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The task of revealing delayed coupling between
oscillatory systems by using their time series is
encountered in various fields of science, including
bio� and geophysics (see, e.g., [1, 2]). An important
characteristic of this interaction is the coupling delay
time, which frequently determines the complexity of
observed dynamics. Methods of determining this
characteristic have been considered in a number of
investigations [3–5]. The good prospects for practical
application are related to an interval estimator based
on empirical modeling of the observed phase dynam�
ics [6], since this approach is applicable in the case of
rather short time series (with a length of several char�
acteristic periods), which has been previously demon�
strated for autooscillatory systems with a limit cycle
under the action of a normal white noise. However, the
properties of phase noises in many cases can differ
from this type, for example, in some standard chaotic
oscillators, such as the Rössler system [7, 8], and oscil�
lators occurring under the action of a narrow�band
random process.

In order to obtain reliable estimates of the coupling
delay time in these cases, it is necessary to check the
applicability of the proposed method and introduce
necessary corrections, which is the main purpose of
the present work.

It has been reliably established and grounded [7, 9,
10] that, in description of the dynamics of weakly cou�
pled autooscillatory systems with limit cycle, per�
turbed by weak noises, it is possible to ignore the influ�
ence of amplitudes in the equations of phase evolu�
tion. According to the approach proposed and
developed in [3, 6] for systems expected to possess
these properties, the first step is to use the records of

oscillations of the observed variables x1(t) and x2(t) for
calculating by one of the well�known methods [7] the
time series of their phases {φ1(t1), …, φ1(tN)} and
{φ2(t1), …, φ2(tN)}, where ti = iΔt, Δt is the sampling
interval and N is the length of the time series. Then, to
determine the influence of the first oscillator on the
second one (and vice versa, by analogy), a model of
the phase dynamics of the second oscillator is con�
structed in the form of a stochastic difference equation

, (1)

where the phase increments are taken on a time inter�
val of fixed length τ (which is a parameter of the given
method), ε is the τ�integrated phase noise, F is a trig�
onometric polynomial, and Δ is a free parameter of the
model. The coefficients of polynomial F are deter�
mined by least squares through minimization of

S(Δ) = , where  =  –

 and angular brackets denote aver�
aging over the observation times ti. The S value is then
minimized with respect to various Δ and the point esti�

mate of the delay time takes the form of  = Δmin +

τ/2, where Δmin = arg . The variance of esti�

mate  under the assumption of white noise in the ini�
tial system and, hence, of the noise autocorrelation
function (ACF) decaying to zero on the interval from
0 to τ, is determined using the formula
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where N ' = NΔt/τ is the number of intervals with

length τ in the given series and  =  is the

estimate of the variance of noise ε. In order to deter�
mine the second derivative in Eq. (2), S(Δ) in the
vicinity of Δmin is approximated by a quadratic parab�
ola. The interval estimate of delay time (95% confi�

dence interval) is calculated as  ± 1.96 . If the
interval estimate given by formula (2) is smaller than

2Δt, the estimate is taken to be  ± Δt. The proposed
method has proven to be effective for phase oscillators
and the der Pol oscillator in the presence of white
noise [6].

Let us consider oscillators with noise of other types,
e.g., phase oscillators

(3)

where ω1, 2 are the angular eigenfrequencies, k is the
coupling coefficient, Δ0 is the delay time of 1  2
coupling, η1, 2 is the mutually uncorrelated white noise
with autocovariances 〈ηk(t)ηk(t ')> = Dkδ(t – t '), and
ξ1, 2 is color�frequency noise. The variance of ξk is

expressed through the white�noise intensity as  =
Dk/(2αk).
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An ensemble consisting of 100 pairs of time series
was obtained by integrating Eqs. (3) by the Euler
method at a 0.01 step on a 0.3 sampling interval (about
20 points over a characteristic period for the parame�
ters specified below) for series length N = 2094 (about
100 characteristic periods) and τ = 1.5 (quarter of the
period) [6]. Each pair of time series was used to calcu�
late the delay time and frequency ferr of erroneous con�
clusions concerning Δ0 (i.e., the frequency of situa�
tions when the Δ0 value does not fall in the interval of

 ± 1.96 ). The proposed method works correctly
provided that the probability of erroneous conclusions
does not exceed 0.05 (for the 95% confidence inter�
val). With allowance for the fluctuations in ferr (distrib�
uted according to the Bernoulli law), the admitted ferr

value for an ensemble of 100 pairs of time series
amounts to 0.1.

Figure 1 (triangles) presents results of calculations
for ω1 = 1.05, ω2 = 0.95, k = 0.1, and Δ0 = 12 (40 data
points),  = 0.06, α1 = 0.11, and α2 = 0.09. The fre�

quency of erroneous conclusions is large for  <

0.17. For diagnostics of this situation, let us consider
the ACF of noise ε, which was estimated using the

residual errors as C(iΔt) =  (i = 1,
2, …). This value decays to a small value over an inter�
val that is much greater than τ (Fig. 2, circles), in con�
trast to what would be observed in the case of white
noise in the initial equations of system dynamics.

This state of affairs is also possible for low�dimen�
sional nonlinear oscillators in the regime of determin�
istic chaos, where the use of Eq. (1) (which does not
explicitly takes into account the amplitude dynamics)
is not strictly justified but frequently provides good
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Fig. 1. Determination of the coupling delay time in system
(3) as characterized by frequency ferr of erroneous conclu�
sions for (�) estimator (2) (�) estimator (4) with α1 = 0.11,
α2 = 0.09, and (thick solid curve) both estimators with
α1 = 0.11 and α2 = 9. The horizontal dashed line shows the
permissible level of the frequency of errors. The insets
show the typical examples of S(Δ) for individual time
series, where vertical dashed lines indicate the true delay
time Δ0.
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Fig. 2. Determination of the ACF of phase noise in
model (1) for (�) α1 = 0.11, α2 = 0.09,  = 0.12 and

(solid curve) α1 = 0.11, α2 = 9, and  = 0.03. The verti�
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approximation (with the properties of phase noise ε
determined by the influence of slowly varying chaotic
amplitudes [7]). Therefore, it can be expected that the
proposed method will also be effective in this case (as
a heuristic approach), but only provided that the prop�
erties of phase noise ε in Eq. (1) are taken into account
properly instead of it being assumed that it is white
noise.

With allowance for this, let us estimate the ACF of
noise ε by residual errors of the model (Fig. 2) and
determine time T of its decay to some small value (as
will be shown below, the level of 0.2 gives an acceptable
result for time series with a length of 100 characteristic
periods). The number of mutually independent ε val�
ues over the length of time series can be estimated
from, below, N '' = NΔ/L, where L = max[T, τ]. Then,
the estimation of variance takes the form

, (4)

which gives a wider interval than formula (2) for T > τ.

Variance  of noise in the leading oscillator in

system (3) was varied in a broad range by changing D1

at fixed values of the other parameters. Figure 1 shows

a plot of ferr versus  for estimators (2) and (4) at

fixed values of α1, α2, and . Figure 2 presents the

ACFs of residual errors for model (1) in cases of α1 =
0.11, α2 = 0.09 (long�range correlations) and α1 =
0.11, α2 = 9 (rapidly decaying correlations—i.e.,
almost white noise). The value of ferr for estimator (2)
is large at α1 = 0.11, α2 = 0.09, and  = 0.06 (Fig. 1)

provided sufficiently small  (below 0.2). Allowance

for the noise correlation time in Eq. (4) decreases the
frequency of errors to values not exceeding the permis�
sible level (horizontal dashed line).

It should be noted that, for α1 = 0.11, α2 = 0.09,
and small , the allowance for noise correlations

does not help to reduce the frequency of errors
because S has poor sensitivity to trial Δ values and ran�
dom fluctuations shift the point of S(Δ) minimum.
This situation can be recognized based on the S(Δ)
plot, which has no clearly pronounced minimum
(Fig. 1, left inset), in contrast to a “favorable” situa�
tion (right inset).

This work did not study in detail the method of sig�
nal�phase calculation and assumed that the phase val�
ues were known, although this issue is worth separate
consideration. However, it should be noted that the
results obtained for coupled van der Pol oscillators and
Rössler systems proved to be analogous to those pre�
sented above in a broad range of parameters (including
strongly perturbed and even chaotic regimes), where

the phases were determined from observed signals by a
traditional method [7, 9] based on the Hilbert trans�
form.

Thus, we have proposed a correction to the interval
estimate of the coupling delay time between oscilla�
tors, which is based on the allowance for the ACF of
phase noise in calculations of the confidence interval.
The necessity of making this correction for eliminat�
ing erroneous conclusions was confirmed by numeri�
cal experiments on standard coupled oscillators. The
proposed modified method should be used for analysis
of nonlinear oscillatory systems in various applica�
tions, since even standard mathematical models of
oscillators of low dimensionality (such as the Rössler,
Lorentz, and some other systems) exhibit phase noises
with nontrivial properties [7, 8], including non�Gaus�
sian distribution and long�range correlations. Since
the correlation time most significantly influences the
informativity of data for statistical evaluation, it can be
expected that the proposed correction will be suffi�
cient to provide for reliability of this method in a broad
range of practical situations.
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