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1. INTRODUCTION

Significant global and regional climatic processes
are associated with quasi�cyclic phenomena, such as
the El Niño/Southern Oscillation (ENSO) and the
Atlantic Multidecadal Oscillation (AMO) [1, 2–9].
Determining the interrelation between global climate
variations over the past 150 years and quasi�cyclic pro�
cesses like the ENSO, the AMO, and the Pacific Dec�
adal Oscillation, which significantly affect both global
and regional climate changes with periods of a few
years to a few decades, is one of the key problems of
climate studies. Justified quantitative estimates and a
reliable understanding of the interaction between key
large�scale processes are necessary.

The ENSO quasi�cyclic processes are character�
ized by surface temperature anomalies in the Pacific
equatorial latitudes with a periodicity of 2 to 8 years
(on average, about 4–5 years). In addition, noticeable
multidecadal variations in the ENSO phenomena
manifest themselves. The AMO manifests itself in
North Atlantic surface�temperature fluctuations with
a periodicity of about 60 years. Moreover, noticeable
decadal and intradecadal variations in the AMO man�
ifest themselves. The results of a cross�wavelet analysis
of different ENSO and AMO indices point to a signif�
icant coherence and both longer term (multidecadal
and decadal) and shorter term (interannual and intra�

annual) variations in these quasi�cyclic processes [4,
6, 16, 17, 23]. It should be noted that, along with the
time intervals of a more statistically significant coher�
ence between the ENSO and the AMO, intervals with
statistically insignificant coherence are also noted.

In this work the interdependence of ENSO and
AMO variations is analyzed using empirical data
obtained over the past 150 years and the construction
of autoregressive models on the basis of which differ�
ent characteristics of this relationship—relatively
short�term and longer term effects—are determined.
Such short�term effects are characterized by Granger
causality estimates (prediction improvements of
empirical models) [10–13], which are more often
used in analyzing climatic data [14–23]. To develop a
general approach [15, 16], it was suggested that long�
term effects be characterized by changes in the process
variance under changes in coupling parameters and
noise sources in an empirical model.

2. DATA USED

Monthly means (http://www.esrl.noaa.gov/) for
the anomalies of the ENSO and AMO indices IE and
IA, respectively, for a period of 1870–2013 were used in
our analysis. The temperature of the Pacific surface in
the subequatorial region Niño 3.4 (5° N–5° S, 170°–
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120° W) was used as index IE , and the sea surface tem�
perature in the North Atlantic region (0°– 70° o N)
was used as index IA. The time�series data under anal�
ysis with eliminated annual cycle are given in Fig. 1.

3. METHODS FOR ESTIMATING BOTH 
SHORT� AND LONG�TERM RELATIONS

Let us assume that we have a time series of two pro�
cesses    where  is vari�
ables and N is the length of the series. It is necessary to
find out whether process  influences process 
(effect ) and whether process  influences pro�
cess  (effect ) with quantitative estimates of
these influences.

3.1. Estimating Short�Term Relation

Granger causality estimates are based on the con�
struction of empirical models and on calculations of
errors of the one�step forward (short�term) prediction
of one process with and without consideration for the
other process [10–13]. Then, in estimating linearly,
one can use a conventional procedure (see, for exam�
ple, [21, 22]). At first, the individual autoregressive
(AR) models are constructed:

(1)

where  is the model order and  is white noise.

Here and below, the following symbols are used:  =

 –  is the sum

of squared residual errors of the model,  is the
maximum test�model order, and  is the vector of
the coefficients . The vector  is estimated using

the method of least squares, i.e.,  = 

When  =  is introduced, the estimate of the

variance of noise  takes the form  = 
In order to select , the Schwartz information crite�
rion [26] is used:  varies from zero to  and is cho�
sen from the condition of minimization of  =

 +  If  is found,

the joint model is constructed:
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where  is the number of   values taken into
account and  is white noise. The coefficients of
model (2) are also determined using the method of
least squares. If the variance of its residual errors is

represented by , then the normalized value of pre�

diction improvement  =  charac�

terizes the influence 
In order to estimate the statistical significance of

the inference about the difference of  from zero,

the Fisher F�test [27] is used, which, at a given ,
characterizes the significance level of derived p (prob�
ability of random error). Since the testing is conducted
at different test dimensionalities (multiple) up to the
current , the total significance level proves worse
(i.e., higher) than the pointwise level of p. The often�
used Bonferroni correction [16, 17, 21, 22] is deter�
mined by multiplying p by the number of conducted
tests for  In order to select ,  is mini�

mized (below ). If  is lower than some small
value (0.05 or 0.1), it is assumed that the prediction
improvement is nonzero and the  effect is
present; however, the latter is not always strongly valid
[28–31]. The Schwarz criterion in selecting 
proves stricter and it often yields the zero optimal
value of  even if, at nonzero values of , the

values of  are small (of an order of 0.01). Then
both results obtained in selecting  on the basis of the
Schwartz criterion and  on the basis of the Fisher

criterion are given. The trial values of  and  vary
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Fig. 1. (a) AMO and (b) ENSO indices with eliminated
annual variations.
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within such a range that the number of coefficients in
any used AR model is significantly smaller than the
length of the data series under analysis. First, estimates
are obtained for the entire 1870–2013 interval and
then an analysis is made using sliding windows. In
analyzing the whole data series or its significant part
(window 60 years in length), it is assumed that

 At window lengths of 10, 20, and 30 years, it
is assumed that dmax = 6 so that the total number of
coefficients in each equation of the joint model

remains always smaller than 
Searching for model (2) according to the least rms

prediction error must simultaneously provide the
delta�correlation of the residual errors of the model
(i.e., the correspondence of their properties to the
requirement of the white noises  and  in AR mod�
els) at its sufficient dimensionality [10, 11, 26]. This
condition was satisfied for all optimal models, which
was verified according to estimates of the correlation
functions of residual errors.

Nonlinear estimates are similarly obtained; only
nonlinear (instead of linear) functions are used in the
right�hand sides of AR equations. In this work, low�
order polynomials are used, because the volume of
data is limited and the number of AR�model coeffi�
cients rapidly increases with an increase in the order of
polynomial.

3.2. Estimating Long�Term Relation

The Granger causality characterizes errors of the
one�step forward prediction, i.e., to what extent the
presence of one process (x) affects the spread in the
values of the other (y) at the next point of time when
the state of y is fixed at the moment. This reflects the
short�term effect of x on y. It is also important to diag�
nose what long�term variations in one process may
result from variations not only in the initial state of the
other process, but also in its parameters or in coupling
parameters. In [24, 25], this was estimated from an
analysis of the dynamics of AR model (2) constructed
under the assumption that this model adequately
reflects the functioning of the processes even under
variations in the corresponding parameters. Namely,
the effect of parameter variations on trends was esti�
mated, since variations in the global surface air tem�
perature were analyzed. In this work, when estimating
the effects of the long�term coupling, we (developing
the approach described in [24, 25]) analyzed the vari�
ance of the processes (i.e., the total fluctuation power
within a time interval exceeding the characteristic
time scales of the processes) and its change under
certain hypothetical variations in the AR�model
parameters.

The noise in AR model (2) was assumed Gaussian
(which approximately corresponds to the properties of
the histograms of the model’s residual errors for the

max 12.d =

.N

kξ kη

processes under consideration), so that the two�
dimensional random process  is a normal white
noise with the covariance matrix Γ. The variances of

the processes  in (2) are denoted by  They may
unambiguously be found from the values of the coeffi�
cients of model (2) and the matrix Γ. In this case, the

model coefficients and the noise variances  are
estimated using the method of least squares, and the
noise covariance (nondiagonal element Γ) may be
obtained as the corresponding moment estimate from
the residual errors of the equations for  and 
in (2). One can compare the calculated variances of
the processes  in constructed model (2) with ordi�
nary moment estimates of the process variances
according to observational series (sample variances):
for adequate models, they must coincide with an accu�
racy of statistical error.

The long�term effect  is estimated using AR
model (2) according to the extent to which the
observed variance of  differs from its values at the
zero coupling coefficients  (for all i) in the
model and under other equal conditions, in particular,
at a constant value of the coupling coefficients  that
determine the reverse effect  The coupling
characteristic is denoted by

(3)

where the additional conditions, under which the vari�
ance value was obtained, are given in square brackets
here and below. The normalization in (3) characterizes
the relative difference between the  variances for the
coupling coefficients  obtained from time series and
for the zero coupling  At the unidirectional
effect  (i.e., at zero feedback) and mutually
uncorrelated noises, the value of (3) is positive. How�
ever, at bidirectional coupling, it may also be negative
(see below), so that it is not always possible to interpret
this value as a contribution of the process  to the
variance of 

As a contribution to the variance, one can interpret
a similar value obtained under the additional condi�
tion of zero values of 

(4)
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An analysis of variations in the process  when the

variance  of the noise  changes (becomes zero) in

the AR equation for the other process ( ) is close in
meaning when compared to its observed value:

(5)

This value is also positive (at mutually uncorrelated
noises) even in the case of bidirectional coupling,
which makes it possible to use such characteristics for
spectral decompositions [32, 33]. At zero feedback

, the value of  coincides with  and

The introduced characteristics reflect the effect of
the process  on  which involves variations in the
stationary (quasi�stationary) characteristic of the pro�
cess  (its variance) under varying parameters. The
stationary (quasi�stationary) characteristics empiri�
cally manifest themselves in data series whose length
significantly exceeds the characteristic time scales of

the processes under analysis. Thus,  , and
 are the long�term characteristics of the effect.

4. ANALYSIS RESULTS

4.1. Analyzing the Entire 1870–2013 Period

Below, the AMO index corresponds to x1 and the
ENSO index corresponds to  (Fig. 1). An individual
model for AMO variations is optimal at  the
standard deviation of prediction error is  K
at the standard deviation  K. The individual
model for the ENSO is optimal at   K
at  K. Model (2) for AMO variations with
consideration for the ENSO (i.e., the equation with
k = 1) is optimal at  with the prediction
improvement  at the significance level

; i.e., the ENSO effect on AMO varia�
tions is reliably revealed. For the reverse effect,

 at  with the significance level
; i.e., the AMO effect on the ENSO is less

reliably revealed.
When nonlinear models with second�order poly�

nomials are used, they yield almost the same results in
simulating AMO variations; however, for ENSO vari�
ations, such an analysis yields a smaller value of indi�
vidual dimensionality ( ) and probably therefore
a further prediction improvement with consideration
for the AMO (of an order of 0.01), which is significant
at a level of 0.02. However, the Schwartz criterion for
nonlinear models proves larger than for linear (both
individual and joint) ones, which suggests that the effi�
ciency of the former is lower. A further nonlinear anal�
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ysis is efficient; however, in order to obtain reliable
results, such an analysis will require additional consid�
erations (for example, the form of nonlinear functions
in model and others). In connection with this, the
results of only linear analysis are given below.

The long�term effects were estimated on the basis
of the abovementioned empirical model

 (6)

where the noises  and  have the variances  =

 and  =  and the correlation
coefficient   =   =

  =   = 0.14 ± 0.03,  
=   =  a2.5 =

  = –0.082 ± 0.024,   = –0.058
± 0.034, (the coefficient values are given with their
standard deviations [27]). The variances of  and  in
model (6) differ from the corresponding empirical
variances by less than 1%, which implies that the
model quite adequately reproduces the variances. The
characteristics of the long�term effects are as follows:

   
 and  According to these

characteristics, the effect of the ENSO on the AMO is
significantly stronger than that of the AMO on the
ENSO. The variance of the AMO index noticeably
increases (by 9%) due to the ENSO effect when com�
pared to the case without this effect, and when the
effect of the AMO on the ENSO is zero, this increase
is more significant (13%). It should be noted that the
effect  in model (6) decreases the variance of the
AMO index  when compared to the case of unidirec�
tional coupling  because the coupling coeffi�
cient  (the AMO effect on the ENSO, ) is
negative and the coupling coefficient  ( ) is
positive. In this case, the characteristics  and

 almost coincide with  and  The pres�
ence of the effect of AMO variations on the ENSO

causes the variance of the ENSO index  to change by
only no more than 1%.

4.2. Analysis by Using Sliding Windows 
of Different Lengths

Since the interaction between the quasi�cyclic pro�
cesses under consideration may significantly vary in
time, its characteristics were estimated on the basis of
models obtained in sliding windows of a fixed length,
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orders were selected using both the Schwartz and
Fisher criteria. Such an analysis was made for W =
30 years (Figs. 2, 3) and for W increased to 60 years
(Figs. 4, 5) and decreased to 20 (Figs. 6, 7) and 10 years.

At W = 30 years, the AR model for AMO variations
has optimal orders of 1 to 2 (more often 1) for  and 1
to 3 (more often 1) for . Similarly, for the ENSO,

 and  vary from 1 to 5 (more often 2 or 3 for 
and usually 1 for ). Figures 2a and 2 b give the
standard deviations of prediction errors for both indi�
vidual and joint AR models (solid and dashed lines,
respectively) for both processes: for AMO and ENSO
variations, respectively. The relative prediction
improvements reach essentially larger values than for
the entire interval under analysis (Figs. 2c, 2d), which
are significant at both pointwise and general levels
(0.05) (see Figs. 2e, 2f). For some window positions,
the effect of AMO variations on the ENSO, which is
comparable in short�term characteristics to the effect
in opposite direction, is revealed: the maximum nor�
malized prediction improvement  is
comparable to the maximum  The influ�

1d
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→ 2d
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→

>
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ence of ENSO variations on the AMO for most
30�year intervals is significant (Fig. 2e), and this rela�
tion manifest itself as almost unidirectional; however,
in the early 21st century, this influence decreases
(Figs. 2c, 2e), while the influence of AMO variations
on the ENSO has increased in recent years (Figs. 2d,
2f). From the standpoint of the criteria used, this
implies the reversal of the direction of influence.

Figure 3 gives estimates of the long�term character�
istics of the coupling: (a, b) variances of both processes
under different model conditions and (c, d) relative
changes in the variances. On the whole, the ENSO
effect on the AMO (Fig. 3c) is more intense than the
AMO effect on the ENSO: the ENSO effect on the
AMO at zero feedback, which is characterized by the

value of  (thick solid line in Fig. 3c), results in a
relative increase in the variance of the AMO index up
to 40%. The ENSO effect on AMO variations at a
fixed feedback, which is characterized by the value of

 does not always result in such a large increase (a
thin solid line characterizes the relative difference
between the thick and thin solid lines in Fig. 3a), but it
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Fig. 2. (a, c, e) Estimates of the short�term effects of ENSO variations on AMO variations and, conversely, (b, d, f) the AMO
effects on ENSO variations for a sliding window of 30 years: (a, b) standard deviations of prediction errors for both individual
(solid line) and joint (dashed line) AR models, (c, d) estimates of normalized prediction improvements, and (e, f) corresponding
values of the significance level of the inference about nonzero prediction improvements according to the F�test for every window
(pointwise significance level). Dashed lines correspond to the threshold values: 0.05 (long strokes) and with repeated consider�
ation for the Bonferroni correction (0.05 divided by the number of nonoverlapping windows) (short strokes).
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is comparable. In the model equation for the ENSO,

setting the noise variance  equal to its empirical
estimate (but not to zero) also increases the variance of
the AMO index by 40%. This is represented by the
value of  in Fig. 3a, in which the dashed line char�
acterizes the relative difference between the thick solid

2
21σ

2 1N
→

and dashed lines. It should be noted that, in Figs. 3, 5,

and 7, the values of  are often close to  so
that the dashed and thick solid lines almost coincide.

On the whole, the effect of AMO variations on the
ENSO is not so strong; however, in recent years, this
effect has caused the ENSO variance to increase up to

j kN
→ →
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Fig. 5. Estimates of the long�term effects of (a, c) the ENSO on the AMO and (b, d) the AMO on the ENSO for a sliding window
of 60 years. Symbols are the same as in Fig. 3.

0.8

0.4

0

200019601920
Year

1

20001920
0.0001

Year

PI1→2

pmin

PI2→1

pmin

0.08

0.06

0.05

200019601920
–0.2

Year

1960

0.04

0

1

20001920
0.0001

Year
1960

0.1

0.01

0.001

0.1

0.01

0.001

(а) (b)

(c) (d)

Fig. 6. Estimates of the short�term effects of (a, c) the ENSO on the AMO and (b, d) the AMO on the ENSO for a sliding window
of 20 years: (a, b) estimates of normalized prediction improvements and (c, d) corresponding estimates of the significance level.
Symbols are the same as in Fig. 4.
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20% due to the nonzero coefficient of coupling with

the AMO (the values of  and  reaches approx�

imately the same values. The values of  and 
reached 10% in earlier periods, for example, in 1901–
1930. It should be noted that the  effect of the
variance change due to the nonzero coupling coeffi�
cient at a fixed feedback may also be significantly neg�
ative (Fig. 3d), which is realized in the presence of
effects in both directions with coefficients of different
signs. According to the results (Figs. 2, 3), the 1950–
1980 period is characterized by insignificant effects in
both directions. Before this period, this coupling was
bidirectional with the dominating ENSO effect on the
AMO and, after this period, almost the unidirectional
ENSO → AMO coupling was pronounced, which, in
recent years, has changed into almost the unidirec�
tional AMO → ENSO coupling.

Figures 4 and 5 show similar results obtained using
a longer 60�year sliding window. General conclusions
are similar, with the difference being that, in the longer
window, the effect of AMO variations on the ENSO
has not been pronounced in recent years, and only its
statistically insignificant features manifest themselves.
For shorter 20�year (Figs. 6, 7) and 10�year windows,
a more detailed dynamics manifests itself when com�
pared to that for the 30�year window. However, esti�
mates obtained using a 30�year window seem more
reliable, because the sampled and calculated (for
model (2)) variances of the processes are closer to each
other in this window. According to estimates obtained
using a 20�year window, the ENSO has the strongest
effect on AMO variations also at the beginning of the

(0)
1 2C
→ 1 2C

→

(0)
1 2C
→ 1 2N

→

1 2C
→

period under analysis, and the reverse effect becomes
stronger at the end of this period (Figs. 6, 7). It is
important that the total length of intervals with signif�
icant coupling estimates for a 20�year window signifi�
cantly decreases when compared to that for a 30�year
window. Results obtained using a 10�year window are
similar in many aspects, with the difference being that
model errors in reproducing signal variances increase
still further and intervals of significant coupling esti�
mates are almost absent.

5. CONCLUSIONS

Relatively short�term and longer�term relations
between AMO and ENSO variations have been stud�
ied using the Granger causality analysis for the former
relations. The results of our analysis of data obtained
over a period of 1870–2013 suggest that, on the whole,
the ENSO effect on the AMO is stronger. The reverse
effect is relatively weakly significant and noticeably
smaller in value for both short� and long�term cou�
plings. According to estimates for the entire period
under analysis, the ENSO increases the variance of
AMO�index variations by approximately 10%. The
reverse effect for the entire period is, on the whole,
weaker by an order of magnitude.

A more detailed analysis with the use of sliding
windows (the most informative and reliable results
were obtained using a 30�year window) has revealed
the time�varying character of these relations. The
ENSO effect on the AMO was stronger at the begin�
ning of the period under analysis, and the reverse
effect (the AMO effect on the ENSO) has become
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Fig. 7. Estimates of the long�term effects of (a, c) the ENSO on the AMO and (b, d) the AMO on the ENSO for a sliding window
of 20 years. Symbols are the same as in Figs 3 and 5.
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more significant and increased in recent years.
According to empirical AR models (2), the variance of
the AMO index increased to 40% due to the ENSO
effect at the beginning of the period under study, and,
in recent years, the variance of the ENSO index has
increased to 20% due to the AMO effect.

Thus, the results of such an analysis have revealed a
bidirectional relation between ENSO and AMO vari�
ations with the generally dominating ENSO effect on
the AMO. In addition, according to obtained esti�
mates, the AMO effect on the ENSO has increased in
recent years, and this tendency for an increase is con�
served against the background of a decrease in the
ENSO effect on the AMO.

It should be noted that the results presented in this
work do not include estimates of the effects of the
cross�modulation of both ENSO and AMO cycles. In
order to analyze variations in the AMO cycle with a
characteristic period of over 50 years, longer series of
observational data are necessary. Such an analysis is
possible on the basis of data obtained from empiri�
cal (paleoclimate) reconstructions and model sim�
ulations.
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