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Reconstruction of ensembles of coupled time-delay systems from time series
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We propose a method to recover from time series the parameters of coupled time-delay systems and the
architecture of couplings between them. The method is based on a reconstruction of model delay-differential
equations and estimation of statistical significance of couplings. It can be applied to networks composed of
nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method
on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay
systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators
with delayed feedback coupled by resistors.
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I. INTRODUCTION

Ensembles of coupled delay-differential equations are
widely used for modeling and description of processes in
various physical [1–3], chemical [4], and biological [5,6]
networks with a time-delayed feedback. In order to model
these networks from experimental time series it is important to
reconstruct the parameters of each system and the architecture
of connections between them. Both problems are nontrivial,
since even a simple single time-delay system can exhibit high-
dimensional chaotic dynamics, and a direct reconstruction
of such systems using conventional time-delay embedding
techniques often fails. Many of the more advanced methods
are based on the projection of an infinite-dimensional phase
space of time-delay systems onto low-dimensional subspaces
[7–11]. Different criteria are applied to evaluate the quality of
the reconstruction, for example, the minimal forecast error of
the constructed model [7–9], minimal value of information
entropy [10], or various measures of complexity of the
projected time series [11]. Some other different methods to
estimate parameters of time-delay systems were suggested in
the literature: regression analysis [12,13], statistical analysis
of time intervals between extrema in the time series [14],
nearest neighbor analysis [15], information-theory approaches
[16,17], multiple shooting approach [18], seeker optimization
algorithm [19], and adaptive synchronization [20,21]. A
separate group of methods for the recovery of time-delay
systems is based on the analysis of a system’s response to
external perturbations [22–25]. However, the majority of these
methods can be used only to reconstruct model equations for
a single time-delay system.

The reconstruction problem becomes even more difficult in
the presence of interactions between the time-delay systems
and requires development of alternative methods [26]. The
architecture and strengths of connections between the network
elements define their possible synchronous behavior [27,28].
The problem of detecting the presence, structure, and char-
acteristics of couplings within the multielement ensembles
from time series has attracted a lot of attention in recent
years. To solve this problem a variety of methods has been
proposed including Granger causality [29,30], phase dynamics
modeling [31–34], and adaptive feedback control [35–37]. But

in all these studies [29–37], either the ensemble elements were
without time-delayed feedback or the delays were assumed to
be known in advance.

The problem of simultaneous estimation of the network
connectivity and node parameters including the delay time for
networks of time-delay systems has been addressed recently
in Ref. [38]. However, this problem was solved in the
absence of noise under the assumption that node functions
are invertible and the initial conditions for unknown delays
are chosen in a neighbor set of true values. In this paper
we propose a method of reconstructing the parameters of
elements as well as the architecture and strengths of couplings
in ensembles of coupled time-delay systems, which overcomes
all the above mentioned limitations. Our method is based
on the reconstruction of model delay-differential equations
for the ensemble elements and the diagnostics of statistical
significance of couplings.

The paper is organized as follows. Section II contains the
method description. First we reconstruct the delay time of
each element in the ensemble. Then, other parameters and
nonlinear functions of the elements and coupling architecture
are reconstructed. In Sec. III the method is applied for the
reconstruction of various ensembles of coupled time-delay
systems from simulated and experimental time series. In
Sec. IV we summarize our results.

II. METHOD DESCRIPTION

Let us consider an ensemble composed of diffusively
coupled time-delay systems, each described by the equation

εi ẋi(t) = − xi(t) + fi(xi(t − τi))

+
M∑

j=1(j �=i)

ki,j (xj (t) − xi(t)), (1)

where i = 1, . . . ,M; M is the number of elements in the
ensemble; the parameter εi characterizes the inertial properties
of the ith element; τi is the delay time; fi is a nonlinear
function; and ki ,j are the coupling coefficients characterizing
the strength of influence j → i, i.e., from the j th element to
the ith one.
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It should be noted that the accuracy of delay time recovery
has a greater influence on the quality of the system recon-
struction than the accuracy of recovery of other parameters.
Even a small error in the delay time estimation, as a rule,
leads to incorrect reconstruction of coupling architecture and
great errors in estimation of other parameters. That is why we
propose an approach to the recovery of the element parameters
and architecture of couplings in the ensemble of time-delay
systems, which involves two steps. At first we recover the delay
time τi of each element. Then, knowing τi , we reconstruct
the parameters εi and ki ,j and nonlinear functions fi . Such
approach allows us to simplify substantially the problem of
reconstruction and to obtain a high accuracy of parameter
estimation.

A. Reconstruction of delay time of ensemble elements

In Ref. [14] we have shown that time series of single
(ki,j = 0) time-delay systems (1) practically have no extrema
separated in time by the delay time. If such systems perform
chaotic oscillations, the extrema in their time series are located
irregularly and the time intervals between these extrema can
take different values. Taking into account this feature, a method
for the delay time recovery has been proposed based on
the statistical analysis of time intervals between extrema in
the chaotic time series of time-delay system. Defining, for
different values of τ , the number Ni of situations where the
points of the time series separated in time by τ are both
extremal, we can construct the Ni(τ ) plot and recover the
delay time τi as the value at which the absolute minimum of
Ni(τ ) is observed [14].

Let us consider how the presence of couplings between the
time-delay systems influences the efficiency of this method.
The action of other elements of the ensemble on the time-delay
system under consideration disturbs it and results in the
disappearance of some extrema in the system time series and
appearance of new ones. This effect is especially pronounced
in the case of linear coupling of time-delay systems studied in
Ref. [26]. In the case of diffusive coupling between the time-
delay systems, the method based on the statistical analysis
of extrema in the chaotic time series can also be applied
to the delay time recovery. Moreover, it remains efficient
under essentially stronger couplings than in the case of linear
coupling. To explain this feature we differentiate Eq. (1) with
respect to t :

εi ẍi(t) = − ẋi(t) + dfi(xi(t − τi))
dxi(t − τi)

ẋi(t − τi)

+
M∑

j=1(j �=i)

ki,j (ẋj (t) − ẋi(t)). (2)

In the presence of inertial properties (εi > 0), which
corresponds to real situations, the extrema in xi(t) are close
to quadratic ones and therefore ẋi(t) = 0 and ẍi(t) �= 0 at the
extremal points. If for ẋi(t) = 0 in a typical case ẍi(t) �= 0,
then, as can be seen from Eq. (2), for εi �= 0 the condition

dfi(xi(t − τi))
dxi(t − τi)

ẋi(t − τi) +
M∑

j=1(j �=i)

ki,j ẋj (t) �= 0 (3)

must be fulfilled. The condition (3) can be satisfied only if
ẋi(t − τi) �= 0 or/and

M∑
j=1(j �=i)

ki,j ẋj (t) �= 0. (4)

The condition (4) is never fulfilled in the case of the absence
of couplings (ki,j = 0) and in the case of strong couplings
ensuring the synchronization of elements, which results in
ẋj (t) = ẋi(t). But we have set ẋi(t) = 0 to derive the condition
(3). Hence, in these boundary cases the first term in (3) is not
equal to zero. By this is meant that the derivatives ẋi(t) and
ẋi(t − τi) do not vanish simultaneously, i.e., there must be no
extremum in xi(t) separated in time by τi from a quadratic
extremum. In the intermediate cases of weak and moderate
couplings it is possible to find extrema in xi(t) separated in
time by τi . However, the probability of such situation is less
than the probability to find a pair of extrema separated in time
by τ �= τi . As the result, the number of extrema separated in
time by τi will be less than the number of extrema separated
in time by other values of τ . Hence, the Ni(τ ) plot will have
a minimum at τ = τi . Therefore, the qualitative features of
the Ni(τ ) plot are retained for system (1) in a wide range of
coupling coefficient values.

In spite of a qualitative character of the method explanation,
the numerous results of our method application to various
ensembles of coupled model and experimental systems with
time-delayed feedback presented in Sec. III indicate that
the considered method of delay time estimation is efficient
for ensembles of coupled time-delay systems and can be
successfully used in practice. Note that this method is quick
operating, since it uses only operations of comparing and
adding and needs neither ordering of data nor calculation of
approximation error or certain measure of complexity of the
trajectory.

The method described above assumes there is only one
delay time per variable. Nevertheless, it can be applied
to ensembles composed of time-delay systems with several
coexisting delays. As was shown in Ref. [14], the Ni(τ ) plot
constructed from time series of a single time-delay system
with two different delay times τ1 and τ2 exhibits pronounced
minima at τ = τ1 and τ = τ2. However, these minima are not
as deep as in the case of a single delay. As the result, the
method is less robust to noise in the case of multiple delays.

If a time-delay system performs periodic oscillations, the
considered technique fails because extrema in time series are
located regularly. For recovering the delay time in single time-
delay systems performing periodic oscillations we recently
proposed a method based on the analysis of the system
response to external disturbance [25]. If one disturbs the xi(t)
variable of a single time-delay system with a single delay by
an external signal yi(t) having the form of rectangular pulses
and construct the cross-correlation function

Ci(s) = 〈|ÿi(t)||ẍi(t + s)|〉√
〈|ÿi(t)|2〉〈|ẍi(t)|2〉

, (5)

where the angular brackets denote averaging over time; then
Ci(s) will have a pronounced maximum at s = τi . In the case
of multiple delays, the plot of Ci(s) shows maxima at s values
equal to the delay times of the system [25]. A limitation of
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this method in comparison with the one described above is
the necessity of disturbing the system dynamics. However, the
method allows one to use very short and low-amplitude pulses
in order to reduce the system disturbance to a minimum.

Let us analyze a possibility of this method application to the
recovery of delay times in the ensemble of coupled time-delay
systems. For the considered type of the element disturbance
by the external signal yi(t), the model equation has the form

εi ẋi(t) = − xi(t) + fi(xi(t − τi) + yi(t − τi))

+
M∑

j=1(j �=i)

ki,j (xj (t) − xi(t)). (6)

The disturbance yi(t) has the form of rectangular pulses
with amplitude Ai , period Ti , and duration Di . To recover the
delay time τi of only the ith element it is sufficient to disturb
only this ith element by the signal yi(t). As we have mentioned
above, the presence of connections between the time-delay
systems results in the disturbances of their trajectories. These
disturbances decrease the sensitivity of the cross-correlation
function (5) as the measure for the delay time estimation. As a
result, for the recovery of τi in the general case it is necessary to
increase the amplitude Ai of perturbation in comparison with
the case of uncoupled time-delay systems. The method can be
used for any values of coupling coefficients ki ,j . Furthermore,
the method can be applied to systems (1) performing either
periodic or chaotic oscillations. One more advantage of this
method is that it remains efficient under sufficiently high levels
of noise, which are several times greater than the noise level
allowable for the method of delay time recovery based on the
statistical analysis of extrema in time series.

Of course, disturbance of ensemble elements by rectangular
pulses is not always possible in practice. However, this
kind of time-delay system perturbation is easily realized
experimentally, for example, in electronic and radio technical
systems [25].

B. Reconstruction of other parameters and architecture
of couplings in the ensemble

After reconstruction of τi we recover the parameter εi ,
nonlinear function fi , and coupling coefficients ki ,j of the
ith time-delay system (1), having at their disposal the time
series of oscillations of all elements in the ensemble. To do
this, we propose the following approach. Let us write Eq. (1)
as

εi ẋi(t) + xi(t) −
M∑

j=1(j �=i)

ki,j (xj (t) − xi(t)) = fi(xi(t − τi)).

(7)

If one plots the dependence of the left-hand side of
Eq. (7) on xi(t − τi), it will reproduce the function fi . Since
the parameters εi and ki ,j are a priori unknown, we will search
for them by minimizing the function

Li(εi,ki,j ) =
S−1∑
n=1

((yi,n+1 − yi,n)2 + (zi,n+1 − zi,n)2), (8)

which characterizes the distance between the points
in the (yi ,zi) plane ordered with respect to the co-
ordinate yi . Here yi = xi(t − τi), zi = εi ẋi(t) + xi(t) −∑M

j=1(j �=i) ki,j (xj (t) − xi(t)), n is the point serial number, and
S is the number of points. In the case of incorrect choice
of εi and ki ,j , the points in the (yi ,zi) plane do not lie on a
single-valued curve fi . Hence, the value of Li(εi,ki,j ) will be
greater than that for true εi and ki ,j .

We set the initial conditions for εi and ki ,j and then refine
them by the Nelder-Mead method [39] minimizing the function
(8), whose minimum is denoted as Li,M . At M � 4 and the
absence of noise, all parameters are recovered with a high
accuracy. However, at M > 4 the situation in which the method
fails to reveal the nonexisting couplings (ki,j = 0) becomes
typical. These couplings are detected as weak ones because of
indirect couplings via other elements.

To reject insignificant couplings we use the method of
successive trial elimination of coefficients ki ,j from the model
(1). We advance the hypothesis that the coupling j → i

from the j th element to the ith one is absent, eliminate the
corresponding coupling coefficient ki ,j , and reconstruct the
other parameters of the model by minimizing the function (8),
whose minimum is denoted as Li,j,M−1. This procedure is
then repeated by eliminating another ki ,j at the fixed i, and
so on for all j �= i. Note that at each step we assume that the
ith element is not affected by only one of the j th elements.
Finally, we determine the elimination of which ki ,j from
(1) yields Li,M−1 = minj Li,j,M−1 and estimate the statistical
significance of L = Li,M−1/Li,M . In doing this we are guided
by the following arguments. At large S, the differences
yi,n+1 − yi,n and zi,n+1 − zi,n in (8) are distributed according
to the distribution that is close to the normal one. Here S/2
of these differences can be considered as independent because
they have no common coordinates. Besides, Li,M depends on
M parameters of model (7). This fact reduces the number of
independent quantities in (8) to S/2 − M . Then, taking into
account that a sum of the squares of K independent normal
random variables is distributed according to the chi-square
distribution with K degrees of freedom [40], we obtain that
the Li,M values calculated at different parameters and/or in the
presence of noise are distributed according to the chi-square
distribution with S/2 − M degrees of freedom and the Li,M−1

values are distributed according to the chi-square distribution
with S/2 − M + 1 degrees of freedom.

If X is a ratio of two independent random variables
distributed according to the chi-square distribution with v

and w degrees of freedom, respectively, then it has the
Fisher-Snedecor distribution with the distribution function

Fv,w(X) = Bd

(
v

2
,
w

2

)
, (9)

where B is the regularized incomplete beta function and d =
vX/(vX + w) [41]. Hence, L has the distribution function (9)
with X = L, v = S/2 − M + 1, and w = S/2 − M .

We denote the value of L for which Fv,w(L1−p) = 1 − p,
where p is the statistical significance level, as L1−p. Then, if
L > L1−p, one can conclude at a significance level p that the
ith element is affected by all other elements of the ensemble,
i.e., all ki,j �= 0. In the opposite case, we conclude that the
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coupling j → i between the two corresponding elements
is absent and check the significance of other couplings,
successively eliminating one by one the remaining links from
other elements to the ith one. The procedure is repeated until
all couplings become significant. This approach allows one to
recover the coupling architecture, parameters of all elements,
and nonlinear functions.

If the number of connections between the ensemble
elements is known to be small, it is preferable to use the
method of successive trial addition of coefficients ki ,j to the
model for the reconstruction of architecture and strengths of
couplings. First we find the minimum Li,1 of function (8)
assuming that all ki ,j are absent in Eq. (1), i.e., there are
no couplings. Then we enter one coefficient ki ,j into (1) and
find the minimum of function (8), which is denoted as Li,j,2.
This procedure is then repeated by entering another ki ,j at
the fixed i, and so on for all j �= i. Finally, we determine the
entering of which ki ,j into the model yields Li,2 = minj Li,j,2.
If L > L1−p, where L = Li,1/Li,2 has the distribution function
(9) with v = S/2 − 1 and w = S/2 − 2, then the introduced
coupling is nonzero at a significance level p. The procedure is
repeated until the next coupling entered into the model turns
out to be insignificant.

III. METHOD APPLICATION

A. Reconstruction of ensemble of coupled Ikeda equations

Let us reconstruct the parameters of elements and coupling
architecture in an ensemble of diffusively coupled Ikeda
equations described as follows:

ẋi(t) = − xi(t) + μi sin (xi(t − τi) − x0i)

+
M∑

j=1(j �=i)

ki,j (xj (t) − xi(t)). (10)

The Ikeda equation describes a phase lag x of the electrical
field across the optical resonator [42]. The parameter μ

characterizes the laser power intensity injected into the system,
τ is the delay time, and x0 is the constant phase lag.
Equation (10) is a special case of Eq. (1) with εi = 1.

As the first example, we consider the simple case of ring uni-
directional coupling [Fig. 1(a)]. The chain consists of M = 10
nonidentical elements with a boundary condition x1 = xM+1.
The parameters of elements are assigned the arbitrary values in
the following ranges: τi ∈ [2,5], μi ∈ [15,25], x0i ∈ [0,2π ],
and ki,i−1 ∈ [0.1,0.5]; ki,j = 0, j �= i − 1. In this case all
elements exhibit chaotic oscillations. Besides, each element
is affected by independent Gaussian noise ξi(t) with a zero
mean and variance σ 2

i = 0.01. For the fixed values of element
parameters we generate a collection of 20 time realizations for
the ensemble with different initial conditions and realizations
of noise. From each time series in this collection we recover the
parameters and nonlinear functions of the ensemble elements.
As the result, we obtain 20 estimates for each parameter and
define their mean, minimal, and maximal values and standard
deviation.

We illustrate the results of the method application to the
parameter reconstruction of one of the ring elements with
the parameters τ7 = 2.15, μ7 = 21.67, x07 = 3.88, and k7,6 =

FIG. 1. (a) Chain of ten unidirectionally coupled elements closed
in a ring. (b) The chaotic time series of x7(t) in the ring of
Ikeda equations in the presence of Gaussian noise with σ 2

i = 0.01.
(c) Dependence N7(τ ). N7 min(τ ) = N7(2.15). (d) Function f7 recov-
ered in the plane (y7,z7), where y7 = x7(t − τ ′

7) and z7 = ẋ7(t) +
x7(t) − ∑10

j=1(j �=7) k
′
7,j (xj (t) − x7(t)). (e) Diagram for coupling esti-

mation results shows detected existing couplings (black squares) and
undetected nonexisting couplings (white squares).

0.284. Part of its time series is shown in Fig. 1(b). For various
τ values we count the number N7 of situations where ẋ7(t) and
ẋ7(t − τ ) are simultaneously equal to zero and construct the
N7(τ ) plot [Fig. 1(c)]. In Fig. 1(c) the step of τ variation is
equal to the integration step h = 0.01 and N7(τ ) is normalized
to the total number of extrema in the time series. The time
derivatives ẋ7(t) are estimated from the time series by applying
a local parabolic approximation. The absolute minimum of
N7(τ ) takes place at the true delay time τ = τ7 = 2.15 for
each of 20 time series of x7(t) with different realizations of
noise. To construct the N7(τ ) plot we use 40 000 points of time
series, which exhibits about 1600 extrema.

Figure 1(d) presents the nonlinear function f7 recovered
employing the method of successive trial addition of coupling
coefficients to the model at p = 0.05. The function f7 is
constructed at the recovered parameters τ ′

7 = 2.15, k′
7,6 =

0.276, and k′
7,j = 0, j �= 6. The estimates of k7,6 obtained

from a collection of 20 time series lie within the interval
[0.268, 0.294]. The mean value of recovered coefficients k′

7,6 is
0.283 and the standard deviation is 0.007. For each time series
in a collection of ensemble realizations we obtain k′

7,j = 0,
j �= 6.

The recovered nonlinear function in Fig. 1(d) coincides
closely with the true function of the Ikeda equation. Its
approximation with a harmonic function allows us to obtain
the parameter estimation μ′

7 = 21.80 and x ′
07 = 3.97, as the

amplitude and initial phase of harmonic function, respectively.
The obtained 20 estimates of μ7 and x07 lie within the intervals
[20.99, 22.89] and [3.86, 4.01], respectively. Their mean values
are 22.04 and 3.92, respectively, and standard deviations are
0.53 and 0.05, respectively. The parameters and coupling
coefficients of other elements are reconstructed in a similar
way.

The results of recovery of coupling architecture in the
ensemble obtained by application of the method of successive
trial addition of coupling coefficients to the model are shown in
Fig. 1(e). A square with a horizontal coordinate i and a vertical
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FIG. 2. (a) The time series of x7(t) in the periodic regime in
the presence of Gaussian noise with σ 2

i = 0.001. (b) The cross-
correlation function C7(s). C7 max(s) = C7(0.94).

coordinate j shows the influence j → i, except for the squares
in the diagonal, which carry no information. All ten existing
couplings are detected at the significance level p = 0.05 (black
squares). Nonexisting couplings are not detected. The lengths
of time series used for constructing Figs. 1(d) and 1(e) are
10 000 points.

In the considered case, the estimated parameters of the
ensemble elements are sufficiently close to the true parameters.
Note that already small deviations of recovered parameters can
result in large biases of the inferred model. However, in the
considered example the coupling architecture is accurately
recovered from each time series in a collection of ensemble
realizations.

Let us consider the case where all elements of the ring
perform periodic oscillations. For this purpose the element
parameters are assigned the arbitrary values in the follow-
ing ranges: τi ∈ [0.5,1.2], μi ∈ [4.5,5.5], x0i ∈ [0,2π ], and
ki,i−1 ∈ [0.1,0.5]; ki,j = 0, j �= i − 1. We add an independent
Gaussian noise with a zero mean and variance σ 2

i = 0.001
into the dynamics of each element. Part of the time series
of the element with the parameters τ7 = 0.94, μ7 = 5.17,
x07 = 3.32, and k7,6 = 0.284 is shown in Fig. 2(a).

Since the method of delay time recovery based on the
statistical analysis of extrema in time series fails when it is
applied to periodic time series, we use the method based on
the analysis of the system response to external disturbance. To
reconstruct the delay time τ7 we disturb the x7(t) variable by
a weak external signal y7(t) having the form of rectangular
pulses. Figure 2(b) depicts the cross-correlation function (5)
for the case where the pulse signal y7(t) has the amplitude
A7 = 0.1, period T7 = 3, and duration D7 = T7/2. For the
step of s variation equal to 0.01, the plot of C7(s) exhibits
the maximum at s = 0.94, i.e., the delay time is recovered
accurately for each of 20 time series differing by realizations
of noise.

Employing the method of successive trial addition of
coupling coefficients to the model we obtain at p = 0.05
that the values of μ′

7, x ′
07, and k′

7,6 recovered 20 times under
different initial conditions and realizations of noise lie within
the intervals [5.09, 6.01], [2.53, 3.87], and [0.260, 0.306],
respectively. The mean values of μ′

7, x ′
07, and k′

7,6 are 5.54,
3.21, and 0.279, respectively, and standard deviations are 0.26,
0.36, and 0.011, respectively. For each of 20 cases we obtain
k′

7,j = 0, j �= 6.

FIG. 3. (a) Coupling architecture in an ensemble of ten ele-
ments. (b) Dependence N7(τ ). N7 min(τ ) = N7(2.15). (c) Function
f7 recovered in the plane (y7,z7), where y7 = x7(t − τ ′

7) and
z7 = ẋ7(t) + x7(t) − ∑10

j=1(j �=7) k
′
7,j (xj (t) − x7(t)). (d) Diagram for

coupling estimation results.

The parameters of other elements are reconstructed in a
similar way. The result of recovery of coupling architecture
in the chain coincides with the one obtained for the previous
example [Fig. 1(e)]. All the couplings are correctly detected at
the significance level p = 0.05.

The method application is further illustrated for a more
complicated coupling architecture. Figure 3(a) shows the
coupling architecture generated randomly in an ensemble of
ten elements. There are 40 couplings from 90 possible ones.
Bidirectional couplings are present along with unidirectional
ones. The parameters τi , μi , and x0i of nonidentical elements
are chosen the same as in the first considered example and
nonzero coupling coefficients are assigned the arbitrary values
in the following range: ki,j ∈ [0.1,0.5]. In this case all the
ensemble elements exhibit chaotic oscillations. Each element
is affected by independent Gaussian noise with a zero mean
and variance σ 2

i = 0.04.
We illustrate the results of reconstruction of one of the

elements with the parameters τ7 = 2.15, μ7 = 21.67, x07 =
3.88, k7,4 = 0.445, k7,6 = 0.172, k7,9 = 0.311, k7,10 = 0.435,
and k7,j = 0, j = 1,2,3,5,8. The dependence N7(τ ) with the
step of τ variation equal to 0.01 is presented in Fig. 3(b).
The minimum of N7(τ ) is observed at the true delay time
τ = τ7 = 2.15 for each of 20 time series of x7(t) with different
realizations of noise.

Figure 3(c) shows the nonlinear function f7 recovered using
the method of successive trial addition of coupling coefficients
to the model at p = 0.05. The function f7 is constructed at the
recovered parameters τ ′

7 = 2.15, k′
7,4 = 0.517, k′

7,6 = 0.188,
k′

7,9 = 0.355, k′
7,10 = 0.490, and k′

7,j = 0, j = 1,2,3,5,8. The
values of k′

7,4, k′
7,6, k′

7,9, and k′
7,10 estimated from a collection

of 20 time series lie within the intervals [0.401, 0.517], [0.142,
0.188], [0.277, 0.355], and [0.396, 0.490], respectively. Their
mean values are 0.453, 0.164, 0.313, and 0.441, respectively,
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and standard deviations are 0.024, 0.011, 0.016, and 0.020,
respectively. For each of 20 time series we obtain k′

7,j = 0,
j = 1,2,3,5,8.

Inaccurate estimation of coupling coefficients and noise
level higher than that in the first example result in the worse
quality of function f7 recovery in comparison with Fig. 1(d).
Approximation of the recovered function f7 with a harmonic
function gives us the following parameter estimation: μ′

7 =
22.00 and x ′

07 = 3.97. The obtained 20 estimates of μ7 and
x07 lie within the intervals [20.66, 23.41] and [3.66, 4.47],
respectively. Their mean values are 21.90 and 4.12, respec-
tively, and standard deviations are 0.70 and 0.19, respectively.

Similarly the parameters and coupling coefficients of other
elements are reconstructed. The results of recovery of coupling
architecture in the ensemble are presented in Fig. 3(d). All
40 existing couplings are detected at the significance level
p = 0.05 employing either the method of addition of couplings
or the method of successive trial elimination of coupling
coefficients from the model. The coupling architecture is
accurately recovered from each time series in a collection of
ensemble realizations.

Let us consider the case where the ensemble elements
have the same parameter values and coupling architecture and
strengths, but are affected by strong independent Gaussian
noise with a zero mean and variance σ 2

i = 0.36. At such
strong noise, the method of the delay time recovery based
on the statistical analysis of extrema in time series fails.
To reconstruct the delay time of the ith element we disturb
the xi(t) variable by a weak signal yi(t) having the form of
rectangular pulses. Figure 4(a) depicts the cross-correlation
function (5) for the case where the variable x7(t) is disturbed
by the pulse signal y7(t) having the amplitude A7 = 0.15,
period T7 = 5, and duration D7 = T7/2. For the step of s

variation equal to 0.01 the plot of C7(s) exhibits the maximum
at s = τ7 = 2.15 for each of 20 time series differing by
realizations of noise. In spite of the high level of noise, the
delay time is recovered accurately for all elements.

The method of addition of couplings, as well as the method
of elimination of couplings, gives at p = 0.05 the following
estimation of the seventh element parameters obtained from
a collection of 20 time series: k′

7,4, k′
7,6, k′

7,9, k′
7,10, μ′

7, and
x ′

07 lie within the intervals [0.388, 0.511], [0.113, 0.202],
[0.244, 0.364], [0.380, 0.497], [21.01, 24.14], and [3.44, 4.42],

FIG. 4. Case of high level of noise. (a) The cross-correlation func-
tion C7(s). C7 max(s) = C7(2.15). (b) Diagram for coupling estimation
results shows detected existing couplings (black squares), undetected
nonexisting couplings (white squares), and missed existing couplings
(gray squares).

FIG. 5. Case of large number of couplings. (a) Dependence
N7(τ ). N7 min(τ ) = N7(2.40). (b) Diagram for coupling estimation
results shows detected existing couplings (white squares) and unde-
tected nonexisting couplings (squares with crosses).

respectively. Their mean values are 0.434, 0.157, 0.298, 0.428,
22.56, and 4.10, respectively, and standard deviations are
0.029, 0.022, 0.028, 0.028, 0.78, and 0.25, respectively. The
true parameter values are the same as those in the previous
example illustrated in Fig. 3.

The results of reconstruction of coupling architecture
in the ensemble are presented in Fig. 4(b) for the recov-
ered parameters k′

7,4 = 0.396, k′
7,6 = 0.142, k′

7,9 = 0.262, and
k′

7,10 = 0.392. We detected 35 couplings from 40 existing ones
at the significance level p = 0.05. Five existing couplings
are missed (gray squares) because of high level of noise.
Estimation from other time series gives similar pictures, but
the number of missed connections and their locations fluctuate
from one set of time series to another one. Which couplings
are not detected from the given time series is determined by
concrete realizations of noises corresponding to the analyzed
time series. To decrease the number of missed couplings, one
should specify greater p. However, at that, probability to detect
spurious (nonexisting) connections increases.

At last, we consider the case where 80 of 90 possible
couplings exist. The element parameters are assigned the
arbitrary values in the same ranges as in the above case of 40
couplings. Each element is affected by independent Gaussian
noise with a zero mean and variance σ 2

i = 0.01.
The location of the absolute minimum of Ni(τ ) allows us

to recover the delay time accurately for each element of the
ensemble. As an example, Fig. 5(a) shows the dependence
N7(τ ) with the step of τ variation equal to 0.01. The minimum
of N7(τ ) is observed at the true delay time τ = τ7 = 2.40 for
each of 20 time series. The results of recovery of coupling ar-
chitecture obtained by application of the method of successive
trial elimination of coupling coefficients from the model are
presented in Fig. 5(b). For better visual perception we inverted
the colors in Fig. 5(b) in comparison with other diagrams.
All 80 existing couplings are detected at the significance level
p = 0.05. Nonexisting couplings are not detected.

B. Reconstruction of ensemble of coupled Mackey-Glass
equations

Let us reconstruct the parameters of elements and cou-
pling architecture in an ensemble of diffusively coupled
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FIG. 6. (a) The time series of x7(t) in the ensemble of Mackey-
Glass equations in the presence of Gaussian noise with σ 2

i = 10−4.
(b) Dependence N7(τ ). N7 min(τ ) = N7(335). (c) Function f7 recov-
ered in the plane (y7,z7), where y7 = x7(t − τ ′

7) and z7 = ε′
7ẋ7(t) +

x7(t) − ∑10
j=1(j �=7) k

′
7,j (xj (t) − x7(t)) under the assumption of absence

of couplings (gray shading) and presence of couplings (black).
(d) Diagram for coupling estimation results shows detected existing
couplings (black squares), undetected nonexisting couplings (white
squares), and spuriously detected couplings (squares with dots).

Mackey-Glass equations described by Eq. (1) with the function

fi(xi(t − τi)) = aixi(t − τi)

bi

(
1 + x10

i (t − τi)
) (11)

and εi = 1/bi . The Mackey-Glass equation models the pro-
duction of red blood cells and is widely used in simulation of
time-delay systems [43].

We consider the case where the ensemble is composed
of nonidentical elements whose parameters take arbitrary
values in the following ranges: τi ∈ [300,400], εi ∈ [8,12],
ai ∈ [0.2,0.25], and ki,j ∈ [0.01,0.05]. In this case all the
elements exhibit chaotic oscillations. Besides, each element
is affected by independent Gaussian noise ξi(t) with a zero
mean and variance σ 2

i = 10−4.
Part of the time series of the element with the parame-

ters τ7 = 335, ε7 = 10.2, k7,1 = 0.011, k7,2 = 0.046, k7,3 =
0.043, k7,4 = 0.016, and k7,j = 0, j = 5,6,8,9,10 is shown in
Fig. 6(a). To construct the N7(τ ) plot we use 40 000 points of
time series of x7(t), which exhibits about 2600 extrema. For
the step of τ variation equal to 1, the dependence N7(τ ) shows
the minimum at the true delay time τ = τ7 = 335 for each of
20 time series [Fig. 6(b)].

Figure 6(c) depicts in gray the function f7 recovered
under the assumption that there are no connections between
the ensemble elements. This function is constructed at the
recovered parameters τ ′

7 = 335, ε′
7 = 8.4, and k′

7,j = 0, j =
1, . . . ,10 (j �= 7). The function f7 recovered using the method
of successive trial addition of coupling coefficients to the
model at p = 0.05 is shown in Fig. 6(c) in black. This function
is constructed at the recovered parameters τ ′

7 = 335, ε′
7 =

10.0, k′
7,1 = 0.012, k′

7,2 = 0.047, k′
7,3 = 0.044, k′

7,4 = 0.017,
and k′

7,j = 0, j = 5,6,8,9,10.
The values of ε′

7, k′
7,1, k′

7,2, k′
7,3, and k′

7,4 estimated from a
collection of 20 time series lie within the intervals [9.7, 10.5],
[0.006, 0.017], [0.039, 0.054], [0.036, 0.052], and [0.007,
0.020], respectively. Their mean values are 10.1, 0.012, 0.046,

0.045, and 0.014, respectively, and standard deviations are 0.2,
0.003, 0.004, 0.004, and 0.003, respectively.

One can see that the quality of nonlinear function recovery
in Fig. 6(c) is much better, if the coupling architecture is taken
into account. Inaccuracy of the parameter reconstruction is
caused mainly by the presence of noise. As well as in the other
considered examples, the lengths of time series used for the
recovery of parameters are 10 000 points.

The parameters and coupling coefficients of other elements
are reconstructed in a similar way. The results of recovery of
coupling architecture in the ensemble obtained by application
of the method of addition of couplings are presented in
Fig. 6(d). All 40 existing couplings are detected at the
significance level p = 0.05. Two couplings are detected
spuriously (squares with dots). However, this rate of errors lies
within acceptable range at the given p. Estimation from other
time series gives similar pictures with a slightly fluctuating
rate of spurious couplings. Decreasing p, it is possible to
avoid spuriously detected couplings. However, at that, the
probability to miss existing connections rises. Recovering the
coupling architecture from the same time series by application
of the method of elimination of couplings, we obtain a greater
number of spuriously detected couplings at the same p.

C. Reconstruction of ensemble of coupled experimental
electronic oscillators with time-delayed feedback

We apply the method to experimental time series obtained
from three coupled electronic oscillators with time-delayed
feedback. Figure 7(a) shows a block diagram of the ex-
perimental setup involving three coupled oscillators, each
comprising a delay line, a nonlinear device, and a low-
frequency first-order RC filter. The delay lines and nonlinear
devices are implemented on microcontrollers, while the filters

FIG. 7. (a) Block diagram of the experimental setup. DL are
the delay lines, ND are the nonlinear devices, ADC are the
analog-to-digital converters, and DAC are the digital-to-analog
converters. (b) The chaotic time series of V1(t). (c) Depen-
dence N1(τ ). N1 min(τ ) = N1(13.6 ms). (d) Function f1 recovered
in the plane (y1,z1), where y1 = V1(t − τ ′

1) and z1 = ε′
7V̇1(t) +

V1(t) − ∑3
j=2 k′

1,j (Vj (t) − V1(t)). (e) Diagram for coupling estima-
tion results.
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are analog devices. The digital and analog elements of this
scheme are linked via the corresponding analog-to-digital
converters (ADCs) and digital-to-analog converters (DACs).
The oscillators are coupled via resistors Rc. A model equation
for the ith element in the ensemble is as follows:

RiCiV̇i(t) = −Vi(t) + fi(Vi(t − τi))

+
M∑

j=1(j �=i)

ki,j (Vj (t) − Vi(t)), (12)

where Vi(t) and Vi(t – τi) are the delay line input and output
voltages, respectively, τi is the delay time, Ri and Ci are the
resistance and capacitance, respectively, and fi is the transfer
function of the nonlinear device. Equation (12) is of form (1)
with εi = RiCi .

All the nonlinear devices have a quadratic transfer function.
We record the chaotic signals Vi(t) of three nonidentical
oscillators using a three-channel ADC with the sampling
frequency fs = 10 kHz. Figure 7(b) shows a part of the time
series of V1(t) in the first oscillator having the parameters τ1 =
13.6 ms, ε1 = 2.88 ms, k1,2 = R1/Rc = 0.1, and k1,3 = 0.

For the step of τ variation equal to the sampling time
Ts = 0.1 ms, the absolute minimum of N1(τ ) takes place
at τ = 13.6 ms [Fig. 7(c)]. The function f1 recovered from
the experimental time series using the method of addition of
coupling coefficients to the model at p = 0.05 is presented
in Fig. 7(d). This function is constructed at the recovered
parameters τ ′

1 = 13.6 ms, ε′
1 = 2.74 ms, k′

1,2 = 0.098, and
k′

1,3 = 0. It coincides closely with the true transfer function
f1 of the nonlinear device of the first oscillator. The method
of elimination of couplings gives the same results.

In a similar way we reconstruct the characteristics of other
oscillators. The results of recovery of coupling architecture in
the ensemble are shown in Fig. 7(e). All couplings are correctly
detected at the significance level p = 0.05.

IV. CONCLUSION

We have proposed the method for reconstructing the
parameters of elements and architecture of connections in
ensembles of coupled time-delay systems from time series.
The procedure of reconstruction involves two steps. At first we
recover the delay time of each element using either the method

based on the statistical analysis of extrema in time series or the
method based on the analysis of the system response to weak
external disturbance having the form of rectangular pulses.
The first of these methods is applicable to chaotic time series
weakly corrupted by noise. The second one can be applied
to time-delay systems performing both chaotic oscillations
(even in the presence of high levels of noise) and periodic
oscillations. However, a limitation of the second technique is
the necessity of disturbing the system dynamics.

At the second step we reconstruct the other parameters
and architecture of couplings using the method based on
the reconstruction of model delay-differential equations for the
ensemble elements and estimation of statistical significance
of couplings. To test the significance of links we employ the
method of successive trial elimination or addition of couplings.
The method of trial elimination of coupling coefficients from
the model is most efficient for the recovery of ensembles,
in which the number of existing couplings is much greater
than the number of nonexisting couplings. For the recovery of
ensembles with a small number of connections between the
elements, the method of trial addition of coupling coefficients
to the model should be used. In the cases where the numbers
of existing and nonexisting couplings are comparable, it is
preferable to use the method of addition of couplings. For
such ensembles it ensures the same or higher accuracy of
reconstruction than the method of elimination of couplings
and is more quick operating.

The proposed technique can be applied to ensembles
composed of nonidentical time-delay systems with an arbitrary
number of unidirectional and bidirectional couplings between
them. We verified the method by applying it to chaotic and
periodic time series produced by model equations of ensembles
of diffusively coupled time-delay systems with a single delay
in the presence of noise, and experimental time series obtained
from electronic oscillators with delayed feedback coupled
by resistors. The method can be applied to ensembles of
time-delay systems with multiple delays, but in this case it
is less robust to noise.
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