both types of subsystems for all
100 realisations using the 1 s (1024 points) window (3rd and
13th seconds of realisations were used). The distribution of the
obtained values for uncoupled systems is plotted in Fig. 2, while
very similar distributions could be plotted for the unidirectionally
and bidirectionally coupled ones. P and Ds were chosen based on
the analysis of these distributions. For the oscillators of the type
(1) the optimal values are different for the stages 1 and 2, we used
the maximal polynomial order P = 6, since it is necessary for the
stage 2, and the second most common value for Ds = 2, since
using Ds = 6 with P = 6 leads to too many coefficients. For
the oscillators of the type (2) the optimal values for both stages
occurred to be the same: P = 2,Ds = 6. Such a choice is in a
good correspondence with the fact, that originally the oscillator
(1) is highly non-linear due to the Toda potential with a lower
dimension, while the oscillator (2) has a low non-linearity with a
higher dimension.

In (9b) the coupling is considered by introducing all possible
terms of different polynomial order including different products
of components of reconstructed state vector of subsystem X on
Da components of the state vector of the subsystem Y , as it was
proposed in [9]. In addition, the linear term cZj+2yn−lT is added.
In comparison with the linear bivariate model (8) this approach
usually leads to better results in detecting a parametric coupling
considered in this paper.

4. Numerical experiment

4.1. Unidirectionally coupled oscillators of a same type

In this section pairs of unidirectionally coupled oscillators of
a same type were considered: either pairs of subsystems (1) or
pairs of subsystems (2). The coupling was investigated in both
directions: actual and false.

Two scenarios were considered: for the first one (let us call
it synchronous) the significant phase synchronisation took place
during the stage 2, i.e.Φx,y(t) increased significantly in comparison
with the stages 1 and 3; the changes in the synchronisation were
not detected for the second scenario. For subsystems of both
types: (1) and (2) the scenario with the synchronisation increase
corresponded to the significant change in dynamics of a driving
oscillator: it started to exhibit relatively regular oscillations of a
high amplitude and can force the driven oscillator to follow its
main rhythm, with driven subsystem being in under-threshold
regime of low amplitude oscillations induced by the noise (a
stable focal point beneath Andronov–Hopf bifurcation line) for
subsystems of type (1) and the self-oscillatory regime of a low
amplitude for subsystems of type (2).

In the scenariowithout any significant synchronisation increase
the dynamics of a driving oscillator did not differ in the regime 2
from its dynamics in the regimes 1 and 3. The driven subsystem
exhibited a high amplitude oscillations during the stage 2 similar
to the synchronised scenario.

For the unidirectionally coupled subsystems of type (1) in the
synchronous scenario the linear model showed an increase of
PI(t) in both directions: actual and false, i.e. one should say that
bidirectional coupling was detected (see Fig. 3(b), grey lines). The
surrogate test using the realisations permutation identified this
coupling as significant in 10%–20% of cases (one should say that
coupling is hard to detect, see Fig. 3(c), grey lines). However,
the Fourier components phase randomisation test identified the
coupling as significant in more than 80% cases, that should be
considered as a coupling presence validation (see Fig. 3(d), grey
lines). Both conclusions were incorrect: the permutation test
showed an insufficient sensitivity while the Fourier harmonics
phase randomisation test showed an insufficient specificity. The
surrogates based on Fourier components phase randomisation
occurred to be too sensitive to a large phase synchronisation. This is
not actually surprising, since the phase randomisation completely
broke synchronisation, which led to a large signal distortion.
Surrogates of this type occurred to be a good detector of oscillation
synchronism irrespective of a reason why this synchronism
arose.

The adapted model (9) allowed us to identify the increase of
PI(t) in the second stage as significant in the actual direction by
means of both surrogate tests (more than 80% of significant results)
and the insignificant decrease of PI(t) in the opposite direction (see
Fig. 3(b)–(d), black lines). PI decrease may be caused by the fact
that large non-linearity is optimal for the individual model (based
on BIC criterion Ds = 2 and P = 6 were chosen), with such highly
non-linear model being very well suited especially for the second
stage characterised by a more regular dynamics. Therefore the
consideration of the second signal occurred to be not so necessary
for forecasting.

For the pair of unidirectionally coupled Rössler oscillators in
the synchronous regime (see Fig. 4), the linear model showed an
increase of PI in the actual direction, with phase randomisation
surrogates indicating a coupling in the wrong direction as
insignificant and a coupling in the actual one as significant in
40% of cases. The adapted model demonstrated an increase of the
coupling only in the actual direction, being significant based on
both surrogate tests.

For the pair of unidirectionally coupled Van der Pol-like Toda
oscillators for which a synchronisation did not grow significantly
during the second stage (see Fig. 5), the linear model showed an
increase in the coupling only in the actual direction, however this
increase was significant in less than 40% of cases. The adapted
model demonstrated the significant increase of PI in the actual di-
rection in 60% cases (surrogateswith series permutation) or in 40%
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Fig. 3. Coupling detection results for unidirectionally coupled subsystems of the type (1) with the significant phase synchronisation increase in the stage 2: (a)Φx,y(t) (black
line) and its 95% significance level (grey dashed line); (b)—PI(t); percentage of significant coupling detections with p-value = 0.05 based on different surrogate tests: (c)
the realisation permutation, (d) the randomisation of phases of Fourier components. Black lines correspond to the adaptive model (9), and grey lines—to the standard linear
model (8). Left plots correspond to coupling checking in its actual direction, right—in the opposite (false) one.
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Fig. 4. Coupling detection results for unidirectionally coupled subsystems of the type (2) with the significant phase synchronisation increase in the stage 2: (a)Φx,y(t) (black
line) and its 95% significance level (grey dashed line); (b)—PI(t); percentage of significant coupling detections with p-value = 0.05 based on different surrogate tests: (c)
the realisation permutation, (d) the randomisation of phases of Fourier components. Black lines correspond to the adaptive model (9), and grey lines—to the standard linear
model (8). Left plots correspond to coupling checking in its actual direction, right—in the opposite (false) one.
(surrogates with randomisation of phases of Fourier components).
Also it showed a decrease of PI for the stage 2. This can be explained
as a result of change in a shape of oscillations: their amplitude
increased in 2 or 3 times, but noise variance remained the same
in both subsystems, therefore the signal to noise ratio rose, while
both prediction errors: ε2

s and ε2
j fell. However, a more regular sig-

nal became simpler for description even by the univariate model,
so ε2

s fell larger, that can be seen in Fig. 6. Therefore PI decreased in
the false direction for stage 2, while this effect was compensated
in the actual one by the larger rise of PI due to the actual increase
of the coupling.
Summarising these results with the results obtained previously
for subsystems with the significant synchronisation increase (see
Fig. 3), the numerical experiments showed the linear model
to be likely to work more as a measure of synchrony rather
than coupling, since it identified a unidirectional coupling as
bidirectional in case of strong synchrony and as absent in
case of a weak one. The adapted model in most cases worked
better, detecting the coupling in the actual direction and usually
considering the coupling in the opposite one as insignificant.

For pairs of unidirectionally coupled Rössler oscillators without
any significant synchronisation increase during the stage 2 (Fig. 7)
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Fig. 5. Coupling detection results for unidirectionally coupled subsystems of the type (1) without the significant phase synchronisation increase in the stage 2: (a) Φx,y(t)
(black line) and its 95% significance level (grey dashed line); (b)—PI(t); percentage of significant coupling detections with p-value = 0.05 based on different surrogate tests:
(c) the realisation permutation, (d) the randomisation of phases of Fourier components. Black lines correspond to the adaptive model (9), and grey lines—to the standard
linear model (8). Left plots correspond to coupling checking in its actual direction, right—in the opposite (false) one.
ba

Fig. 6. PI(t) for different lengths of the moving window: the solid black line corresponds to 0.5 s, the grey one corresponds to 1 s, and the dashed black line—to 2 s length.
Results are plotted for unidirectionally coupled Van der Pol like-Toda oscillators: (a) in the actual direction, (b) in the false direction.
the linear model indicated a decrease in the coupling in the actual
direction and an increase in the false one, i.e. it showed the results,
completely opposite to the real coupling architecture. However,
these results were insignificant. This confirmed a previous
conclusion that the linear model is good for indicating synchrony
rather than coupling. The adapted non-linear model demonstrated
a good specificity combined with an insufficient sensitivity: it
showed no increase of the coupling in the wrong direction during
stage 2, but the coupling increase in the actual direction was
detected only in 25% of cases. Comparing with previous results
a poor performance of the adapted method seems to be mainly
a result of lower signal to noise ratio in this regime. Additional
numeric experiments showed that sensitivity of the adaptedmodel
can be increased either by means of using the longer moving time
window (but this leads to a decrease in temporal resolution) or by
increasing Da, but this is very dangerous, since it leads not only to
sufficiently larger models, but also provokes false positive results.
So, the question of the optimal Da value remained open.

For most of the considered cases a sharp peak in Granger
causality occurs at the start and at the end of the second stage.
This effect is caused by a finite length of a moving window in
which themodel is constructed that can be seen from Fig. 6, where
dependencies PI(t) for the same data and a different window
length are plotted: for the window of 0.5 s length—with black line,
for thewindow of 1 s length—with grey line, and for thewindow of
2 s length—with black dashed line. Fig. 6 shows that the wider the
window is, the wider is this Granger causality increase at transient
processes.

Such an increase of PI can also be explained by the fact that
a good forecasting model can hardly be constructed for a tran-
sient process due to the non-stationarity. The difficulties of the
description of non-autonomous and transient processes using au-
tonomous models were mentioned previously [44,45]. The predic-
tive power of a univariate model based on taking account of values
from a modelled series decreases while impact of the second sig-
nal remains approximately the same, so the role of an additional
term in model (6) rises. Therefore PI jumps up both for a coupling
increase and for its decrease (see Fig. 8).

4.2. Unidirectionally coupled oscillators of a different type

The chain of consequently coupled two Van der Pol like-Toda
and two Rössler oscillators was studied, with subsystems set
in turns: (1) → (2) → (1) → (2). For such a chain the phase
synchronisation index Φx,y(t) did not show a significant increase
in the synchronisation in the stage 2. All three possible pairs of
subsystems were considered.

The linear model failed to detect coupling in both directions
for all considered pairs as it was in the previous examples, where
no synchronisation took place. The adapted model succeeded to
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Fig. 7. Coupling detection results for unidirectionally coupled subsystems of the type (2) without the significant phase synchronisation increase in the stage 2: (a) Φx,y(t)
(black line) and its 95% significance level (grey dashed line); (b)—PI(t); percentage of significant coupling detections with p-value = 0.05 based on different surrogate tests:
(c) the realisation permutation, (d) the randomisation of phases of Fourier components. Black lines correspond to the adaptive model (9), and grey lines—to the standard
linear model (8). Left plots correspond to coupling checking in its actual direction, right—in the opposite (false) one.
ba

Fig. 8. Dependency of PI, ε2
s , and ε2

j on time for unidirectionally coupled Van der Pol like-Toda oscillators: (a) in the actual direction, (b) in the false direction.
detect the significant coupling in the actual direction in 80% cases
based on both surrogate types in the situation when a van der
Pol like-Toda oscillator was driving a Rössler oscillator and in 70%
(phase randomisation) and 40% (series permutation) cases when a
Rössler oscillator drove a van der Pol like-Toda one.

These results showed that even if individual subsystems largely
differ one from another, the coupling change nevertheless can
be successfully detected with the adapted model, with the linear
model being a measure of oscillation synchrony.

Also it is interesting that for the stage 2 the mediated cou-
pling from the first oscillator to the third and fourth ones was not
detected (results were mainly insignificant using both types of
models and both types of surrogates). This showed that such a cou-
pling should be considered to be too small due to its indirectness
that matches the previously mentioned fact that the coupling with
k = 0.01 was indistinguishable from zero. No doubt that the main
reason is the small length of time series and the presence of a large
enough noise.

4.3. Bidirectionally coupled oscillators of the same type

For pairs of bidirectionally coupled Van der Pol like-Toda and
pairs of bidirectionally coupled Rössler oscillators PI(t) rose in
the stage 2. For Van der Pol like-Toda subsystems both models
showed approximately the same results, with linear model being
not so sensitive (50% cases with both surrogates types) as adapted
nonlinear one (more than 80% cases). For Rössler oscillators
the results were mainly the same, but the surrogates based on
the phase randomisation of Fourier components indicated more
results as significant than the surrogates based on the series
permutation in the actual direction (see Figs. 9 and 10 left).

In general, the standard linear models occurred to be more
efficient for bidirectionally coupled subsystems in comparison
with unidirectionally coupled ones, since for bidirectionally
coupled systems no false positives were possible (there was no
chance to make a mistake in the coupling direction) and the
synchrony between subsystems was usually high.

It has to be mentioned that in the considered case two Rössler
oscillators demonstrated a delay of ∼1 s between a change of the
evolution operator and a change in the amplitude and shape of
oscillations (see Fig. 1(a)). However, both types of models detected
the regime change immediately when the change of the evolution
operator occurred. The same results can be reported for other
cases,when twoRössler oscillatorswere coupled in othermanners.
This fact is inspiring, since it showed Granger causality to be
a perspective tool for revealing actual changes of the evolution
operator in complex systems.

4.4. Bidirectionally coupled subsystems of a different type

Pairs of different bidirectionally coupled oscillators: one Van
der Pol like-Toda oscillator and one Rössler’s oscillator were
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Fig. 9. Coupling detection results for bidirectionally coupled (left) and uncoupled (right) subsystems of the type (1): (a) Φx,y(t) (black line) and its 95% significance level
(grey dashed line); (b)—PI(t); percentage of significant coupling detections with p-value = 0.05 based on different surrogate tests: (c) the realisation permutation, (d) the
randomisation of phases of Fourier components. Black lines correspond to the adaptive model (9), and grey lines—to the standard linear one (8).
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Fig. 10. Coupling detection results for bidirectionally coupled (left) and uncoupled (right) subsystems of the type (2): (a) Φx,y(t) (black line) and its 95% significance level
(grey dashed line); (b)—PI(t); percentage of significant coupling detections with p-value = 0.05 based on different surrogate tests: (c) the realisation permutation, (d) the
randomisation of phases of Fourier components. Black lines correspond to the adaptive model (9), and grey lines—to the standard linear one (8).
considered. Φx,y(t) did not rise during the stage 2. The coupling
was studied in both directions.

The coupling from a Rössler oscillator to a Van der Pol like-
Toda one could hardly be detected and both models with both
types of surrogates never gavemore than 20% of significant results.
PI increased for both model types, but for the linear model this
increase was more detectable. This was the only case, when the
standard linearmodel performed a little bit better than the adapted
one. The coupling in the opposite direction was well detectable
with bothmodels. Results of the adaptedmodel were significant in
more cases than results of the linear one (40% cases for the standard
linear model and 50% cases for the adapted one).

The problems of the adaptedmodelmay have different reasons.
First, in such a combination Van der Pol like-Toda subsystems
were in regime close to the linear one (if the noise was not
taken into account), so the non-linear method was not necessary.
Also since the noise was dominant in the dynamics, with long
correlations being lost, the additional adaptations of the model
lag and prediction length values were superfluous, as well as the
injection of the second lag lT . Second, using specialised models
of the same type for different oscillators may not be efficient.
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Third, the linear model had less coefficients, so they could be
estimated more reliably, which became very important in the case
of the dominating noise and a short window length. Numerical
experiments showed the combination of all these reasons to be
able to lead to such poor results, while each of themwas not crucial
in itself.

4.5. Uncoupled oscillators of the same type

Pairs of uncoupled oscillators of both types (1) and (2) were
considered. In order to change a regime in the stage 2, the
individual parameters of both subsystems were changed. The
achieved regime was very similar to the one obtained by means of
increasing the coupling. Due to the small length of themoving time
window this led to the significant increase in synchrony during
stage 2 in ensembles of subsystems of both types.

Linear models showed an increase in the coupling during the
stage 2 for both subsystem types, that was insignificant based
on the series permutation surrogates, but significant in 20%–30%
cases based on randomisation of phases of Fourier components
(see Figs. 9 and 10 right). This indicated one more time that the
standard linear Granger causality mainly showed an oscillation
synchrony despite its origin, rather than coupling. The non-linear
adapted Granger causality indicated PI as insignificant for both
subsystem types. For Van der Pol like-Toda oscillators PI decreased
insignificantly that matched the previous results and could be
explained similarly (see Section 4.1).

4.6. Uncoupled oscillators of a different type

Uncoupled oscillators of a different type were studied in the
same way as uncoupled oscillators of same type. No significant
increase ofΦx,y(t) could be achieved here. Both standard linear and
adapted models were shown to work successfully.

5. Conclusion and discussion

First, the standard linear Granger causality is more likely to be
a measure of synchrony rather than coupling for the considered
types of subsystems and length of the moving window. For
most synchronous subsystems it detects the coupling in a wrong
direction (bad specificity), and it is not sensitive enough for
subsystems with a low level of the synchronisation. The reason
why oscillations become synchronous is not very important:
the similar results can be achieved for bidirectionally coupled
oscillators, for unidirectionally coupled oscillators, and even for
uncoupled ones with the close main frequencies (the difference
appears to be negligible due to the short length of the used time
window).

Second, the adapted non-linear Granger causality is able to
benefit from more complex approximating functions, from fitting
the prediction length and the embedding lag, as well as from the
non-uniform embedding itself. Therefore the adapted method is
essentiallymore applicable than the standard linear one. However,
even the adapted method showed too many false positive results
for Van der Pol like-Toda oscillators (up to 20% in nonsynchronous
regime during the stage 2, when the oscillators of the same
type were coupled), whilst demonstrating insufficient sensitivity
(only 20%–40% in the synchronous regime, when the oscillators
of the same type were coupled) for the other considered object—
Rössler oscillators. The insufficient specificity of the method may
be explained by the general disadvantage of Granger causality
due to finite sampling rate, as was shown in [30]. However, since
the large number of false positives occurred mainly when the
subsystems of type (1) were considered, the individual properties
of signals could also be important. Oscillators of the type (1) have
highly non-linear potential, and the large polynomial order P = 6
used to approximate this potential in the bivariate model together
with the short length of the moving window led to ill conditioned
matrices in least-squares routine.

Though the specificity and the sensitivity of the adapted
method are not always sufficient, one canuse it to detect the reason
of the regime change. Themean PI and the number of significant PI
values, estimated based on the realisation permutation technique,
rose together for the transition from the stage 1 to the stage 2,
if this transition was caused by an actual coupling increase. The
mean PI and the number of significant PI values fell together for
the transition from the stage 2 to the stage 3, if this transition was
caused by an actual coupling decrease.

Summarising the results obtained for different types of sub-
systems, different coupling architectures, and different synchrony
levels the following answers to the questions formulated in the In-
troduction section can be provided based on the non-linear adapted
Granger causality technique:

1. The method is frequently able to detect coupling directionality
even using a short time window (1024 points and about only
8 main oscillations). Bidirectional, unidirectional and absent
coupling can be distinguished in many cases. However, the
specificity and the sensitivity are far from the desired values.

2. The method sensitivity is often insufficient when analysing
interactions of subsystems, if the driven subsystem is of type
(1). This can be the result of the individual properties of the
considered Van der Pol-like Toda oscillator.

3. Different types of surrogates test different hypotheses and their
straightforward comparison can be unfair, but since actually
they are often used for testing the hypothesis of coupling, some
results can be formulated. For the non-linear adapted model
surrogates constructed by series permutation were found to
be more reliable during the stage 1, while the Fourier phases
randomisation based surrogates were more reliable for the
stage 2, providing less false positive results.

4. The non-linear adapted method can be applied in case of rel-
atively high values of phase synchronisation index Φx,y = 0.9.
In most cases it also could detect, whether the synchrony was
a result of an interaction (unidirectional or bidirectional), or it
was caused by a random coincidence of oscillation phases.

5. It is obvious that the method time resolution is mainly defined
by moving window length. For considered subsystems, win-
dows of 512, 1024, and 2048 points (from 4 to 16 oscillations)
length were considered. Such a time resolution can be consid-
ered as high, e.g. in comparison with time resolution of phase
based method such as [16], where tens or hundreds of oscilla-
tions are mentioned. Moreover, the method was shown to in-
dicate the exact time moment of coupling change, even if the
change of the shape and amplitude of oscillations delayed for
one window length or larger.

6. Numerical experiments on uncoupled oscillators, where the
similar regime changes were established with the change of in-
dividual subsystemparameters, showed the adapted non-linear
method to be efficient in determining the reason of the ob-
served regime change.

Although the achieved results are to be considered as pre-
liminary and they depend on a large amount of factors such as
model dimension, type and number of approximating function,
and specifics of the observed signals, these results show that
non-linear Granger causality approach is efficient for investigat-
ing changes of coupling in time between subsystems in a complex
system, even if subsystems are of different nature. To provide this
efficiency the carefully adapted models have to be used.
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