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In estimation of causal couplings between observed processes, it is important to characterize coupling roles
at various time scales. The widely used Granger causality reflects short-term effects: it shows how strongly
perturbations of a current state of one process affect near future states of another process, and it quantifies that via
prediction improvement (PI) in autoregressive models. However, it is often more important to evaluate the effects
of coupling on long-term statistics, e.g., to find out how strongly the presence of coupling changes the variance of
a driven process as compared to an uncoupled case. No general relationships between Granger causality and such
long-term effects are known. Here, we pose the problem of relating these two types of coupling characteristics,
and we solve it for a class of stochastic systems. Namely, for overdamped linear oscillators, we rigorously derive
that the above long-term effect is proportional to the short-term effects, with the proportionality coefficient
depending on the prediction interval and relaxation times. We reveal that this coefficient is typically considerably
greater than unity so that small normalized PI values may well correspond to quite large long-term effects of
coupling. The applicability of the derived relationship to wider classes of systems, its limitations, and its value for
further research are discussed. To give a real-world example, we analyze couplings between large-scale climatic
processes related to sea surface temperature variations in equatorial Pacific and North Atlantic regions.
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I. INTRODUCTION

Revealing directional (causal) couplings between elements
of complex systems from observed time series is an impor-
tant step toward a better understanding of their collective
behavior and to a more accurate prediction of their evolution
under changing conditions. Therefore, the problem of causal
coupling estimation is widely encountered in physics [1–6],
engineering [7–9], ecology [10], climate science [11–17],
neuroscience [18–22], and other fields. Moreover, it continues
to attract attention; see, e.g., a series of recent papers
of different groups in two subsequent issues [23–28]. An
especially important aspect deserving more detailed studies
is a characterization of the role of coupling at different time
scales [17,29–31], including a distinction between shorter- and
longer-term causal effects [28,32].

The basic idea underlying most of the above-mentioned
techniques is the concept of Granger causality [33,34]: one
compares how uncertainty about the future of one process is
changed if the past data from another process are taken into
account. It is typically implemented via fitting autoregressive
(AR) models to a time series and calculating one-step-ahead or
several-steps-ahead prediction improvement (PI) in terms of
prediction error variance [33]. A measure as popular as transfer
entropy [35] and its various modifications [15,21,22,36,37] can
be viewed as elaborate implementations of the same concept.
Although this approach can lead to spurious detection of
couplings under certain conditions [38–40] where additional
tests are required [39], in a broad range of situations it appears
to be quite an efficient tool for coupling detection from
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relatively short and noisy signals. An overview of its recent
applications to climate data is given in Ref. [41].

A desired step beyond coupling detection is the quantifi-
cation of coupling “strength” or “importance,” which is much
more difficult [28]. In physical problems, it is often necessary
to understand the overall role of coupling in dynamics, e.g.,
one should determine how strongly one process contributes to
variance or another long-term statistic of the second process
due to their coupling [28,42]. It would be highly desirable to
interpret concrete numerical values of PIs in such terms, but it
remains unknown how to do that. In practice, normalized PIs
estimated from time series are often statistically significant,
but they take on small values of about 1–2% [12,13]. Does this
mean that the effects of couplings on long-term characteristics
are of the same order and may be considered as a secondary
circumstance? Or, in contrast, can a small PI correspond to
the rather considerable long-term role of coupling? If we were
able to answer these questions and relate PI to such a long-term
contribution of coupling, Granger causality analysis would
become much more useful for a quantitative characterization
of couplings. This is especially so because reliable direct
estimation of the long-term role of coupling is problematic,
contrary to the well-established techniques for PI estimation.

To put the posed questions in a wider context and justify
the terms used throughout the paper, we note that Granger
causality is closely related to a finite-time (one step ahead or
several steps ahead depending on the prediction interval used)
causal effect, which shows how strongly an initial state of
one process influences near future states of another process
[28,43,44]. If both processes under study are characterized by
individual relaxation times beyond which any dependence of
their states on the initial conditions disappears, informative PI
values are obtained for prediction intervals that do not strongly
exceed those characteristic time scales. Therefore, we call such
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characteristics “short-term effects.” In contrast, if one studies
how stationary statistics of a process vary in response to a
change in coupling (i.e., to a change in a constant parameter
rather than in an initial state), the resulting characteristics
describe the properties that are clearly manifest in a time series
whose duration is much longer than all the characteristic time
scales of the processes. Therefore, herein such characteristics
are called “long-term effects.” Similar types of characteristics
have been recognized and mentioned in previous works.
For example, within the context of numerical atmospheric
circulation models [45], predictions of the near future states
depending on the initial state have been called “predictions of
the first kind,” while predictions of how stationary statistics of a
process vary if a certain parameter is changed have been called
“predictions of the second kind.” The problem of relating the
short-term and long-term effects of directional couplings is
posed here.

Within the framework of dynamical causal effects [28],
Granger causality falls into the “state space intervention–
orbital effect” family of coupling characteristics, while the
change in stationary variance of a process in response to
zeroing of the respective coupling coefficient belongs to
the “parametric intervention–stationary effect” family. It has
been argued that such short-term and long-term effects are
irreducible to each other in general [28]. However, it can be
expected that they are closely related within certain classes
of systems, the form of their relationship depending on the
properties of such a class. Therefore, it seems fruitful to start a
study of those relationships from a reasonably simple and still
informative set of systems. Following this idea, we perform
here a complete rigorous analysis of the relationship between
the above long-term effect and short-term ones for a class of
linear stochastic systems, namely for overdamped oscillators.
We reveal that this is a proportionality relationship for
moderate coupling strengths, and we find an exact dependence
of the proportionality coefficient on the relaxation times of the
oscillators. A possible wider applicability of the derived simple
relationship and its limitations are further discussed. To give
a concrete real-world illustration of the theoretical results,
we estimate short-term and long-term effects of couplings
between large-scale climate processes of global importance
related to sea surface temperature variations in the Pacific and
Atlantic Oceans.

The paper is organized as follows. Section II reviews the
definition of Granger causality. Section III describes a short-
term “intervention–effect” characteristic that helps to link PIs
to long-term causal effects. The latter are introduced in Sec. IV.
Section V contains a derivation of the relationships between the
short-term and long-term effects and a discussion of its results.
A climate data analysis is presented in Sec. VI. Conclusions
are given in Sec. VII.

II. GRANGER CAUSALITY

The basic problem considered below is the following. There
are two systems X and Y that may be coupled, either in a
uni- or a bidirectional way. One observes time series of two
scalar variables u and v representing the dynamics of X and
Y , respectively. The task is to reveal and quantify directional
couplings between X and Y from the observed data.

To introduce mathematical definitions, we assume that
an observed time series is a realization of a stationary
bivariate random process [U (t),V (t)]: un = U (tn) and vn =
V (tn), where tn = n�t , �t is sampling interval, and n is
an integer. Let us denote the values of u and v preceding
time tn as u−

n = (un−1,un−2, . . . ) and v−
n = (vn−1,vn−2, . . . ).

To characterize the influence X → Y , consider conditional
distributions ρ(vn|v−

n ) and ρ(vn|u−
n ,v−

n ). If ρ(vn|v−
n ) differs

from ρ(vn|u−
n ,v−

n ) at any u−
n and v−

n , then the system X is
said to “Granger cause” the system Y . Multiple-step-ahead
conditional distributions can also be studied [34], but the
above one-step-ahead characteristics often suffice for correct
coupling detection.

As a general measure of the distance between the distribu-
tions ρ(vn|v−

n ) and ρ(vn|u−
n ,v−

n ), one can use Kullback-Leibler
divergence and arrive at transfer entropy [35]. For Gaussian
processes, this is equivalent to comparing the respective
conditional variances. Due to the simplicity of the latter
characteristic, it is often applied to non-Gaussian processes as
well [46] and is used as the Granger causality measure below.
Namely, let vind

n be the “self-predictor” of vn given by vind
n =

E[vn|v−
n ], where E[·|·] stands for a conditional expectation.

The mean-squared prediction error σ 2
v,ind = E[(vn − vind

n )2]
represents the conditional variance and is minimal over all self-
predictors. The joint predictor v

joint
n = E[vn|u−

n ,v−
n ] gives the

error σ 2
v,joint, which is minimal over all joint predictors. Then,

the normalized PI value GX→Y = (σ 2
v,ind − σ 2

v,joint)/σ
2
v,ind char-

acterizes Granger causality in the direction X → Y and ranges
from 0 to 1. In application to Gaussian processes, the idea is
realized [33] through the bivariate linear AR description,

un =
dX∑
k=1

au,kun−k +
dXY∑
k=1

bu,kvn−k + ξn,

(1)

vn =
dY∑

k=1

av,kvn−k +
dYX∑
k=1

bv,kun−k + ψn,

where (ξn,ψn) is a bivariate zero-mean Gaussian white noise
with variances σ 2

ξ and σ 2
ψ and covariance E[ξnψn] = γ . Any

bivariate stationary Gaussian process is uniquely represented
in the form (1) where, in general, infinite orders dX, dXY ,
dY , and dYX are required to provide whiteness of the noise.
This whiteness assures that σ 2

ξ = σ 2
u,joint and σ 2

ψ = σ 2
v,joint [47].

Similarly, the unique univariate AR description of the process
vn is given by the second line in Eqs. (1) with dYX = 0 and a
different white noise ψ ′

n with variance σ 2
ψ ′ = σ 2

v,ind. Now, one
determines GX→Y = (σ 2

ψ ′ − σ 2
ψ )/σ 2

ψ ′ . Everything is similar for
GY→X.

In the theoretical analysis of Sec. V, we mainly use
PIs divided by the smallest variance G′

X→Y = (σ 2
v,ind −

σ 2
v,joint)/σ

2
v,joint for convenience. It holds that G′

X→Y =
GX→Y /(1 − GX→Y ) so that G′

X→Y ≈ GX→Y when both quan-
tities are considerably smaller than unity.

To estimate GX→Y and GY→X from a finite time series
{un,vn}Nn=1, one can use well-established techniques based on
fitting univariate and bivariate AR models to that time series
(Sec. VI). For nonlinear systems, one can proceed in a similar
way and use nonlinear AR models to define PIs [46]. The
nonlinear case is only briefly commented on in Sec. V D.
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III. SHORT-TERM CAUSAL EFFECTS

Granger causality characteristics are of informational char-
acter and do not quantify causal effects directly, but they are
closely related to short-term causal effects [2,28], which is
justified in this section in some detail. It is relevant to recall
the families of coupling characteristics introduced in Ref. [28]
for state space systems to quantify causal influences in terms
of “intervention-dynamical effect.” Let us consider systems X

and Y specified by stochastic differential equations,

ẋ = fX(x,y) + ξX(t),
ẏ = fY (y,x) + ξY (t), (2)

where x and y are state vectors of the systems, functions fX
and fY represent both internal dynamics and coupling, and ξX

and ξY are mutually independent Gaussian white noises. We
assume that the scalar observables u and v are single-valued
functions of the respective states u = u(x) and v = v(y), and
we denote by ρt (v|x0,y0) the conditional probability density
of the variable v at time t , given the initial state (x0,y0) at time
t0 = 0.

In the spirit of Ref. [28], a finite-time causal effect X → Y

with respect to the variable v can be defined through a change
in ρt (v|·), which occurs if an initial state of X is changed from
x0 to x∗

0, given y0. The normalized effect reads

FX→Y (t,x0,x∗
0,y0) = |E[v(t)|x0,y0] − E[v(t)|x∗

0,y0]|√
var[v(t)|x0,y0] + var[v(t)|x∗

0,y0]
,

(3)
where the denominator is used to measure the difference in
conditional expectations in terms of the respective conditional
variances to quantify a separation of the conditional distri-
butions. Such a change in the state of X has been called
“intervention” [43] or “state space intervention” [28]. Such
an effect has been called “orbital” [28] since it shows how
phase orbits y(t) emanating from y0 (and projected to the
variable v) shift in response to the intervention. The resulting
characteristic belongs to the family “state space intervention–
orbital effect” [28]. Averaging over ρ(y0)ρ(x0|y0)ρ(x∗

0|y0),
where ρ(y) is a stationary distribution of y and ρ(x|y) a
distribution of x conditioned by simultaneous y, one gets

FX→Y (t) =
√〈

F 2
X→Y (t,y0,x0,x∗

0)
〉
y0,x0,x∗

0
, (4)

where the angular brackets denote the averaging. This kind
of averaging means that the vectors x0 and x∗

0 are drawn
from the conditional distribution independently of each other.
In a free run, the system returns many times to close
neighborhoods of the states (x0,y0) and (x∗

0,y0) and, thereby,
naturally “compares” orbit beams emanating from these two
states. For the stochastic system (2), FX→Y (t) is small for
small t , reaches its maximal values for some intermediate t

close to characteristic time scales of X and Y , and quickly
decreases at greater times [28]. Let us denote that maximal
value FX→Y,max = maxt>0 FX→Y (t) and the respective time
tX→Y,max = arg maxt>0 FX→Y (t). Since all these F measures
quantify finite-time effects at moderate times t , we call them
“short-term causal effects.”

To provide a link with Granger causality, let us de-
note the conditional variance of v(�t) at a given initial
state of Y as var[v(�t)|y0]. It equals a minimal mean-

squared prediction error over all predictors based only on
the initial state of Y . If var[v(�t)|x0,y0] is independent of
the initial state (x0,y0), as is the case for linear stochas-
tic systems, then one gets FX→Y (�t) = {var[v(�t)|y0] −
var[v(�t)|x0,y0]}/var[v(�t)|x0,y0], which is a direct analog
of G′

X→Y , where the predictors u−
n and v−

n are analogs of the
states x0 and y0. In the case of sufficiently weak couplings and
not too sparse sampling, the states x(tn−1) and y(tn−1) are well
represented by the observed vectors u−

n and v−
n , respectively

[39,40]. Then, one gets F 2
X→Y (�t) ≈ G′

X→Y , i.e., PI can be
used as a proxy for the finite-time causal effect over the
prediction interval �t . In particular, it is valid for the examples
studied in Sec. V.

IV. LONG-TERM CAUSAL EFFECTS

To characterize an “overall contribution” of the coupling
X → Y to the observed dynamics of Y , one can assess changes
in statistical properties of the process v(t) that would occur
if the coupling X → Y were “switched off.” Similarly to
regression analysis [45,48,49], we focus on assessing the
change in stationary variance. For a concrete definition, an
explicit coupling parameter dependence must be considered
[28], e.g., as follows:

ẋ = FX(x) + cXY GX(x,y) + ξX(t),
ẏ = FY (y) + cYXGY (y,x) + ξY (t), (5)

where FX and FY describe the internal dynamics of the systems
X and Y , GX and GY are coupling functions, and cXY and cYX

are coupling coefficients. If cYX = 0 (cXY = 0), the system
Y (X) evolves independently of X (Y ). Let us denote the
stationary variance of v at given values of coupling coefficients
c∗
XY and c∗

YX as σ 2
v (c∗

XY ,c∗
YX). If the influence X → Y is

suppressed, i.e., if one sets cYX = 0 instead of cYX = c∗
YX,

then the variance of v equals σ 2
v (c∗

XY ,0). The latter is a “free”
variance of v, which can be denoted σ 2

v,0. Then, the contribution
of the coupling X → Y to the variance σ 2

v (c∗
XY ,c∗

YX) is defined
[28,42] as

SX→Y = σ 2
v (c∗

XY ,c∗
YX) − σ 2

v,0

σ 2
v,0

. (6)

This characteristic belongs to the family “parametric
intervention–stationary effect” [28]. Since it quantifies a
change in a stationary statistic that manifests itself only in
the long-term behavior, i.e., over a time interval including
many characteristic time scales of the system, we call it the
“long-term causal effect.”

By using the denominator σ 2
v (c∗

XY ,c∗
YX) instead of σ 2

v,0 in
Eq. (6), one gets the quantity S̃X→Y = SX→Y /(1 + SX→Y ) to
assess which part of the variance σ 2

v (c∗
XY ,c∗

YX) is “determined”
by the coupling X → Y . This is meaningful if the numerator
is positive. However, the numerator can be negative for
bidirectionally coupled systems (Sec. V C), making the in-
terpretation in terms of the variance decomposition irrelevant.
Still, a “unidirectional” long-term effect can be defined via a
comparison of the variance of v for zero and nonzero coupling
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X → Y under the additional condition c∗
XY = 0:

Suni
X→Y = σ 2

v (0,c∗
YX) − σ 2

v,0

σ 2
v,0

. (7)

It shows how strongly the variance of v would change as
compared to the uncoupled case if only the unidirectional
coupling X → Y were “switched on” rather than both cou-
plings X → Y and Y → X together, as in Eq. (6). In the
examples of Sec. V, Suni

X→Y is positive and can be interpreted
as a “unidirectional effect” of coupling on the variance of v.
Similar characterizations are familiar in physics, e.g., a scheme
with excluded feedbacks is used in analysis of numerical
atmospheric and oceanic circulation models to estimate the
mutual influence of sea surface temperature variations and
monsoon circulation [45].

A direct approach to the estimation of SX→Y from a time
series {un,vn} can be based on the obtained bivariate AR
model (1) used as a proxy of the processes under study.
Namely, one can assume that “switching the coupling X → Y

off” in the original system would correspond to zeroing all
the coefficients bv,k in Eqs. (1) with all other parameters
unchanged. Under this assumption, the variance of v in the
model at zero and nonzero couplings and, thereby, Suni

X→Y

and SX→Y can be calculated [42]. In other words, one
extrapolates the AR model obtained for coupled systems to the
zero-coupling case. This is not a unique idea, e.g., a similar
extrapolation of empirical models in parameter space has been
used to predict possible bifurcations in El − Niño dynamics
[50]. However, extrapolation is often a problematic step, and
its validity is not always assured. Therefore, it is desirable to
have an alternative way to estimate the long-term effects, e.g.,
by finding their relationships with PIs.

We note that the above long-term effects differ from the
widely used notion of “long-range correlations.” The latter
imply that a system exhibits characteristic time scales of
different orders of magnitude, and its autocorrelations at large
times decay slowly. It may lead to considerable FX→Y (t) at
relatively large times t . The latter are still finite-time and,
in our terminology, relatively “short-term” as compared to
S characteristics that quantify changes in stationary distribu-
tions manifest over time intervals significantly exceeding all
characteristic time scales. However, consideration of systems
with multiple time scales is beyond the scope of this paper, as
discussed in Sec. V D.

V. RELATIONSHIPS BETWEEN SHORT-TERM AND
LONG-TERM EFFECTS

To relate short-term causal effects FX→Y (t) and FX→Y,max

to long-term causal effects SX→Y and Suni
X→Y , we consider

one-dimensional linear stochastic systems X and Y called
overdamped oscillators or relaxation systems:

ẋ = −αXx + cXY y + ξX(t),
(8)

ẏ = −αY y + cYXx + ξY (t),

where x and y are state variables, αX > 0 and αY > 0 are
damping coefficients, cXY and cYX are coupling coefficients,
and ξX(t) and ξY (t) are mutually independent zero mean Gaus-
sian white noises with covariance functions 〈ξX(t1)ξX(t2)〉 =

	XXδ(t1 − t2) and 〈ξY (t1)ξY (t2)〉 = 	YY δ(t1 − t2), where δ is
a Dirac delta, 	XX > 0, and 	YY > 0. The observables are
u = x and v = y. Individual relaxation times are τX = 1/αX

and τY = 1/αY , mean relaxation speed is ᾱ = (αX + αY )/2,
and mean relaxation time is τ̄ = 1/ᾱ.

An advantage of using the system (8) as the basis to solve
the posed problem is that it makes possible an in-depth and
complete rigorous analysis with vivid simple results. At the
same time, its consequences are of more general value and are
potentially useful for a broader range of systems, as discussed
in Sec. V D. Below, we first give the necessary formulas
and notations (Sec. V A) and then consider unidirectional
coupling X → Y (Sec. V B) and a more complicated case of
bidirectional coupling (Sec. V C).

A. General formulas and auxiliary notations

To determine the short-term effect FX→Y (t), we find the
conditional expectation and variance of y = v in Eq. (3) by
solving the linear equations (see, e.g., Ref. [28])

ṀX = −αXMX + cXY MY ,
(9)

ṀY = −αY MY + cYXMY ,

and

ĊXX = −2αXCXX + 2cXY CXY + 	XX,

ĊXY = −(αX + αY )CXY + cYXCXX + cXY CYY , (10)

ĊYY = −2αY CYY + 2cYXCXY + 	YY ,

where MX(t) = E[x(t)|x0,y0], MY (t) = E[y(t)|x0,y0],
CXX(t) = var[x(t)|x0,y0], CYY (t) = var[y(t)|x0,y0], and
CXY (t) = cov[x(t),y(t)|x0,y0] with initial conditions
MX(0) = x0, MY (0) = y0, and CXX(0) = CYY (0) =
CXY (0) = 0. General explicit solutions are possible but
cumbersome, thus expressions for FX→Y (t) and FX→Y are
presented below only for several typical cases. To evaluate
Granger causality, we avoid its statistical estimation below
and determine GX→Y and GY→X precisely via finding
time-lagged covariance matrices of the (X,Y ) process from
respective ordinary differential equations and computing
the ratio of determinants of appropriate partial covariance
matrices [40,51,52].

Stationary variances at given parameters and, hence, the
long-term effects are found from Eq. (10) after setting the
left-hand side equal to zero. The variances of x and y in
the uncoupled case cXY = cYX = 0 equal σ 2

x,0 = 	XX/(2αX)
and σ 2

y,0 = 	YY /(2αY ). The variance of y = v in the coupled
case is σ 2

y = σ 2
y,0 + αXcYX

(αX+αY )(αXαY −cXY cYX) (cYXσ 2
x,0 + cXY σ 2

y,0).
The long-term effect then reads

SX→Y = αXcYX

(
cYXσ 2

x,0 + cXY σ 2
y,0

)

(αX + αY )(αXαY − cXY cYX)σ 2
y,0

. (11)

Hence, the unidirectional effect is Suni
X→Y = c2

YX	XX

(αX+αY )αX	YY
.

By introducing nondimensional parameters mYX = αY /αX =
τX/τY (ratio of relaxation times) and βYX = c2

YX	XX

α2
X	YY

(normal-
ized coupling parameter), one gets

Suni
X→Y = βYX

1 + mYX

. (12)
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If βYX � 1, then Suni
X→Y � 1 and it can be shown that

cross-correlation between x and y is also much less than
unity. This case is close to what is typical in climate
data analysis where one often faces small, but statistically
significant cross-correlations (e.g., [12,13]). Below, we call
the coupling X → Y with βYX � 1 “weak,” and we treat this
case analytically. Then, we check the approximate validity of
the obtained relationships between SX→Y and F 2

X→Y (t) for
moderate βYX’s numerically.

B. Unidirectional coupling X → Y

Solving Eqs. (9) and (10) at cXY = 0 gives

F 2
X→Y (t) = c2

YXσ 2
x,0(1−ρ2

XY )(e−αY t−e−αXt )2

(αX−αY )2CYY (t) , where ρXY is zero-lag
cross-correlation between x(t) and y(t). In general,
ρ2

XY = mYXβYX

(1+mYX)2 and CYY (t) = σ 2
y,0[1 − e−2αY t + βYXf (t)],

where f (t) = 1−e−2αY t

1+mYX
+ 4mYXe−(αX+αY )t

(1+mYX)(1−mYX)2 − 4mYXe−2αY t

(1+mYX)(1−mYX)2 +
mYX(e−2αY t−e−2αXt )

(1−mYX)2 . It can be shown that f (t) is at most
of the order of unity. Hence, if βYX � 1, one can take
1 − ρ2

XY ≈ 1 and CYY (t) ≈ σ 2
y,0(1 − e−2αY t ) yielding

F 2
X→Y (t) ≈ βYXmYX(e−αY t−e−αXt )2

(1−mYX)2(1−e−2αY t ) . For a particular case of

mYX = 1, one finds F 2
X→Y (t) ≈ βYXα2

Xt2e−2αXt

1−e−2αXt by taking the
respective limit αX → αY .

Recalling Eq. (12), at cXY = 0 one has SX→Y = Suni
X→Y =

βYX/(1 + mYX). Hence, both SX→Y and F 2
X→Y (t) are propor-

tional to βYX revealing a simple relation

SX→Y = Suni
X→Y = kYX,tF

2
X→Y (t), (13)

where the proportionality coefficient

kYX,t = (1 − mYX)2(1 − e−2mYXαXt )

mYX(1 + mYX)(e−mYXαXt − e−αXt )2
(14)

depends on the relaxation times of the systems and does
not depend on the coupling parameter βYX for the case of
weak couplings considered. For the short-term effect over
an interval �t � min(τX,τY ), it holds true that F 2

X→Y (�t) ≈
βYXαX�t/2 and, hence,

SX→Y = Suni
X→Y ≈ (τ̄ /�t)F 2

X→Y (�t), (15)

i.e., kYX,�t ≈ τ̄ /�t 	 1. One-step-ahead PI G′
X→Y for such a

small sampling interval �t is typically close to F 2
X→Y (�t) as

confirmed by the numerical examples below. Then, knowing
the mean relaxation time τ̄ , one can estimate the long-term
effect SX→Y through multiplication of G′

X→Y by the respective
sufficiently large number kYX,�t . For example, for many
climatic time series, that multiplier should often be of the
order of 10, and typical small values of the one-step-ahead
PI for monthly data (e.g., 1–2%) [12,13] may imply rather
considerable long-term contributions of the coupling to the
observed dynamics (e.g., 10–20% in terms of variance). This
is an important conclusion that helps to avoid underestimation
of small numerical values of PIs in practice.

To consider lower sampling frequencies, we denote with
a prime the nondimensional time t ′ = t/min(τX,τY ) and note
that F 2

X→Y (t) = SX→Y /kYX,t . The coefficient 1/kYX,t depends
on t ′ and mYX [Fig. 1(a)] and its maximal value corresponds
to the maximal short-term effect FX→Y,max. At mYX � 1 (the
driving system X is much faster than Y ), one gets from

FIG. 1. Relations between short-term and long-term causal ef-
fects for the system (8) at cXY = 0 and 	XX = 2αX and 	YY =
2αY at weak couplings βYX � 1: (a) the ratio F 2

X→Y (t)/SX→Y vs
t ′ = t/min(τX,τY ); (b) the coefficient KYX = SX→Y /F 2

X→Y,max (the
thick solid line) and the normalized time t ′

X→Y,max of the maximal
short-term effect (the dashed line) together with its approximations
t ′
X→Y,max = 1.26 for smaller mYX and t ′

X→Y,max = ln mYX for larger
mYX (the thin solid lines) vs the ratio of relaxation times mYX .

(14) that the maximum effect time is t ′X→Y,max ≈ 1.4, i.e.,
tX→Y,max ≈ 1.4τX, which is a bit greater than the smallest
relaxation time [Fig. 1(b)]. At mYX 	 1 (the driving system X

is much slower), one gets t ′X→Y,max ≈ ln mYX, i.e., tX→Y,max ≈
τY ln mYX is greater than the smallest relaxation time only by
the factor of ln mYX. In general, one gets

SX→Y = Suni
X→Y = KYXF 2

X→Y,max, (16)

where the coefficient KYX = mint [kYX,t ] depends only on
mYX. In Fig. 1(b), one can see that the value of KYX varies from
1 (for mYX 	 1) to approximately 5 (for mYX � 1). Hence,
even for sufficiently sparse samplings, the long-term effect
is at least several times as large as the normalized PI value,
except for a specific situation when the driving system X is
much slower than the driven one and the prediction interval
�t is close to τY ln mYX.

Let us check the validity of the obtained relationships in
a wide range of βYX for three characteristic values of mYX:
mYX = 1, mYX = 0.1, and mYX = 10. In the first case, the
quantity FX→Y (t) reaches its maximum at t ′X→Y,max ≈ 0.82
and one gets SX→Y ≈ 3.1F 2

X→Y,max [Fig. 1(b)]. This relation-
ship is valid for moderately large couplings, as illustrated in
Fig. 2(a): the relative discrepancy between the values SX→Y

(the thick solid line) and 3.1F 2
X→Y (the thin solid line) is less

than 20% up to SX→Y ≈ 0.2. The dashed lines in Fig. 2(a)
show F 2

X→Y (t) at fixed t’s multiplied by the corresponding
coefficients (14). Note that the time t ′ = 0.1 may be regarded
as small compared to unity, i.e., one may apply (15) and
use kYX,t = 10. Indeed, t ′ = 0.1 corresponds to the value of
kYX,t = 11.1 according to Eq. (14), which is close to the above
rough approximation kYX,t = 10. At t ′ = 0.2 an accurate value
of kYX,t = 6.25 obtained from Eq. (14) differs stronger (by
25%) from the respective approximation kYX,t = 5. In the
case of t ′ = 1/3, which is still smaller than the maximum
time t ′X→Y,max = 0.82, one has kYX,t = 4.25, which differs
almost by 50% from its rough approximation of kYX,t = 3.
Thus, in practice the sampling interval �t equal to 1/5 of the
characteristic time scale should be considered as a boundary
case between the high sampling frequency situation where
Eq. (15) works well, and the lower sampling frequency case
where only the more general relationships (13) and (14) are
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FIG. 2. Long-term and short-term causal effects for the system (8) at cXY = 0 and 	XX = 2αX and 	YY = 2αY vs the normalized coupling
parameter, which is varied due to varying cYX . The left column compares SX→Y to the scaled fixed-time and maximal short-term effects
(indicated by the respective lines described in the legends). The right one compares Granger causality at various sampling intervals and the
respective fixed-time causal effects: αX = αY = 1 (a) and (b); αX = 10, αY = 1 (c) and (d); αX = 1, αY = 10 (e) and (f).

to be used. As for the correspondence between F 2
X→Y and

G′
X→Y , it is quite precise and the respective plots in Fig. 2(b)

just coincide for any coupling strength and sampling interval
considered.

If a fast system drives a slow one (αX 	 αY , mYX � 1), one
gets SX→Y ≈ βYX and F 2

X→Y (t) ≈ βYXmYX(e−αY t−e−αXt )2

1−e−2αY t . One
may roughly take that tX→Y,max ≈ τX if the two relaxation
times differ only by one or two orders of magnitude.
Then, one gets F 2

X→Y,max ≈ βYX(1 − 1/e)2/2 ≈ 0.2βYX so
that SX→Y ≈ 5F 2

X→Y,max, i.e., KYX ≈ 5. The precise solution
for weak couplings [Fig. 1(b)] gives the asymptotic values of
tX→Y,max = 1.26τX and KYX = 4.9. Thus, at mYX = 0.1 one
has tX→Y,max = 1.26τX and KYX = 4.6, which is illustrated in
Figs. 2(c) and 2(d), where τX = 0.1, τY = 1, and τ̄ = 0.18.
One observes the correspondence between SX→Y and the
scaled short-term effects in Fig. 2(c) similar to (and even a
bit better than) that in Fig. 2(a). The correspondence between
PIs and the short-term effects in Fig. 2(d) is a bit worse than
that in Fig. 2(b), but also quite precise: the relative difference
is less than 5% in the entire range of the coupling parameter.

In the opposite case of αY 	 αX, one gets SX→Y ≈
βYX/mYX and F 2

X→Y,max ≈ βYX/mYX at t ′X→Y,max ≈ ln mYX,
so that KYX ≈ 1. At moderately large mYX = 10 [Figs. 2(e)

and 2(f)], one gets SX→Y ≈ 0.09βYX and F 2
X→Y,max ≈

0.06βYX at tX→Y,max = 2.3τY , so that KYX ≈ 1.5. Figure 2(e)
shows the correspondence between SX→Y and the scaled
short-term effects similar to (a bit worse than) that in Fig. 2(a).
The correspondence between PIs and the short-term effects in
Fig. 2(f) is a bit worse than that in Fig. 2(b) but also quite
good: the relative difference is less than 10% up to the values
corresponding to SX→Y ≈ 0.2.

To summarize, knowing PIs and relaxation times and using
the above relationships (13)–(16) along with Fig. 1(b), one can
compute the long-term effect SX→Y with a relative error less
than 20% if the resulting value of SX→Y is less than ≈0.2.
If the resulting value exceeds 0.2, it may be overestimated
so that one should more carefully conclude that SX→Y ≈ 0.2
or greater. The simplified formula (15) is applicable if the
sampling interval is ≈5 times less than the mean relaxation
time or smaller.

C. Bidirectional coupling

The processes x and y in Eqs. (8) are stationary if and only
if αXαY − cXY cYX > 0. Hence, the denominator in Eq. (11) is
positive while SX→Y is positive or negative depending on the
sign of the expression c2

YXσ 2
x,0 + cXY cYXσ 2

y,0. This situation
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FIG. 3. Short-term and long-term causal effects for the system (8) with αX = 2.5, 	XX = 2αX , αY = 1, 	YY = 2αY vs signed βYX at
cXY = 0.9 (a) and vs signed βXY at cYX = 0.6 (b).

differs from the unidirectional case in which SX→Y is always
positive. As for the unidirectional effect Suni

X→Y , it is the same
(12) in both cases by its very definition. Symmetrically, the
opposite effect reads Suni

Y→X = βXY

1+mXY
, where mXY = αX

αY
and

βXY = c2
XY 	YY

α2
Y 	XX

.
Let us introduce an additional nondimensional param-

eter r = cXY cYX

αXαY
, which characterizes the “total interaction

intensity” relative to the “total relaxation intensity.” It is
easy to see that r2 = βYXβXY . The value of r is less than
unity for stationary processes, and the sign of r is given
by sgn(r) = sgn(cXY cYX). By transforming Eq. (11), one
gets SX→Y = Suni

X→Y +�SX→Y

1−r
, where �SX→Y = r

1+mYX
can be

interpreted as an additive correction to the unidirectional effect
X → Y due to the presence of nonzero coupling Y → X.
Hence, a nonzero coupling Y → X for negative r (i.e., for
cXY and cYX of different signs) gives SX→Y < Suni

X→Y both due
to the negative addendum �SX→Y and to the denominator
(1 − r) > 1. Moreover, SX→Y becomes even negative (the
variance of y decreases in the coupled case as compared to
the free variance) if cYXcXY < 0 and |cYX|σ 2

x,0 < |cXY |σ 2
y,0,

i.e., if the coupling term in the opposite direction Y → X is
large enough in absolute value. If the coupling coefficients
are of the same sign, one observes a greater long-term
effect SX→Y > Suni

X→Y both due to positive �SX→Y and to the
denominator (1 − r) < 1. Such a complicated dependence of
SX→Y on the coupling parameters is shown in Fig. 3, where
one can see that the simple proportionality between SX→Y

and short-term effects is no longer valid in the entire range of
coupling parameter values.

The linear relationships (13), (15), and (16) are still
approximately valid for the unidirectional effects Suni

X→Y and
Suni

Y→X. Indeed, consider the system (8) with bidirectional
coupling and damping terms αX = 2.5 and αY = 1 as an
example (Fig. 3). These values are selected so as to mimic
the correlation properties of the climatic processes analyzed
in Sec. VI, though the results are qualitatively similar for
any relaxation times. Since τ̄ ≈ 0.57, for �t = 0.1 (i.e.,
�t ′ = 0.25) rough estimates Suni

X→Y ≈ 5.7G′
X→Y and Suni

Y→X ≈
5.7G′

Y→X follow from Eq. (15). Determining kX→Y,�t and
kY→X,�t more precisely (14), one gets Suni

X→Y ≈ 7.4G′
X→Y

and Suni
Y→X ≈ 6.4G′

X→Y . These relationships are valid to good
accuracy at least up to the values of Suni ≈ 0.2 again (Fig. 3).
Hence, the unidirectional long-term effects can be computed
via the linear formula (13) even from PIs estimated for
bidirectionally coupled systems. As for the full long-term
effects, one can relate SX→Y to PIs based on the above

relationships between SX→Y and Suni
X→Y , but the resulting

expressions are more cumbersome and depend on the signs
of the coupling coefficients. They are not reported here.

D. Discussion of the theoretical results

What is most valuable is that we have shown a principal
opportunity to relate such different manifestations of couplings
as the above short-term and long-term effects. This is done
for a concrete class of systems, even though they are widely
encountered in theory and practice. A further analysis for
broader classes of systems with richer sets of properties (rather
than just relaxation times) is relevant and may reveal more
complicated dependencies between the two types of coupling
characteristics. However, such an analysis will be inevitably
more difficult, which makes the simple, vivid, and rigorous re-
sults obtained for the systems (8) quite a useful reference point
for understanding more complex relationships and their origin.

As for the practical value, the obtained simple expressions
provide a concrete way of estimating the long-term effect on
the basis of PI estimate through multiplication of G′

X→Y by
the appropriate coefficients kYX,�t or KYX. Being strictly ap-
plicable to the linear overdamped oscillators (8), the obtained
relationships can be reasonably accurate for a broad range of
real-world processes, which is motivated as follows. Even in
analysis of complex nonlinear processes, it may happen that
for spatial and temporal scales of interest, it is sufficient to
study a linearized version of the full nonlinear equations with
stochastic terms, the so-called “stochastic forcing models” of
Hasselmann [53], who discussed this reason for “reddening”
of the power spectra of many climate processes. As a practical
consequence of such observations, one often tests against the
“red-noise model” (which is exactly an overdamped oscillator
considered above) to assess the statistical significance of data
analysis results, e.g., in cross-wavelet analysis [54] and many
other studies. Furthermore, climate indices typically represent
states of a broad region in the ocean or the atmosphere
(implying spatial averaging) in terms of deviations from mean
climatology (resembling perturbation analysis). These are the
likely reasons why climate models of intermediate complexity
often show that nonlinearity is not clearly manifest in the
dynamics of spatiotemporal modes of variability [55]. As
argued in the cited works, nonlinearity determines the spatial
structure of such modes, while the temporal dynamics of
their amplitudes (climate indices) may well be represented
by stochastic linear equations. Thus, the linearity of the
considered systems (8) may not be such a serious obstacle
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for the applicability of the derived relationships to many
natural processes. A more limiting factor is its low dimen-
sionality, which means that each of the systems has only
one characteristic time scale, namely the decay time of the
autocorrelation function (ACF). Let us discuss using two
mathematical examples how (i) higher dimensionality and
(ii) nonlinearity of the systems under study limit the appli-
cability of the derived relationships.

Higher-dimensional linear systems X and Y may exhibit
other characteristic times, e.g., basic oscillation periods, along
with the relaxation times. In particular, consider unidirection-
ally coupled dissipative linear oscillators X and Y represented
by the equations ẋ1 = −αx1 + ωx2 + ξx,1(t), ẋ2 = −αx2 −
ωx1 + ξx,2(t), ẏ1 = −αy1 + ωy2 + cYXx1 + ξy,1(t), and ẏ2 =
−αy2 − ωy1 + ξy,2(t) with independent white noise of the
same intensity and observables u = x1 and v = y1. In an
uncoupled case, the observables exhibit ACFs given by
exp(−αt) cos(ωt). If (ω/α)2 � 1, these oscillators are close
to the overdamped oscillators, and it can be shown that Eqs.
(13) and (14) are valid with a small relative error proportional
to (ω/α)2. This error may be quite large if ω/α 	 1 when
ACFs exhibit slowly decaying oscillations, which is easily
recognized in practice. However, one can check numerically
that Eqs. (13) and (14) are still reasonably accurate for
intermediate cases in which ACFs just decay fast enough,
i.e., relaxation dominates over oscillations and no more than a
single oscillation is clearly seen in the ACF estimate (strongly
dissipative oscillators). Then, one can fit an exponential
function to the empirical ACF over several smallest time lags
and use the resulting exponent as an estimate of the relaxation
rate in the model (8). Such a case study is performed in
Sec. VI with an AR model of climate processes. As for the
parametrization of coupling used in Eq. (8), it reflects many
real-world situations, especially when the variables x and y are
of a different physical nature and represent small deviations
from a basic regime; see, e.g., a description of the mutual
effects of cloudiness and surface air temperature in Sec. II.3 of
Ref. [30]. In more special cases, the coupling term can take the
form cYX[x(t) − y(t)] or another one that can give somewhat
different values of the coefficient relating short-term and long-
term effects. Whenever available, a priori information about
the form of coupling can be used to modify the relationships
(13) and (14) similarly to the derivation of Sec. V B. However,
the derived formulas based on the most parsimonious coupling
function (8) seem to be most widely applicable.

As an example of nonlinear systems, consider stochastic
quadratic maps xn+1 = rxn(1 − xn) + ξx,n, yn+1 = ryn(1 −
yn) + cYXxn + ξy,n, where r is the “nonlinearity” parameter
and ξ ’s are independent white noises with the variance σ 2

ξ . At
small r � 1 and σξ � 1, this is a discrete-time version of the
overdamped oscillators (8): variance of x equals σ 2

ξ /(1 − r2)
and would be zero in the absence of noise; a nonzero variance
of y is also completely determined by the presence of the term
cYXxn + ξy,n. By increasing r , one observes period-doubling
bifurcations in both systems leading finally to chaotic regimes.
Then, the amplitude of the y variations strongly exceeds
σ 2

ξ /(1 − r2), being determined by the intrinsic nonlinear
dynamics of y rather than by the small perturbation term
cYXxn + ξy,n. The latter determines only a small part of the y

variance [32], and the long-term effect SX→Y is therefore small

while the short-term effects may be quite large since they are
measured by the ratio of cYXxn to ξy,n. Then, the relationships
(13) and (14) may no longer be valid. Such situations can
be recognized in practice by strong signs of nonlinearity, in
particular by much better short-term predictions of nonlinear
empirical AR models as compared to linear AR models. One
needs then a priori information about underlying mechanisms
and a nonlinear model fitted to the data (e.g., via Bayesian
inference [56] or other techniques [6]) to quantify long-term
effects, which is a subject of future research. However, if the
nonlinearity is sufficiently weak, then the relationships (13)
and (14) are applicable, as can be checked numerically, e.g.,
for the case of reasonably small r and σξ in the above example.
Such cases are to be diagnosed in practice by weak signs of
nonlinearity, e.g., when predictions of nonlinear AR models
are not essentially superior over linear ones. The latter is the
case for many time series characterizing large-scale climate
processes. In particular, the climatic example below seems to
represent strongly damped oscillations without strong signs of
nonlinearity, which is evidence of the applicability of the above
relationships for long-term effect estimation. Independently of
this argument, the empirical bivariate AR model (1) of those
climatic processes appears higher-dimensional than the system
(8), so by analyzing long-term effects in that model, we provide
a case study of the validity of the relationships (13) and (14)
beyond overdamped oscillators.

VI. APPLICATION TO CLIMATIC TIME SERIES

Major climatic processes of global importance are related
to the natural quasicyclic phenomena of El − Niño–Southern
Oscillation (ENSO) and Atlantic Multidecadal Oscillation
(AMO). In particular, significant interannual and interdecadal
variations in global surface temperature are related to these
modes of climate variability [57–59]. ENSO processes are
characterized by strong variations of surface temperature in
the equatorial zone of the Pacific Ocean with typical intervals
of 2–8 years and a spectral maximum at 4–5 years. El − Niño
phenomena display also interdecadal variations and longer-
term changes [60,61]. The AMO index represents variations in
the mean North Atlantic (NA) sea surface temperature (SST).
It got its name due to the presence of approximately 60-year
periodicity [62,63]. Such a slow variability is regarded as a
manifestation of changes in deep ocean circulation (Atlantic
meridional overturning circulation), and it is currently con-
sidered as a possible cause of the recent slowdown of global
warming [59,64]. At the same time, decadal and intradecadal
time scales of variability are also present in the NA SST
variations represented by the AMO index [65]. For a better
understanding of global climate variations, it is important to
reveal how its possible drivers interact with each other [66],
and, in particular, to characterize the mutual influence of ENSO
and NA SST variations at different time scales. For the latter,
Granger causality along with an estimation of the long-term
effect should provide useful hints.

A. Data and their ACFs

We estimate PIs and the long-term causal effects between
North Atlantic SST variations (the system X′) and equatorial
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FIG. 4. Time series of the climatic indices under study. The right panels are magnified segments (the most recent 30 years) of the
corresponding left panels. AMO index (a) and (b); “fast NA” index, which is a high-pass filtered AMO signal (c) and (d); ENSO index Nino-3.4
(e) and (f).

Pacific SST variations (the system Y ) from the time series of
monthly indices of AMO and ENSO over the period 1870–
2013, covering 144 full years. The AMO index is the NA SST
over 0–70oN, which is denoted u′ and shown in Figs. 4(a) and
4(b). As the ENSO index, we take the SST in the Nino-3.4
region 5oS–5oN, 150oW–90oW, which is denoted v and shown
in Figs. 4(e) and 4(f). Of separate interest is an analysis of
a faster component in the NA SST variations (the system X)
characterizing interannual variability with time scales close
to the basic time scales of the ENSO dynamics. For that, we
high-pass filter the AMO index u′(t) by subtracting its 5-year
running mean, and we call the resulting quantity u(t) the “fast
NA” index [Figs. 4(c) and 4(d)]. By considering a 30-year
segment of the whole period [Figs. 4(b) and 4(d)], one can
see that the u signal captures the basic features of the original
u′ signal, except for the slow (60-year) variability, which is
clearly seen in Fig. 4(a) and absent in Fig. 4(c). Moreover,
the analysis of couplings between X and Y should provide
conclusions with a better statistical justification than that for
the pair X′ and Y because the available period 1870–2013
covers many characteristic time scales of u and v, which is not
the case for u′.

Empirical ACFs for all signals are shown in Figs. 5(a) and
5(b): the ACF for the u signal [Fig. 5(a), circles] decays over
time lags of 5–6 months exponentially at a rate of 0.25 month−1

[Fig. 5(a), thin solid line], which corresponds to the relaxation
time τX = 4 months. Its further behavior is better described
by a damped cosine function [Fig. 5(a), dashed line] whose
estimate is less reliable due to smaller ACF values at larger
time lags, and which is nevertheless inappropriate for small
lags. ACF for the original AMO index u′ [Fig. 5(a), crosses]
is overall slowly decaying, so its estimate is not reliable. Still,

fitting an exponential function up to time lags of 3–4 months
gives a decay rate of 0.09 month−1 and τX′ = 11 months. The
ACF for the ENSO index up to time lags of four months is well
described by an exponent 0.1 month−1 [Fig. 5(b), thin solid
line] corresponding to the relaxation time τY = 10 months,
while a damped cosine function is a better description only for
greater time lags.

B. Estimation techniques

Granger causality estimation is performed according to the
well-established procedure described in detail in Ref. [13].
Namely, to estimate GX→Y we fit univariate and bivariate
AR models (1) to the time series {un,vn} using the ordinary
least-squares technique. An optimal model order dY is selected
by minimizing Schwarz’ information criterion [67]. Then, we
find PIs for different dYX and assess the statistical significance
(p-level) of the PI positivity via Fisher’s F -test [48]. Final
dYX is selected by minimizing the Bonferroni corrected (i.e.,
accounting for multiple testing with various dYX) statistical
significance level pmin = mindYX�1{dYXp}. Everything is sim-
ilar for the opposite direction GY→X. To validate all the AR
models used, we check the δ-correlatedness of the residual
errors by calculating their ACFs [47]. The similarity of their
histograms to normal distributions is also checked, but it is not
as important.

To estimate the long-term effect from a time series {un,vn},
we use two procedures. The first one is a direct estimation
(Sec. IV) where the bivariate AR model (1) obtained from
Granger causality estimation is used as a proxy for the
processes under study. Namely, we assume that “switching
the coupling X → Y off” corresponds to zeroing all the
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FIG. 5. ACF and Granger causality estimates for the climatic time series: ACF functions and their fits (a) and (b); PIs in a 30-year moving
window [T − 30,T ] vs T (c) and (d). Pointwise significance levels for each window: the dashed lines show the level of 0.01, which corresponds
to the final (Bonferroni corrected) significance level of 0.05, and the level of 0.1, which corresponds to “something close to a significant result”
(e) and (f).

coefficients bv,k in Eqs. (1) with all other parameters un-
changed. Thereby, we find the variance of v in the model at zero
and nonzero couplings, and we compute Suni

X→Y and SX→Y . Let
us call the latter “direct estimates.” Since the validity of such
extrapolation is not always assured, independent estimates are
valuable and we use the second procedure based on the PI
estimates, the relationships (13) and (14), and ACF decay
times estimated above. Let us call them “PI-based estimates.”
In this case, we extrapolate the relationships (13) and (14)
derived for overdamped oscillators to the processes under
study, which can only be approximated to a certain accuracy
in such a form. However, due to the simplicity of (13) and
(14), one may expect them to be more robust (Sec. V D)
than the AR model extrapolation. For the fast NA and ENSO
indices, we take the relaxation times τX = 4 and τY = 10
months and the corresponding coefficients kXY,�t and kYX,�t

from Eq. (14). For the sampling interval �t = 1 month, the
latter are equal to kYX,�t = 7.4 and kXY,�t = 6.4, which are
close to the rough guess τ̄ /�t = 5.7 from Eq. (15). For the
original AMO and ENSO indices, we take τX′ = 11 months
and kYX,�t = kXY,�t = 11, which are close to τ̄ /�t ≈ 10.5.

As for the full long-term effects SX→Y and SY→X, we
present only their direct estimates based on the extrapolation
of the bivariate AR model (1) since their relationships with
PIs in the case of bidirectionally coupled processes seem to be
less robust due to their greater complexity, and knowledge is
required of the signs of the coupling coefficients (Sec. IV).

C. Estimation results for the entire time interval 1870–2013

Optimal individual AR models over the entire period
1870–2013 are achieved for the fast NA index at dX = 1 giving
the individual prediction error σ 2

u,ind/var[u] = 0.36 and for
the ENSO index at dY = 6 giving σ 2

v,ind/var[v] = 0.14. The
latter model obtained from a shorter time series has already
been analyzed in Ref. [13], where it has been found that
the corresponding residual errors are δ-correlated and their
distribution is overall not strongly different from Gaussian.
In particular, it does not exhibit any signs of heavy tails or
multimodality. Nonlinear models have appeared inferior to
the linear AR model according to Schwarz’ criterion. Those
conclusions are confirmed here. Similar validation results are
obtained for the AR model obtained for the fast NA index and
for the bivariate AR models. Due to the δ-correlatedness of the
residual errors, these AR models can adequately reproduce
variances and ACFs of the processes under study. Thus,
the models are validated according to the standard tests. In
assessing “ENSO → fast NA” coupling, an optimal joint
model is achieved at dXY = 2 with GY→X = 0.033 significant
at pmin < 10−11, i.e., the influence is detected confidently.
The opposite “fast NA → ENSO” coupling appears weaker
but is still valid: An optimal dYX = 10 gives GX→Y = 0.015
significant at pmin < 0.002.

Direct estimates of the unidirectional long-term ef-
fects appear equal to Suni

X→Y = 0.12 and Suni
Y→X = 0.17, i.e.,
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“ENSO → fast NA” coupling is stronger than the opposite
one with respect to the long-term effects as well. According
to the PI-based estimation, one gets Suni

X→Y = 0.11 (very
good agreement with the direct estimates) and Suni

Y→X = 0.22
(reasonably good agreement). Concerning the full long-term
effects, their direct estimates read SX→Y = 0.13 and SY→X =
0.17, which are very close to the unidirectional effects. We
note that for PIs of the order of 1.5% and 3.3% we get the
long-term effects of the order of 11–13% and 17–22%. Hence,
the observed mutual influences of the two processes are quite
considerable with respect to their stationary variances, being
of the order of 10%, contrary to the order of 1% in terms of
PIs. This quantitative information is gained due to the analysis
of the long-term causal effects, and it would not be accessible
with the Granger causality analysis alone. In addition, it is
interesting that ENSO does not appear to be just a driver,
as inferred in many studies [12,58], but it is considerably
influenced by the NA process in turn.

For the AMO index, one gets dX′ = 1 and σ 2
u′,ind/var[u′] =

0.17. PI in the “ENSO → AMO” direction is similar to the
above case at dX′Y = 2 with GY→X′ = 0.015 significant at
pmin < 10−6. For the opposite direction, one gets dYX′ = 1
with GX′→Y = 0.0011 significant only at pmin < 0.09, i.e.,
one hardly detects the “AMO → ENSO” influence. It may be
that the slow AMO variability masks the interaction between
interannual components of the NA and ENSO processes.
Direct estimates of the long-term effects are Suni

X′→Y = 0.01 and
Suni

Y→X′ = 0.13, while the PI-based estimates Suni
X′→Y = 0.012

and Suni
Y→X′ = 0.17. This is again quite good agreement. The

full long-term effects SX′→Y = 0.0014 and SY→X′ = 0.09
appear smaller than the unidirectional effects, contrary to the
“fast NA-ENSO” analysis.

Apart from a discussion of the adequacy of the AR
models or the overdamped oscillators model for the processes
under study, we note that a good agreement between the
two long-term effect estimation techniques evidences that
the relationships (13) and (14) are quite accurate for the
bivariate AR processes (1), which are characterized by higher-
dimensional state spaces than the overdamped oscillators (8).
Hence, we have demonstrated an example confirming the
good accuracy of the relationships (13) and (14) for strongly
dissipative but not overdamped oscillators, whose ACFs just
decay sufficiently fast.

D. Moving window analysis

To reveal any signs of temporal variations of coupling
“strength,” we have performed a moving window analysis in
which all the estimates are computed separately for different
time windows. The window length of 30 years appears to
provide an optimal tradeoff between statistical reliability
and temporal resolution of the results. This window length
coincides with the usual length of a reference period in climate
research [57]. Granger causality estimates for the pair “fast
NA-ENSO” indices are shown in Figs. 5(c)–5(f) (solid lines)
versus the end point T of the window. Optimal dX varies
between the windows from 1 to 2, dY from 1 to 5, dXY from
1 to 3, and dYX from 1 to 6. PI estimates and pointwise (i.e.,
separate for each window) significance levels show that the
“ENSO → fast NA” PI is almost always statistically significant

and on average greater than the opposite one. In particular,
the “ENSO → fast NA” PI was large in the beginning of
the period under study (1870–1910) and around the windows
with T = 1980–1990 (i.e., over the period 1950–1990). It has
exhibited a decreasing tendency during the past decade in terms
of T . The “fast NA → ENSO” PI was maximal and significant
around T = 1930–1940 (i.e., over the period 1900–1940). It
has become significant again during the past decade in terms
of T , and it has exhibited an increasing tendency. Moreover,
the “fast NA → ENSO” PI even exceeds the opposite PI
for the last windows corresponding to T ≈ 2005–2010 (i.e.,
the period 1975–2010). The middle of the 20th century is an
interval of small couplings in both directions. Thus, we observe
signs of a temporally varying coupling character similarly to
ENSO–Indian monsoon interaction [13].

The PI-based and direct estimates of the unidirectional
long-term effects for the “fast NA-ENSO” pair are shown
in Figs. 6(a) and 6(b) (thin solid lines and dashed lines).
Despite the fact that moving-window-based estimates are
strongly influenced by statistical errors due to smaller data
amounts, the two estimates appear to agree reasonably well,
especially for the last windows T = 1990–2010, where the
PIs are highly significant and the relaxation times of both
processes are close to their estimates for the entire period
1870–2013. The maximal discrepancy between the two long-
term effect estimates for the “ENSO → fast NA” direction is
observed for T = 1935–1965, but this is exactly the period
where the respective PIs are on the border of significance.
Otherwise, the relative discrepancy between the two estimates
is quite moderate, which further confirms the robustness of
the obtained relationships (13) and (14). The long-term effect
estimates reveal basically the same evolution of “coupling
strength” as PIs, but they complement the observed values
of PIs (no greater than 5–6%) with long-term coupling
contributions to variance, which may reach 30–40%. The latter
should be more cautiously bounded by 20% as discussed in
Sec. V B, but it should still remain quite considerable. Hence,
the couplings under study may well be quite important to
sustain the basic characteristics of the observed dynamical
regime rather than being secondary circumstances.

The full long-term effects [Figs. 6(a) and 6(b), thick
solid lines] are typically less than the unidirectional ones
due to negative coupling coefficients in the direction “fast
NA → ENSO” and positive coupling coefficients in the
opposite direction. Another interesting observation is that
the “fast NA → ENSO” effect SX→Y was often negative in
the beginning of the period under study, but over the last
windows with T = 2000–2010 it has become positive due
to a combination of an increase of the unidirectional “fast
NA → ENSO” effect Suni

X→Y and a decrease of the opposite
effect Suni

Y→X.
For the pair of original AMO-ENSO, dX′ varies from 1

to 2, dX′Y from 1 to 3, and dYX′ from 1 to 2. The temporal
profiles of the PIs between AMO and ENSO are similar to
those for the fast NA index [dashed lines in Figs. 5(c)–5(f)], but
the “AMO-ENSO” mutual couplings are considerably weaker.
Long-term effect estimates for the “AMO-ENSO” pair are
also similar to those for the “fast NA-ENSO” pair [Figs. 6(c)
and 6(d)], but all coupling estimates for “AMO-ENSO” are
smaller and less significant. Other high-pass filtered versions
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FIG. 6. The unidirectional long-term causal effects estimated from the AR model (thin solid lines) and from PIs (dashed lines) and full
long-term effects estimated from the AR model (thick solid lines) for the pairs “fast NA-ENSO” (a) and (b) and “AMO-ENSO” (c) and (d).

of the AMO index (not reported here for brevity) have also
been considered, e.g., subtraction of the 20-year running mean
(instead of the 5-year mean) gives coupling estimates lying
“in between” the respective values for the AMO and fast NA
indices, closer to the latter case.

It is likely that the above nonzero coupling estimates
for the “AMO-ENSO” pair are determined mainly by the
interaction between ENSO and the faster component of NA
SST variations. Still, couplings between ENSO and the slow
60-year NA mode might also be captured to a certain extent
by the AR models used. To address the latter question, a
systematic study of the coupling characteristics within various
frequency bands is required. To provide a physical justification
and understanding of the coupling character suggested by
the results of the above analysis, further applications of the
coupling estimation techniques to numerical atmospheric and
oceanic circulation models seem relevant. This is beyond the
scope of this paper, and we stress mainly the highly significant
signs of mutual influences between intradecadal ENSO and
NA SST variations presented in this section.

VII. CONCLUSIONS

As discussed in Ref. [28], there are many quantitative
characteristics of causal couplings, and they can be classified
into different families irreducible to each other in general.
Some of those characteristics can be reliably estimated from
data with existing techniques, but their numerical values lack
a vivid physical interpretation (such as Granger causality).
Others are clearly meaningful and of importance, but they are
difficult to estimate in practice (such as the effects of couplings
on stationary statistics). To make the entire field more ordered
and the various coupling characteristics easier to interpret and

to assess reliably, it is desirable to discover the relationships
between them. This work contributes to solving this problem.

We have shown the existence of simple relationships
between the short-term (on near future) and long-term (on
stationary statistics) effects of causal couplings for a class of
stochastic systems (linear overdamped oscillators). Namely,
we have justified the fact that the normalized PI is an
approximation of the short-term causal effect F 2

X→Y (t), which
shows how strongly perturbations of a current state of X

affect near future states of Y . As a representative of long-term
causal effects, we have taken the quantity Suni

X→Y , which
shows a relative change in the variance of Y that occurs
when a unidirectional coupling from X is switched on. Both
Suni

X→Y and F 2
X→Y (t) may be measured in percent. Then, we

have rigourously derived that for sufficiently weak couplings,
these quantities are related as Suni

X→Y = kYX,tF
2
X→Y (t), where

the proportionality coefficient is found as a function of
the systems’ relaxation times. The relationships are shown
numerically to hold for moderately strong couplings up to
Suni

X→Y ≈ 20%. We have also argued that the relationships are
valid to good accuracy for higher-dimensional linear systems
if the ACFs of the observed signals decay exponentially, or,
at least, if any oscillations of ACFs decay quickly, i.e., for
strongly dissipative oscillators. In addition, the relationships
are expected to be applicable to weakly nonlinear systems for
which the nonlinear AR predictions are not essentially better
than the linear ones.

In practice, the obtained formulas can make the traditional
Granger causality characteristics (including those already
reported in the literature) more informative by transforming
the numerical values of PIs into long-term causal effects. Our
theoretical study shows that small PI values should typically
be increased several times to get the long-term effect (both in
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percent), i.e., small PIs often correspond to quite a considerable
long-term role of couplings. As an illustration, we have esti-
mated couplings between large-scale climatic processes that
reflect SST variations in equatorial Pacific and North Atlantic
regions over the period 1870–2013. We have considered the
AMO index, which reflects multidecadal variations in NA SST,
and we focused on its high-pass filtered version representing
interannual variations. Relying on the linear AR models (1)
and the overdamped oscillators model (8), we have revealed
evidence for the presence of a bidirectional coupling between
the two processes, considerable long-term causal effects, and
a stronger influence of “ENSO-to-NA” than “NA-to-ENSO”
according to both short-term and long-term characteristics.
For the entire period we have “ENSO → NA” PI about
3% while the long-term effect is Suni

Y→X ≈ 17–22%. For the
opposite direction, PI is about 1.5% and Suni

X→Y ≈ 11–13%.
Thus, the long-term effect estimation provides an alternative
interpretation of the obtained small values of PIs suggesting
that the detected couplings may be important in the long-term
dynamics rather than being a small secondary effect. Similar
results are obtained by the moving window analysis, which
also suggests that the “ENSO → NA” effect was strong in the
beginning of the period and near 1960–1990 and currently is

decreasing, while the “NA → ENSO” influence was strong
over the period of 1900–1940, then decreased, and currently is
increasing again. The obtained quantitative estimates seem
valuable for understanding the climate system behavior at
interannual to multidecadal time scales, and they deserve
further checks and studies with numerical climate models.

To deal with more general classes of systems, the rigorous
results obtained here for overdamped oscillators can serve
as a basis and reference point for deriving more general
relationships between the short-term and long-term causal
effects incorporating a richer set of dynamical characteristics.
Such further studies seem quite relevant, and the obtained
simple relationships may well retain their value even in those
cases at least as heuristic tools.
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