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Quantification of causal couplings via dynamical effects: A unifying perspective
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Quantitative characterization of causal couplings from time series is crucial in studies of complex systems of
different origin. Various statistical tools for that exist and new ones are still being developed with a tendency
to creating a single, universal, model-free quantifier of coupling strength. However, a clear and generally
applicable way of interpreting such universal characteristics is lacking. This work suggests a general conceptual
framework for causal coupling quantification, which is based on state space models and extends the concepts
of virtual interventions and dynamical causal effects. Namely, two basic kinds of interventions (state space and
parametric) and effects (orbital or transient and stationary or limit) are introduced, giving four families of coupling
characteristics. The framework provides a unifying view of apparently different well-established measures and
allows us to introduce new characteristics, always with a definite “intervention-effect” interpretation. It is shown
that diverse characteristics cannot be reduced to any single coupling strength quantifier and their interpretation
is inevitably model based. The proposed set of dynamical causal effect measures quantifies different aspects of
“how the coupling manifests itself in the dynamics,” reformulating the very question about the “causal coupling
strength.”
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I. INTRODUCTION

Necessity to understand and characterize causal couplings
among complex systems from time series arises in diverse
research fields ranging from engineering [1,2] and physics
[3,4] to ecology [5], cardiology [6–8], neuroscience [10–15],
and climate science [16–24]. As a basic tool for inferring the
very presence of couplings, one exploits Granger causality
[25], which is reflected by nonzero values of autoregressive
prediction improvement [26–28] or transfer entropy (TE) [29].
The coupling detection is most valuable as a step towards
assessing the coupling “strength.” To quantify the latter, one
often uses the prediction improvement [16,17,26–28] and TE
[2,6,15] with their extensions and modifications [13,24,30],
including partial correlation [23], spectral Granger causality
[31,32], decomposed TE [21], and phase dynamics modelling
[4,7,33], with a natural desire [22,34] to have a universally
applicable, clearly interpretable, and model-free measure of
the coupling strength.

However, even the coupling detection is problematic in
case of a “model-free” inference under quite usual conditions
[35–38]. The problem of coupling quantification is more
difficult. Thus, the concept of Granger causality does not
suffice to assess long-term effects [20]. Furthermore, the
above-mentioned coupling characteristics turn out to vary
considerably under variations of individual systems’ properties
[22,39] so a relevant question has recently been highlighted:
“Why should a measure of coupling strength between X and
Y depend on internal dynamics of X?” [22]. Based on the TE
idea, the authors of Ref. [22] have managed to develop a model-
free measure called “momentary information transfer” (MIT),
which is independent of internal dynamics properties for a
certain class of systems. The MIT was further suggested as a
universal tool to compare strengths of coupling mechanisms
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across pairs of systems. Still, one is often interested in a broader
characterization of the coupling role in the dynamics and asks
(i) “To what extent is the global warming over the last decades
(i.e., concrete values of the surface temperature) determined by
anthropogenic and natural factors [17,19,20,40]?,” (ii) “Does
an epileptic seizure or Parkinsonian tremor (i.e., a qualitative
dynamical regime with a strong periodic component) result
primarily from enhanced regularity within a certain brain area
or from increased couplings between participating subsystems
[11]?,” and so on. Any single characteristic of coupling could
hardly be appropriate to answer all such diverse questions.

It seems now relevant to broaden the question about the
“coupling strength” and characterize the “coupling role in
the dynamics.” Then, focusing on model-free approaches
seems to limit one’s possibilities to introduce appropriate
and meaningful characteristics. In contrast, it is shown below
that a model-based perspective is fruitful in solving the latter
task. The purpose of this work is to develop a general
conceptual framework for causal coupling quantification from
that perspective. It is accomplished by using the formalism
of state space models and extending the concepts of virtual
interventions [41,42] and dynamical causal effects [20]. The
framework unites various coupling analysis techniques into a
single consistent picture and clarifies interpretations of some
well-known measures in vivid terms of “intervention-effect.”
It reveals irreducibility of multiple coupling characteristics
to any single one and allows to introduce a consistent set of
coupling measures, describing “how the coupling manifests
itself in the dynamics” instead of assessing “the coupling
strength.”

Well-known coupling characteristics and their insufficiency
are outlined in Sec. II. The unifying framework is introduced
in Sec. III, along with concrete novel measures. Section IV
presents numerical examples showing irreducibility of diverse
coupling characteristics to a single one and nontrivial rela-
tionships among them. Estimation issues and implications
of this study for a further research are discussed in Sec. V.
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Conclusions are given in Sec. VI. Technical derivations and
supplementary illustrations are presented in the Appendices.

II. INCOMPLETENESS OF EXISTING COUPLING
CHARACTERISTICS

Consider two systems X and Y whose dynamics are
described by finite-dimensional vectors x(t) and y(t), respec-
tively, and t is time. The task is to quantify the “strengths”
of influences (causal couplings) in the directions X → Y

and Y → X from observations of the systems’ dynamics.
Throughout this paper, the combined process z(t) = [x(t),y(t)]
is assumed to be Markovian, i.e., the conditional probability
density ρt (z|z0) of z(t) at t > 0, given an initial state z(0) = z0,
does not depend on states z(t) at t < 0. This rather general
property is typically implied when one speaks of states of
stochastic systems, e.g., Ref. [43].

This section discusses insufficiency of existing model-free
approaches. Section II A considers the case of a time series
of complete state vectors {xn,yn}Nn=1, where xn = x(tn), yn =
y(tn), tn = n�t , and �t is a sampling interval, and discusses
restricted applicability and a model-based interpretation of the
most advanced coupling characteristics. Section II B further
stresses inevitably model-based causal inference in case of
partially observed states. Section II C outlines the necessity
of a broader coupling characterization in comparison to the
approaches of Sec. II A.

A. Transfer entropy and momentary information transfer

To characterize an influence X → Y , one often uses
TE, which is conditional mutual information between
yn and xn−1, given yn−1 [29]. It is conveniently de-
fined as a difference between the conditional distribu-
tions ρ(yn|xn−1,yn−1) and ρ(yn|yn−1) in terms of the
Kullback-Leibler (KL) divergence. The latter reads D(p||q) =∫

p(y) ln[p(y)/q(y)]dy for two arbitrary probability densities
p(y) and q(y) [44]. Then TE in the direction X → Y is
TX→Y = 〈D(ρ(yn|xn−1,yn−1)||ρ(yn|yn−1))〉xn−1,yn−1 , where the
angle brackets denote averaging over the stationary probability
density of z. TX→Y equals zero if and only if yn is conditionally
independent of the previous x, i.e., y(t) is a state vector of the
system Y per se and, hence, the influence X → Y is absent.
Positiveness of TX→Y implies a causal coupling X → Y and
TX→Y is often used as a measure of “coupling strength.” It
is also called complete TE [42] (since complete states are
observed) and information transfer to Y (ITY) [22]. Everything
is similar for the direction Y → X.

TE is model-free and sensitive to any statistical dependen-
cies. However, it depends on internal dynamical properties
of X and Y [22] rather than only on “the strength of
the coupling mechanism.” Indeed, consider an example of
univariate autoregressive processes,

xn = αxn−1 + ξn, yn = βyn−1 + cxn−1 + ηn, (1)

where n is discrete time, ξn and ηn are mutually uncorrelated
Gaussian white noises with variances σ 2

ξ and σ 2
η , α and β are

individual parameters, and c is a coupling coefficient. Here
TX→Y has been shown [22] to depend strongly on α and β,
given c. To overcome this problem, a modified measure MIT

has been suggested [22]: MIT at unit time lag in the direction
X → Y is mutual information between yn and xn−1, given
yn−1 and zn−2. For the example (1), MIT is equal to mutual
information between yn and the “innovation” ξn−1, given yn−1.
It is an increasing function of cσξ/ση, independent of α and β.
Hence, MIT quantifies the coupling strength as a contribution
of the “innovative part” of the coupling term cxn−1 relative
to the noise term ηn. This quantification has been regarded
natural and MIT has been used to compare coupling strengths
across pairs of processes in the climate system [22,23].

Still, even MIT can hardly be considered a universally
applicable and model-free coupling strength quantifier. First,
the conditions for its independency of internal dynamics are
quite restrictive [22]: the right-hand side of the discrete-time
evolution equation for Y must consist of three additive terms
as in Eq. (1), where the coupling term must be linear in xn−1

and the noise must be white. It means that, despite MIT is
defined in a model-free manner, its interpretation is model
based, since the systems under study are supposed to belong
to the class (i.e., a preassumed model) specified by the above
conditions. Moreover, MIT is related to the noise variances
in the discrete-time representation of the dynamics, which
may well depend on the corresponding (arbitrary) discrete
time step.

Second, almost an opposite view of “natural coupling
strength measure” is expressed in Ref. [45]. There, a set of
two phase oscillators is considered with three terms in the
right-hand side as in Eqs. (1). As a measure of coupling
strength, the authors use the ratio of the coupling term to the
individual dynamics term, not to the noise term. It is justified
for self-oscillatory systems with weak noises, where the ratio
of a coupling coefficient to a frequency mismatch determines
stability of a synchronization regime. Concrete noise levels
are irrelevant, so MIT is inappropriate to characterize such a
coupling role.

Third, it remains unclear how to interpret concrete numer-
ical values of MIT, e.g., given in nats [22]: Is a coupling
characterized by a given MIT value strong and in what sense?
The same difficulty of concrete interpretation relates to TE and
many other TE-like measures. Indeed, in practice one often
asks whether the coupling is important for certain properties
of the dynamics to be observed, instead of any particular
characterization of the strength of the coupling mechanism,
which was one of the primary goals in developing MIT.

B. Spurious couplings and model-based interpretations

If scalar components xn and yn of higher-dimensional state
vectors are observed, one defines an analog of the complete TE
as T

app
X→Y = 〈D[ρ(yn|x−

n−1,y
−
n−1)||ρ(yn|y−

n−1)]〉x−
n−1,y

−
n−1

, where

x−
n−1 = (xn−1,xn−2, . . . ) and y−

n−1 = (yn−1,yn−2, . . . ). It is
called TE [38,46] or apparent TE [42]. If the “full-history”
time-delayed vectors (x−

n−1,y
−
n−1) determine the unobserved

states (xn−1,yn−1) well enough, then T
app
X→Y has a meaning

similar to the complete TE and can serve as its approx-
imation. The quantity T

app
X→Y is a concrete implementation

of the general concept of Granger causality [25]. In prac-
tice, one often uses a simpler version based on comparing
conditional means of the distributions ρ(yn|x−

n−1,y
−
n−1) and

ρ(yn|y−
n−1). This “causality in mean” [25,27] is quantified
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as G2
X→Y = var(yn|y−

n−1)−var(yn|x−
n−1,y

−
n−1)

var(yn|y−
n−1)

, where var(·) stands for

variance. These variances are mean-squared prediction errors
of predictors with and without data from X, so G2

X→Y is a
prediction improvement. It was primarily called “strength of
causality” [26]. For Gaussian processes, linear autoregressive
predictive models are fitted to data in order to estimate
G2

X→Y [27].
It turns out that G2

X→Y may strongly depend on the sampling
interval. Thus, for simple linear stochastic oscillators with a
unidirectional coupling X → Y , one may observe nonzero
opposite G2

Y→X at reasonably large sampling intervals [35,36].
Under a naive interpretation, it would lead to a spuriously
inferred influence Y → X. Moreover, G2

X→Y may be quite
small as compared to the “spurious” G2

Y→X [36]. There are
exactly the same difficulties with T

app
X→Y [38]. Thus, inferring

the very existence of causal couplings from nonzero G2
X→Y or

T
app
X→Y is valid only for certain classes of systems where the

sparse sampling effects are negligibly small, i.e., it is again
model based. To test for coupling bidirectionality [36], one
also looks for a unidirectionally coupled model capable to
reproduce relevant data properties.

To overcome such problems, the concept of “information
flow” [41] is useful. It is formally the same as TE, but the
conditional distributions correspond to the conditions imposed
by interventions, not passively observed. Yet for its estimation
one either needs to assume that complete state vectors are
observed (which is again a model in a wider sense) and
perform real interventions or to fit model equations to the
data and perform “virtual interventions” in the model [3,42].
These examples additionally illustrate inevitably model-based
interpretations even of such coupling characteristics, which
are defined as apparently model-free.

C. Inquiries about longer-term effects of causal couplings

All of the above widely used approaches relate to one-step-
ahead predictions (conditional distributions) and characterize
short-term variations in the observed dynamics. However,
longer-term effects may often be of greater interest [20]. In
particular, having detected the coupling X → Y , one often
asks “To what extent is the observed variance of y determined
by the influence from X?” [19] or “What is the contribution
of X to the power spectrum of y at a particular frequency
f ?” In other words, one aims at assessing what would happen
with the power spectrum of y at f (or variance of y) if an
influence from the f component of x (or from x in total)
decreased or vanished. There has been a good deal of research
to find a decomposition of G2

X→Y in the frequency domain
[27,31,32]. The cornerstone work [31] has introduced a non-
negative decomposition called “spectral Granger causality.”
Under the condition of mutually uncorrelated white noises in
the autoregressive equations for x and y, this decomposition
represents the ratio of the observed power spectrum of y to
the power spectrum of y which would be observed if the noise
in the autoregressive equation for x were zero [31,32]. One
tries to interpret the spectral Granger causality in terms of
“causal power contributions” [32], but it has only something
in common with the idea of “contribution from X” and implies
validity of an autoregressive model under different conditions.

As another example of longer-term characterization, the
“long-term causality” [20] is based on a comparison of the
behavior of an empirical model under various hypothetical
conditions to assess whether changes in the behavior of a
driving system induce any changes in the characteristic of
interest (e.g., a linear trend) for the driven system.

To summarize the discussion of existing coupling char-
acteristics, let us note two circumstances. On the one hand,
even such common and advanced measures as TE and MIT
are not sufficient to address a wide set of possible questions
about the coupling role in the dynamics. On the other hand,
the above multiple characteristics conceptually differ quite
markedly and are either not easy to interpret (e.g., as spectral
Granger causality) or too specific (e.g., as trend analysis) to
be recommended as a consistent toolkit for causal coupling
analysis in general. To cover and shape a broad field of causal
coupling quantification, a general conceptual framework is
introduced below, which considers diverse approaches from
a single perspective, provides their numerical results with a
definite unified interpretation, and can prompt a researcher the
most appropriate tool for a problem at hand.

III. THE FRAMEWORK OF DYNAMICAL
CAUSAL EFFECTS

The above state space process z(t) is a mathematical
“embodiment” of the idea of causality for evolving systems
[43]. It serves as a basis for the framework developed below.
For a more detailed description, it is necessary to consider
a parameter vector a (constant in time) along with the state
[x(t),y(t)]. In physical models, a may include dissipation and
coupling coefficients, and so on. Then, the probability densities
for x(t) and y(t) at t > 0 read

ρt (x|z0,a) = LX
t (z0,a), ρt (y|z0,a) = LY

t (z0,a), (2)

where the operators LX
t and LY

t uniquely relate z0 to the
respective distributions at t > 0, given a. Let a consist of
four components which characterize internal dynamics of the
subsystems X (axx) and Y (ayy) and the influences Y → X

(axy) and X → Y (ayx). Formally, it means that (i) X does not
affect Y , i.e., ∂LY

t (x0,y0,a)/∂x0 ≡ 0 for any t > 0, if and only
if ayx = 0; (ii) Y does not affect X, i.e., ∂LX

t (x0,y0,a)/∂y0 ≡ 0
for any t > 0, if and only if axy = 0; (iii) if the coupling
parameter ayx = 0, then LY

t does not depend on the individual
parameter axx ; and (iv) if axy = 0, then LX

t does not depend on
ayy . A concrete example of such a formalism, widespread in
physical theories and exploited throughout this work, is given
by the Langevin-like stochastic differential equations

ẋ = fx(x,y,axx,axy) + ξx(t),
ẏ = fy(y,x,ayy,ayx) + ξy(t),

(3)

where fx and fy are drift terms, ξx and ξy are Gaussian white
noises with covariances 〈ξμ(t1)ξν(t2)〉 = �μνδ(t1 − t2), where
μ and ν take the values “x” or “y,” and δ is Dirac delta. The
elements of �xx and �yy are included into the vectors axx and
ayy , respectively. Here the operators LX

t and LY
t are given by

a solution to the Fokker-Planck equation.
All the results below relate only to the class of mathematical

systems (2). However, the latter is a rather general description
of two systems which evolve in time and can either be isolated
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from each other or interact, depending on their coupling
parameters. Deterministic dynamical systems represent a
specific subset of this class: system (3) with zero noise or
system (2) with Dirac-delta conditional distributions.

In physics and engineering, in order to quantify a causal
effect of a change in the value of a variable X (from x1 to
x2) on a random variable Y , one uses a difference between
the distributions of Y observed at X = x1 and X = x2 (e.g.,
Sec. 8.2.1 in Ref. [1]). Two circumstances are important: (i)
the value of X is “set by intervention” rather than observed
passively and (ii) all other relevant conditions are kept equal.
Applying this concept to the evolving system (2), let us
quantify the causal coupling X → Y by assessing how the
dynamics of Y at t > 0 changes if “something in X or in
coupling X → Y ” is varied at t = 0. Since there are two types
of characterizing quantities (states and parameters), two kinds
of “interventions” are possible. Let us call them (i) state-space
intervention (SI) when the state x0 is changed to x∗

0 and (ii)
parametric intervention (PI) when the individual parameter axx

is changed to a∗
xx or the coupling parameter ayx is changed to

a∗
yx . “Other equal conditions” imply that one keeps unchanged

an initial state y0 and either (i) a complete vector a or (ii) the
state x0 and a part of a (excluding axx or ayx). In practice, such
interventions can be called “virtual” [41] if they are performed
only in a mathematical model of a real-world object. The
term “intervention” is convenient but not compulsory: One
just compares the difference of the behaviors of Y -phase orbits
starting from the same y0 under the two different conditions.
Let us define “a dynamical causal effect” of SI or PI via a
difference between the two conditional distributions of Y .
At finite t > 0, it can be called an “orbital effect” (OE),
since it compares ensembles (“beams”) of evolving phase
orbits [Fig. 1(a)], or a “transient effect,” since the beams are
considered before they reach established (limit) distributions.
Another possibility is to assess a difference between those limit
distributions and, thereby, to define a stationary effect (SE).
The two types of interventions and the two types of effects
determine four families of coupling characteristics arranged
in the classification scheme of Fig. 1(b).

The first novel point is that PIs are explicitly included
into the framework and can be analyzed together with more
traditional SI-based measures. The second one is the explicit
distinction between SEs and short-term OEs, which is relevant
since strong effects of one type may not imply strong effects
of the other type, while either of them is often of interest.

A. State space interventions and orbital effects

The vector a is assumed unchanged throughout this subsec-
tion and omitted from all formulas for brevity. All coupling
characteristics are denoted here by F with a subscript indicat-
ing the direction of influence and a superscript reflecting the
type of distance used to compare the distributions ρt (y|x0,y0)
and ρt (y|x∗

0,y0). The superscript “KL” stands for the sym-
metrized KL distance Ds(p,q) = [D(p||q) + D(q||p)]/2. Let
us define

F KL
X→Y (t,y0,x0,x∗

0) =
√

Ds

(
ρt (y|x0,y0),ρt (y|x∗

0,y0)
)
. (4)

This is a local effect resolved with respect to y0, x0, and x∗
0. For

nonlinear systems and small t , it may strongly depend on the

types of
interventions

(I)
parametric
interventions (PI)

state space
interventions (SI)

types of
effects (E)

phase orbit
change (OE)

stationary
statistic change

(SE)
SI-OE
FX Y

PI-OE
PX Y

SI-SE
AX Y

PI-SE
SX Y

classification of causal
coupling characteristics

tt = 0 (instant of intervention
x0 to x*

0 or a to a*)

state of Y

y0

orbital effects
(OE, finite-time, transient)

stationary effects
(SE, limit)

(b)

(a)

FIG. 1. An illustration for causal coupling quantification: (a) two
phase orbit beams (they may either coincide or differ at infinity)
under two different conditions, where expectations are shown by
solid lines and 95% intervals with dashed ones; (b) classification of
coupling characteristics, where the notations are F to denote “effect,”
A to denote “attract,” S to denote “stationary,” and P to denote
“parametric.”

initial states. To have a more compact characterization, let us
derive more global measures via averaging or maximization
of the local effect.

Suppose that the system Z has a stationary distribution
ρst(z). Then a phase orbit visits diverse Y states according to
the stationary marginal distribution ρst(y). Returning to each
y after a long time, the system faces different simultaneous X

states according to the conditional distribution ρst(x|y). One
may say that in the course of time the system “experiences
self-interventions” and “compares” evolutions from different
initial X states, given a Y state. Let us draw y0 randomly from
ρst(y), x0 from ρst(x|y0), and x∗

0 from ρst(x|y0) independently
of x0. Then averaging of (4) over x∗

0 defines an orbital
effect F KL

X→Y (t,y0,x0) at the reference point x0,y0. Subsequent
averaging over x0 defines F KL

X→Y (t,y0) at y0. Finally, averaging
over y0 yields one of the basic characteristics used below,
which reads

F KL
X→Y (t) =

√〈(
F KL

X→Y (t,y0,x0,x∗
0)

)2〉
y0,x0,x∗

0
, (5)

whose values at different t quantify spatially averaged shorter-
or longer-term effects, i.e., manifestations of the coupling
X → Y at different times. If it reaches a maximum at finite
t , its temporal location shows how long it takes for a change
in X to become most pronounced in the values of Y . For a
compressed description of F KL

X→Y (t), let us use its maximum,

F KL
X→Y = sup

t>0
F KL

X→Y (t), τ
F,KL
X→Y = arg sup

t>0
F KL

X→Y (t). (6)
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For a more vivid interpretation of the KL distance and
F KL

X→Y measure, consider Gaussian distributions p(y) and q(y)
with expectations mp and mq and covariance matrices Cp and
Cq . Then, taking the integrals in the definition of Ds(p||q),
one finds

Ds(p,q) = Dmean(p,q) + Dvar(p,q), (7)

whereDmean(p,q) = [(mp − mq)′(C−1
p + C−1

q )(mp − mq)]/4
(where all the vectors are columns and the prime denotes
transposition) and Dvar(p,q) = (tr{C−1

p Cq} + tr{C−1
q Cp} −

2dY )/4 (tr{·} stands for the trace of a matrix, dY is the
dimension of y). For dY = 1, one gets

Ds(p,q) = (mp − mq)2
(
σ−2

p + σ−2
q

)
4

+ 1

4

(
σp

σq

− σq

σp

)2

,

where σ 2
p and σ 2

q are variances. For σ 2
p = σ 2

q , it further
simplifies to Ds(p,q) = (mp − mq)2/(2σ 2

p ). Thus, the first
term in the right-hand side of Eq. (7) makes sense of a
normalized squared difference of expectations and the second
term means a normalized squared difference of variances. If
one now defines

F KLmean
X→Y (t,y0,x0,x∗

0) =
√

Dmean(ρt (y|y0,x0),ρt (y|y0,x∗
0))

(8)

and

F KLvar
X→Y (t,y0,x0,x∗

0) =
√

Dvar(ρt (y|y0,x0),ρt (y|y0,x∗
0)), (9)

then it holds true [F KL
X→Y (t,y0,x0,x∗

0)]2 = [F KLmean
X→Y

(t,y0,x0,x∗
0)]2 + [F KLvar

X→Y (t,y0,x0,x∗
0)]2 for Gaussian condi-

tional distributions. In a general case, one can use the two
terms (8) and (9) as separate OE characteristics. The first
term (8) measures how far a phase orbit beam shifts, if x0 is
changed to x∗

0. Roughly, its numerical value shows the ratio
of the “beam shift” (difference of conditional expectations)
to the “beam width” (standard deviation of the conditional
distributions). The second term (9) measures the change in the
diffusion rate of a beam. Both terms can be averaged similarly
to (5) to define F KLmean

X→Y (t) and F KLvar
X→Y (t).

One can also use different normalizations of the ex-
pectation difference as compared to F KLmean

X→Y and differ-
ent ways of defining a global effect. A useful combi-
nation appears to be provided by a fixed-size interven-
tion ||�x0|| = ||x∗

0 − x0|| = const and the mean phase or-
bit shift F mean

X→Y (t,y0,x0,x∗
0) = ||mY (t,x0,y0) − mY (t,x∗

0,y0)||,
where mY (t,x0,y0) = ∫

yρt (y|x0,y0)dy and || · || denotes
Euclidean distance. Dividing F mean

X→Y (t,y0,x0,x0 + �x0) by
||�x0||, one gets an OE “per unit SI.” Imposing a unit ||�x0||
and maximizing F mean

X→Y (t,y0,x0,x0 + �x0) over all such �x0,
one finds the direction of a unit SI leading to the most pro-
nounced OE. Let us denote it with an additional superscript “u”
as F

u,mean
X→Y (t,y0,x0) = max||�x0||=1 F mean

X→Y (t,y0,x0,x0 + �x0),
define F

u,mean
X→Y (t) via averaging over (x0,y0) with ρst (z), and

get F
u,mean
X→Y and τ

F,u,mean
X→Y after maximization over t . Such a

non-normalized measure is appropriate when a value of Y in
physical units is important, e.g., a global surface temperature
in degrees.

Many well-known characteristics, including TE and MIT,
belong in essence to the SI-OE family and can be interpreted in

terms of “intervention-effect,” even though less directly than
the above F measures as discussed in Appendix A.

B. Parametric interventions and orbital effects

In order to assess how the Y component of a phase beam
changes in response to the PI “a is changed to a∗,” let us define
the respective OE similarly to Eq. (4) as

P KL
X→Y (t,z0,a,a∗) =

√
Ds[ρt (y|z0,a),ρt (y|z0,a∗)]. (10)

This is a local effect which depends on the initial state z0. A
global OE of the PI performed at a given value of a can be
defined via averaging over z0 with the distribution ρZ

st (z0,a):

P KL
X→Y (t,a,a∗) =

√〈[
P KL

X→Y (t,z0,a,a∗)
]2〉

z0
. (11)

If the PI consists in changing the coupling parameter ayx to
a∗

yx = 0, let us call it “coupling PI” (CPI). Then the quantity
(10) assesses how different Y evolutions are from the same
state for a given ayx and zero coupling. Despite it being a very
direct quantification of the coupling role, in practice other
ideas are often used instead. Thus, for the system (3) with
linear functions fx and fy one may consider a change in the
individual X parameter �xx to �∗

xx = 0 as assumed, in fact,
in the definition of spectral Granger causality (Sec. II C). Let
us call this intervention “noise level PI” (NPI). There is a
similarity between the CPI and the NPI, e.g., their stationary
effects coincide in case of the unidirectional coupling X → Y

in the system (3) with linear functions fx and fy . However, there
are also significant differences between finite-time OEs of the
CPI and NPI, especially for bidirectionally coupled systems, as
shown below. The CPI measure is considered here as the basic
one and denoted as just P KL

X→Y (t,a). The NPI is distinguished
by a superscript as P

KL,noise
X→Y (t,a).

One might also average the measure (11) over a range
of a and a∗ values. However, the simpler comparison of
a given coupling to zero coupling seems to be sufficiently
informative. For brevity, let us omit the a dependence and
write just P KL

X→Y (t) and P
KL,noise
X→Y (t) if it does not lead to

confusion. The maximal OE is P KL
X→Y = maxt�0 P KL

X→Y (t) at
τ

P,KL
X→Y = arg maxt�0 P KL

X→Y (t). One can further define the CPI-
OEs P KLmean

X→Y and P KLvar
X→Y by using the two-term representation

(7) instead of the KL distance in (10), and the NPI-OEs
P

KLmean,noise
X→Y and P

KLvar,noise
X→Y in the same way. Instead of aver-

aging over z0 in (11), maximizing over z0 gives, e.g., a “unit
initial state” PI-OE P

u,mean
X→Y (t) = max||z0||=1 ||mY (t,z0,a) −

mY (t,z0,a∗)||, which is an analog of F
u,mean
X→Y (t) for linear

systems as shown below.
PI-OE measures have in fact been used in studies of

the global surface temperature evolution under different
circumstances, e.g., simplified models are fitted to data in
Refs. [20,47] and simulated under various CO2 emission sce-
narios (PIs) over decades into the future to compare the model
responses (OEs). However, PIs have not been systematically
considered for coupling characterization, making the concept
of virtual interventions incomplete.

062921-5



DMITRY A. SMIRNOV PHYSICAL REVIEW E 90, 062921 (2014)

C. Stationary effects

Finite-time OEs can be complemented with their limit
(stationary) counterparts by taking limt→∞ in the above
formulas for local OEs. Thus, a stationary effect of a PI reads

SKL
X→Y (z0,a,a∗) = lim

t→∞ P KL
X→Y (t,z0,a,a∗). (12)

If the system Z has a single stationary distribution for each
of the two parameter values, then the quantity (12) does not
depend on z0, so one may write just SKL

X→Y (a,a∗) to quantify
the difference between those distributions. It can be rewritten
for Gaussian processes and the representation (7) as the sum of
changes in expectation and covariance matrix of the stationary
distribution of y. In particular, the change in covariance matrix
remains the only SE for zero mean Gaussian processes:

SKL
X→Y (a,a∗) = SKLvar

X→Y (a,a∗) ≡
√

Dvar
(
ρY

st (y|a),ρY
st (y|a∗)

)
.

(13)

For a one-dimensional y, SKLvar
X→Y (a,a∗) = 1

2
|σ 2

y (a)−σ 2
y (a∗)|

σy (a)σy (a∗) , where

σ 2
y is the variance of y.

It is useful to consider a simpler normalization and a signed

quantity to define a SE as Svar
X→Y (a,a∗) = σ 2

y (a)−σ 2
y (a∗)

σ 2
y (a∗) . Under

a CPI, Svar
X→Y is positive (negative) if the variance of y at a

given coupling ayx is greater (less) than that in the uncoupled
case, that is, Svar

X→Y shows how strongly a given nonzero ayx

changes (either increases or decreases) the variance of Y as
compared to its free dynamics at a∗

yx = 0. Similarly, one

can define S
KLvar,noise
X→Y and S

var,noise
X→Y to quantify SEs of NPI,

i.e., to compare the variance of y at a given �xx in Eq. (3)
to that at �∗

xx = 0. Note that one often tries to assess “to
what extent the observed variance of y is determined by the
influence of X” [19], implying that the influence of X increases
the variance of y as compared to the uncoupled dynamics.
However, Svar

X→Y may well be negative (Appendix D), which
requires a reformulation of the very question. At that, the
quantity S

KLvar,noise
X→Y is positive under more general conditions

but answers a different question regarding “to what extent
the variance of y is determined by the noise source in the
system X.” The spectral Granger causality also compares the
actual power spectrum of y to that for �∗

xx = 0 (Sec. II C) and
is, therefore, similar to S

KLvar,noise
X→Y . Thus, one can interpret the

former as a stationary effect of NPI, which assesses a difference
between multidimensional probability distributions of the
process y(t). Such a clarification of meaning of any coupling
measure in terms of “intervention-effect” is an advantage of
the suggested perspective.

More generally, the PI-SE family relates to any analysis of
changes in an established dynamical regime under variation of
control parameters, including such basic concepts as dynami-
cal regime charts and bifurcation or synchronization diagrams
(e.g., Ref. [48]). The recent “chronotaxicity analysis” [8] also
studies stationary characteristics (a fixed-point stability) under
a specific PI (zeroing noise in the driven system). Thus, a bulk
of theoretical characteristics well known in other contexts can
be incorporated into the suggested framework.

Finally, stationary effects of SIs [AX→Y in Fig. 1(b)]
are defined as AKL

X→Y (y0,x0,x∗
0) = limt→∞ F KL

X→Y (t,y0,x0,x∗
0)

or A
u,mean
X→Y (y0,x0,x∗

0) = limt→∞ F
u,mean
X→Y (t,y0,x0,x∗

0), similarly
to the above considerations. If the system Z has a single
stationary distribution (an ergodic invariant measure), these
A quantities are zero. If several stationary regimes exist, the
dependencies of A’s on y0,x0,x∗

0 show whether a change in x0

can “throw” Y into the “basin of attraction” of another regime
(Appendix E). Thereby, the topics of basin boundaries [49]
and stability to large perturbations [50] become related to the
causal coupling quantification.

To summarize, diverse meaningful characteristics of causal
couplings are introduced within the single framework and
many others are shown to fit into it. Their numerical values
acquire a definite interpretation as particular effects of certain
interventions.

IV. NUMERICAL EXAMPLES

This section addresses the following concrete questions.
Is it possible to replace diverse coupling characteristics with
a single one? In other words, does there exist a coupling
quantifier Q such that for any two pairs of systems (X1,Y1) and
(X2,Y2) from class (2), the relationship QX1→Y1 > QX2→Y2

implies that “the coupling X1 → Y1 is stronger than that
X2 → Y2” according to any meaningful characteristic? If yes,
Q can be used universally to compare coupling strengths
across pairs of systems. If no, the second question arises: Are
diverse characteristics from the four families closely linked
at least within certain classes of systems? If yes, one can
develop “relatively universal” quantifiers, applicable under the
respective conditions. In order to answer these questions, the
F , P , and S quantities are analyzed below for a benchmark
class of stochastic systems:

ẋ = −αxx + kxyy + ξx(t), ẏ = −αyy + kyxx + ξy(t),

(14)

where x and y are state variables, αx and αy determine
characteristic (relaxation) times of the systems X and Y ,
kxy and kyx are coupling coefficients, and [ξx(t),ξy(t)] is a
bivariate Gaussian white noise with �xy = 0. A unidirectional
coupling X → Y (kxy = 0) is considered in Secs. IV A, IV B,
and IV C. For these systems, all the conditional distributions
ρt (z|z0) are Gaussian, the dynamical causal effects are found
exactly via solving ordinary differential equations for the
first and second conditional moments (Appendix B), and
the results appear sufficient to answer the above general
questions (Sec. IV D). A higher-dimensional example is
given in Appendix C, bidirectional coupling is discussed
in Appendix D, and nonlinear Langevin-like equations are
considered in Appendix E.

A. SI-OEs and PI-SEs: Irreducible to
a single coupling quantifier

For the system (14) with kxy = 0, one derives
F

u,mean
X→Y (t) = |kyx |(e−αy t − e−αx t )/(αx − αy) with a maximum

time τ
F,u,mean
X→Y = [ln (αx/αy)]/(αx − αy), see Figs. 2(b) and

2(d). If the two relaxation times differ strongly, one gets
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FIG. 2. Causal coupling characteristics for the system (14) with
kxy = 0 and the following other parameters: [(a) and (b)] αy = 1,
�yy = 2, with solid lines for αx = 1, �xx = 2, kyx = 1, short dashes
for αx = 10, �xx = 20, kyx = 2, and long dashes for αx = 10, �xx =
20, kyx = 4; [(c) and (d)] αx = 1, �xx = 2, with solid lines for αy =
0.1, �yy = 0.2, kyx = 0.2, and dashed lines for αy = 10, �yy = 20,
kyx = 4.

F
u,mean
X→Y ≈ |kyx |/ max {αx,αy}, while

τ
F,u,mean
X→Y ≈ ln (max {αx,αy}/ min {αx,αy})

max {αx,αy}

is closer to the relaxation time of the faster system. Since
F KLvar

X→Y (t) = 0 for the stationary linear system, one gets
F KL

X→Y (t) = F KLmean
X→Y (t). The maximum time τ

F,KL
X→Y is less than

τ
F,u,mean
X→Y [Figs. 2(a) and 2(b)], because F KL

X→Y (t) is proportional
to F

u,mean
X→Y (t) divided by the conditional variance which rises

with t .
Figure 2 shows that the orbital effects depend on t ,

exhibiting clear maxima. Hence, if one computes the effects
at a different time t (e.g., at a certain sampling interval �t),
the role of coupling may be evaluated rather differently. In
particular, let us compare the results for the system (14) at
two sets of parameter values. The first case is αx = αy = 1,
�xx = �yy = 2, kyx = 1 [solid lines in Figs. 2(a) and 2(b)].
The second case corresponds to a faster system X (αx =
10, �xx = 20) and a greater coupling coefficient kyx = 2
(short-dashed lines in Figs. 2(a) and 2(b)]. The stationary
variance of the driving signal x is the same in both cases:
σ 2

x = �xx/(2αx) = 1. Figures 2(a) and 2(b) show that F KL
X→Y (t)

and F
u,mean
X→Y (t) at t 
 0.1 in the second case are twice as large

as those in the first one. However, the OEs at t ≈ 1 and the
maximal OEs F KL

X→Y and F
u,mean
X→Y are several times greater in

the first case. Hence, the influence of the faster system X is
less essential in a longer term despite a greater kyx (at the same
σ 2

x ). This is even more evident in terms of SEs. Namely, one
has σ 2

y,0 = �yy/(2αy) = 1, where σ 2
y,0 denotes the variance of

y in case of uncoupled X and Y . Then, the stationary variance

of y reads

σ 2
y = σ 2

y,0 + k2
yx�xx

2αxαy(αx + αy)
.

Its relative increase as compared to σ 2
y,0 is Svar

X→Y =
k2
yx�xx

2αxαy (αx+αy )σ 2
y,0

. Thus, one gets Svar
X→Y = 1/2 in the first case

and 4/11 in the second one, i.e., the SE is considerably weaker
in the second case, despite greater short-term OEs.

Larger maximal OEs F KL
X→Y and F

u,mean
X→Y do not always

imply a larger Svar
X→Y as well. Indeed, consider the third case:

kyx = 4 and all other parameters are the same as in the second
case. Then Svar

X→Y = 16/11 which is much greater than 1/2
in the first case, while F KL

X→Y and F
u,mean
X→Y [long-dashed lines,

Figs. 2(a) and 2(b)] are still less than those in the first case.
A larger F KL

X→Y at smaller τ
F,KL
X→Y does not assure a

larger Svar
X→Y as well. Indeed, consider the fourth case of

αx = 1,�xx = 2, αy = 0.1,�yy = 0.2, kyx = 0.2 [solid lines
in Figs. 2(c) and 2(d)] and the fifth case of the same system
with a faster Y (αy = 10,�yy = 20) and a greater kyx = 4
(dashed lines in Figs. 2(c) and 2(d)]. Then F KL

X→Y and F
u,mean
X→Y

are greater in the fifth case, but Svar
X→Y = 1.6/11 in the fifth

case is less than 4/11 in the fourth one. Hence, the five cases
are arranged in quite different orders according to different
coupling characteristics.

Diverse possible orderings of the OEs are further illustrated
by their dependencies on α for αx = α, αy = α−2, �xx = 2αx ,
�yy = 2αy , kyx = 0.5 [Fig. 3(a)] and all the same but fixed
�yy = 2 [Fig. 3(b)]. The quantities F

u,mean
X→Y , F KL

X→Y , and SKL
X→Y

may all rise [Fig. 3(a), small α]. F KL
X→Y and SKL

X→Y may rise
while F

u,mean
X→Y decreases [Fig. 3(a), large α]. Fu,mean

X→Y and SKL
X→Y

may rise while F KL
X→Y decreases [Fig. 3(b), intermediate α].

Thus, a stronger effect of one type may be accompanied by
weaker other effects. It means that these dynamical effects
characterize different aspects of how the coupling X → Y

manifests itself in the dynamics, evidencing irreducibility of
diverse coupling characteristics to any single one.

B. SI-OEs and PI-SEs: Interpretations of numerical values

For the system (14) with kxy = 0, the root-mean-squared
value of the coupling term kyxσx can be called “driving
amplitude,” which is also a possible coupling characteristic.
It can be shown to equal

√
limt→0 [F mean

X→Y (t)]2/(2t), where
F mean

X→Y (t) is the averaged F mean
X→Y (t,y0,x0,x∗

0), i.e., this driving
amplitude also belongs to the SI-OE family. In practice,
sensitivity of any coupling characteristic to changes in the
driving amplitude is often an expected and desirable property.
Let us check whether F ’s and S’s rise with the driving
amplitude or saturate.

Figures 3(e) and 3(f) show F ’s and S’s versus kyx and
Figs. 3(i) and 3(j) show them versus

√
�xx ; recall that√

�xx/(2αx) = σx for kxy = 0. One can see that F
u,mean
X→Y is

linear with respect to kyx over the entire range but does
not depend on �xx , τ

F,u,mean
X→Y being independent of both

parameters. In contrast, F KL
X→Y rises with

√
�xx [Fig. 3(i)].

Division by the conditional variance of y used in F KL
X→Y

(Sec. III A) is the reason for a slower increase of F KL
X→Y

at greater driving amplitudes [Figs. 3(e) and 3(i)], since the
denominator rises with kyx in Fig. 3(e) and with

√
�xx in
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FIG. 3. Causal coupling characteristics for the system (14) with kxy = 0: the first row for kyx = 0.5, αx = α, �xx = 2αx , αy = 1/α2 and
[(a) and (c)] �yy = 2αy or [(b) and (d)] �yy = 2; the second row for αx = αy = 1,�xx = �yy = 2; the third row for αx = αy = 1, �yy = 2,
kyx = 0.5. Thin solid lines show F KL

X→Y and P KLmean
X→Y ; dashed lines, SKL

X→Y and P KLvar
X→Y ; thick solid lines, F

u,mean
X→Y ; rhombs, P KL

X→Y . Pluses show the
maximal rX→Y and crosses the fixed-time rX→Y (�t = 1), see Appendix C.

Fig. 3(i). Therefore, F KL
X→Y is less sensitive to changes in large

driving amplitudes than in small ones. The maximum time
τ

F,KL
X→Y decreases with the driving amplitude [Figs. 3(f) and

3(j)] to provide the smaller denominator. The SE SKL
X→Y is

roughly linear in respect of the driving amplitude at its larger
values, being weakly sensitive (quadratic) to small amplitudes
[Fig. 3(e) and 3(i)]. Thus, the three quantities have again their
own conditions for a higher sensitivity to the driving amplitude.
None of them is always superior to the others.

To illustrate the last thesis with well-known approaches,
consider the two above-mentioned (Sec. II A) coupling
characteristics. First, MIT here equals (1/2)k2

yx(�t)2�xx/�yy

for a sufficiently small sampling interval �t . Thus, it depends
on �t , which can make comparison of the MIT values across
different pairs of systems difficult to interpret in practice,
where the ratios between sampling intervals and intrinsic time
scales can be arbitrary. Second, the local effect of Eq. (12) in
Ref. [45] represents the ratio of the coupling term to the internal
dynamics term. In the integral form, it is equal to kyxσx/(αyσy)
and does not depend on any sampling interval. However,
consider an arbitrarily fast system X (almost infinite αx) at
a fixed driving amplitude (σx = const, no matter how large),
which takes place for �xx ∝ αx → ∞ (or just very large). Then
one can easily show that all of the above SEs and finite-time

OEs tend to zero; see, e.g., the formulas in the beginning of
Sec. IV A. Hence, such coupling X → Y does not result in
any visible effect in the dynamics of Y , so any intuitively clear
characteristic should be negligibly small. However, the local
effect considered exhibits a counterintuitive behavior. It does
not tend to zero, but remains at a constant value, which can be
kept arbitrarily large. Thus, despite both characteristics being
considered meaningful and useful, they may be inappropriate
in certain situations. It illustrates again that any single
coupling quantifier cannot be universally applicable.

An important question is whether a concrete numerical
value of a coupling characteristic, e.g., F

u,mean
X→Y ≈ 0.8 in

Fig. 2(b), evidences a “strong” coupling. An obvious answer
is that it depends on what we compare this value with. Still, a
more informative reply can be achieved via a comparison of
the observed value to all possible values of the characteristic
within a certain class of systems. For example, let us consider
how large F

u,mean
X→Y can be over all unidirectionally coupled

pairs (14) with the same driven system Y (αy = 1,�yy = 2),
the same kyx = 1, and the same σ 2

x = �xx/(2αx) = 1, i.e., over
all systems X with the same variance of x but different noise
levels and relaxation times. The largest F

u,mean
X→Y is achieved at

αx → 0 (i.e., for the slowest X) and equals |kyx |/αy = 1, while
the smallest value is zero at αx → ∞ (i.e., for the fastest X).
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FIG. 4. Causal coupling characteristics for the system (14) with
kxy = 0, αx = αy = 1,�xx = �yy = 2 and (a) kyx = 0.5 or (b) kyx =
3. Thick solid line in panel (a) represents the coinciding plots for
F KL

X→Y (t), F
u,mean
X→Y (t), and P

u,mean
X→Y (t); other plots are marked with the

respective letters.

Thus, the value of F
u,mean
X→Y ≈ 0.8 is closer to the maximal one,

i.e., such coupling is strong enough for the class of systems
considered with respect to the given characteristic. This is a
constructive way to judge about the coupling “strength.”

C. PI-OEs and a link between SI-OE and PI-SE families

Despite rather different meanings of various coupling char-
acteristics, such as SI-OEs and PI-SEs, their plots demonstrate
a similar monotone behavior in some domains, see, e.g., α > 6
in Fig. 3(b) and α > 2.5 in Fig. 3(e). It implies that quite
different coupling quantifiers may be tightly interrelated under
certain conditions. A deeper link among the SI-OE and PI-SE
families through the PI-OE characteristics is revealed below.

Figure 4(a) presents F and P characteristics for the system
(14) with kxy = 0. The “unit initial state” OE of the CPI (i.e., of
k∗
yx = 0) appears to equal P u,mean

X→Y (t) = F
u,mean
X→Y (t) as shown by

the thick solid line. Indeed, the conditional expectation of y(t)
is the sum of two time-dependent functions with coefficients
x0 and y0 [see Eq. (B2) in Appendix B], so zeroing kyx at x0 =
1,y0 = 0 (corresponding to the maximal OE over all ||z0|| = 1)
produces the same mean phase orbit shift as that for the unit
SI at fixed kyx .

The quantity P KL
X→Y (t) [thin solid line in Fig. 4(a)] has con-

tributions from the two components P KLmean
X→Y (t) and P KLvar

X→Y (t)
[dashed lines in Fig. 4(a)]. P KL

X→Y (t) coincides with the first
one at small t and with the second one at large t . In its turn,
P KLmean

X→Y (t) behaves similarly to the SI-OE F KL
X→Y (t) [thick line

in Fig. 4(a); numerical values of P KLmean
X→Y (t) and F KL

X→Y (t) differ
just by the factor of

√
2 due to averaging over an initial state in

P and over a difference of initial states in F ], while P KLvar
X→Y (t)

at large t approaches the PI-SE SKL
X→Y . Thus, P KL

X→Y (t) traces
a “transition” between the SI-OE and PI-SE families under an
increase in t . Next, the maximal value P KL

X→Y is determined
mainly by P KLmean

X→Y at small kyx [solid line and short dashes
in Fig. 4(a)] and approaches P KLvar

X→Y = SKL
X→Y at greater kyx

[solid line and long dashes in Fig. 4(b)]. Thus, P KL
X→Y also

links the SI-OE and PI-SE characteristics as its limiting cases.
Therefore, P KL

X→Y combines the best sensitivities to the driving
amplitude from both families and exhibits roughly linear
sensitivity to kyx over the whole range [Fig. 3(g), rhombs]
coinciding with P KLmean

X→Y (solid line) at small kyx and with
SKL

X→Y (dashed line) at large kyx . Similarly, P KL
X→Y combines

the best sensitivities of F KL
X→Y and SKL

X→Y to changes in the
noise level �xx [Fig. 3(k)] and in α [Fig. 3(c)]. The maximum
time τ

P,KLmean
X→Y [Figs. 3(h) and 3(l), solid lines) decreases with

kyx and �xx similarly to τ
F,KL
X→Y , but τ

P,KL
X→Y increases [Figs. 3(h)

and 3(l), rhombs] since the contribution from P KLvar
X→Y exceeds

that from P KLmean
X→Y at large kyx and �xx .

Note that the NPI (�∗
xx = 0) in any linear system gives

P
KLmean,noise
X→Y (t) = 0, because it does not shift a phase orbit

beam on average, but changes its diffusion rate [see Eqs. (B2)
and (B3)]. Hence, P

KL,noise
X→Y (t) = P

KLvar,noise
X→Y (t). The CPI-

OE P KL
X→Y (t) includes a nonzero component P KLmean

X→Y (t) and
therefore provides a richer coupling characterization than the
NPI-OE P

KL,noise
X→Y (t). Hence, the NPI-based measures, such as

the widely used spectral Granger causality [31], may well be
less informative than the CPI-based ones could be.

To summarize, this subsection has illustrated nontrivial
links between apparently different coupling characteristics,
which may be quite close to each other or differ strongly,
depending on the properties of coupled systems under consid-
eration.

D. Generality of the results

The set of F , P , and S characteristics presented for the
class of systems (14) suffices to support and illustrate two
rather general conclusions: irreducible diversity of coupling
characteristics and nontrivial interrelations among them. Con-
sidering a larger set of coupling quantifiers or a broader class
would only confirm and enrich these claims. However, even
some concrete results should be the same for wider classes of
systems as discussed below.

First, the “bell” shape of the temporal dependency
F

u,mean
X→Y (t) exhibiting an initial rise and a further decrease

(Fig. 2) is common for all systems (2) with nonzero coupling
X → Y and single stationary distribution, since F

u,mean
X→Y (t) is

then inevitably zero at t = 0 and at t → ∞ being nonzero at
least at some finite t . It is illustrated for higher-dimensional
systems in Appendix C [Fig. 6(a)] and for bidirectional
coupling in Appendix D (Fig. 7). Similarly, a bell-shaped
dependence of the normalized quantity F KL

X→Y (t) holds for any
Langevin-like system (3) with single stationary distribution,
since the white noise provides normalization which gives
vanishing F KL

X→Y (t) at t → 0 as well.
Second, a tight mutual dependence between P KL

X→Y (t)
and F KL

X→Y (t) at small t holds, at least, for any
Langevin-like system (3) with additive coupling. As an
illustration, consider one-dimensional y with fy(x,y) =
h(y) + kyxg(x) in Eq. (3). At small t and any kyx ,
one has approximately Gaussian conditional distribu-
tions with var[y(t)|x0,y0] ≈ �yyt . Then one derives from

(4) that F KL
X→Y (t) ≈ |kyx |

√
〈[g(x0) − g(x∗

0)]2〉x0,x∗
0
/(2�yyt) =

|kyx |
√

var[g]/(�yyt). Similarly, one gets from (10):
P KL

X→Y (t) ≈ |kyx |
√〈g2(x0)〉x0/(2�yyt). If the coupling term

has zero mean 〈g(x0)〉x0 = 0, then F KL
X→Y (t) ≈ √

2P KL
X→Y (t).

Everything is the same for higher-dimensional systems with
additive coupling. For other classes, the correspondence
between short-term F (t) and P (t) may be not so close
but is still expected to hold approximately. Next, P KL

X→Y (t)
tends to the PI-SE at t → ∞ by definition. Thus, the PI-OE
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characteristic again links the SI-OE and PI-SE families for
quite a broad class of systems.

Overall, the suggested framework applies to the basic class
(2), which is rather general as noted in Sec. III. Therefore,
it shapes the broad field of causal coupling quantification
allowing to interpret various characteristics in a unified
manner. In particular, the proposed set of time-resolved and
stationary “dynamical causal effects” is shown to be a flexible
toolkit, more informative than any single coupling quantifier.

V. DISCUSSION

To complete the consideration, let us discuss estimation
issues and summarize both current gains from the suggested
framework and its implications for a further research.

A. Estimation of dynamical causal effects

If a time series of complete state vectors x(t) and y(t) is
recorded in an established regime at a given a, the SI-OE mea-
sures such as F KL

X→Y can be estimated directly following their
definition, where averaging over the stationary distribution is
replaced by averaging over time. No mathematical model is
needed, apart from the assumption that x(t) and y(t) specify a
complete state of the combined system in the sense of Markov
property.

Temporal averages may be insufficient to estimate other
global characteristics. Thus, for the quantity F

u,mean
X→Y , some

imposed values of x∗
0 entering its definition (4) may be absent

from observed data. An example is given by observations of a
weakly perturbed synchronization regime if one is interested
in SI-OEs for stronger perturbations. The first possibility is
to record another time series under stronger interventions
as it was done for coupling detection in Refs. [1,10,51].
The second possibility is to fit a mathematical model from
a certain class to the data (e.g., with the aid of Markovian
approximation [52], Bayesian inference [8,10,53], etc.) and
estimate SI-OEs by using virtual SIs in the model. In such
a case, the model equations are, in essence, extrapolated
to unobserved domains of the state space. Validity of the
extrapolation can be justified only by additional experiments
or a priori theoretical knowledge. Still, it is worth noting
that regimes close to synchrony represent a difficult case
for causal coupling detection, see, e.g., Refs. [9,33]. The
suggested framework may not help to detect couplings in such
a case but may assist in avoiding misinterpretations of coupling
estimation results. If incomplete states are observed, SI-OEs
can be estimated again via model fitting and virtual SIs.

The SI-SE characteristics can be directly estimated from
a time series, only if it contains perturbations throwing the
state of the system between different basins of attraction.
Otherwise, model fitting and extrapolation to the domains of
unobserved attractors are necessary. The PI-OE and PI-SE
characteristics cannot be directly estimated from a time series
recorded at a single value of a, since their definition compares
the dynamics at two different parameter values. Hence, their
estimation requires either real PIs (as implemented in Ref. [54]
for coupling detection) or model fitting and virtual PIs. In the
latter case, model equations are extrapolated to unobserved
domains in the parameter space.

All such extrapolations of an empirical model can be a
source of inaccuracies and errors. However, a model-based
component is inevitably involved in interpretations of appar-
ently model-free characteristics as well (Sec. II B). Explicit
model fitting may be advantageous, since it clearly shows
what can be potentially corrected in the analysis, if necessary.

B. Current gains and implications for further studies

The framework of dynamical causal effects integrates many
previously known and newly introduced causal coupling char-
acteristics. In particular, transfer entropy and other Granger
causality measures, momentary information transfer, informa-
tion flow, and phase dynamics modeling approaches [33] either
belong directly to the SI-OE family or can be considered as
approximations of its representatives (Appendix A). Spectral
Granger causality [31], multiple regression-based methods
[19], and various synchronization and bifurcation diagrams
belong to (or may represent) the PI-SE family. The PI-OE
family includes, in particular, the long-term causality approach
[20] and various model-based studies such as assessments
of climate sensitivity to emission scenarios [47]. The SI-SE
family relates to the wide fields of basins of attractions
[49] and stability to large perturbations [50]. The suggested
perspective provides all these approaches with a unified
interpretation in terms of “intervention-effect.” Via an analysis
of their distinctions and interrelations, it is revealed that
no single quantity is universally applicable to characterize
“coupling strength.” In contrast, diversity of causal coupling
characteristics is necessary to answer many practical questions
about dynamical role of couplings. Thus, instead of coupling
strength estimation, it is often more fruitful to study how the
coupling works in the dynamics.

The suggested perspective also reveals that a completely
model-free approach to causal coupling quantification uni-
versally applicable to compare “coupling strengths” across
pairs of different systems is not feasible. First, the very
detection of causal couplings as well as an interpretation of
their quantitative measures imply certain limitations imposed
on the underlying evolution laws, i.e., model assumptions
(Sec. II). Second, in order to say whether a coupling is strong
according to a certain measure, it is meaningful to compare an
estimated value of that measure to its possible values over a set
of situations, i.e., to perform an analysis within a model class
(Sec. IV B). In general, any causal coupling inference seems
to be inevitably model based. However, deeper relationships
among various coupling characteristics for specific classes
of systems may provide “relatively model-free” coupling
quantifiers that are most informative and relevant under certain
realistic conditions. The analysis of MIT in Ref. [22] may be
considered a step in this direction.

It is worth noting that existence of the finite-time max-
imum of F KL

X→Y (5) at τ
F,KL
X→Y explains why one-step-ahead

prediction-based techniques for coupling detection may be
less sensitive to weak couplings than multi-step-ahead ones
[14,24]. Indeed, a prediction time close to τ

F,KL
X→Y must provide

maximal sensitivity due to maximal separation of the future
conditional distributions. Such a temporal dependence of
coupling quantifiers is often underestimated in time series
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analysis, while it is clearly interpretable from the suggested
perspective.

More complicated relationships among various character-
istics are expected for bidirectional couplings (Appendix D),
where the suggested perspective promises to be especially
useful for detailed coupling characterization and proper
interpretation of the results.

Deterministic dynamical systems represent an important
special case of the basic class (2): They exhibit Dirac-delta
conditional distributions. As a result, the KL distance (4)
becomes infinitely large so only the mean OEs take finite
values and can be informative. However, if one considers initial
states specified up to a certain finite error (coarse-grained state
spaces), the conditional distributions become smeared and the
above formalism applies. Still, deterministic systems may have
their own peculiarities deserving a special study.

As for possible extensions of the class (2), which is the core
of the suggested framework, the whole consideration readily
generalizes to several coupled systems. Then the framework
should be relevant to introduce clear distinctions between
various possible interventions and effects, which are often
lacking. Next, infinite-dimensional states can be considered in
the same manner, as soon as norms and distributions in the
infinite-dimensional state space are defined. The suggested
framework provides a relevant perspective for such studies.

VI. CONCLUSIONS

This work suggests a general conceptual framework for
quantification of causal couplings between evolving sys-
tems based on finite-dimensional state space representation.
It unifies different approaches considering them from the
“intervention-effect” perspective and arranging them into four
families according to two types of virtual interventions (state
space and parametric) and two types of dynamical causal
effects (orbital and stationary). Multiple well-known measures
(transfer entropy, momentary information transfer, spectral
Granger causality, long-term causality, etc.) are shown to
represent one of those families.

It is shown that a set of diverse characteristics is relevant
to quantify different aspects of coupling manifestations in
dynamics. As a representation, novel “intervention-dynamical
effect” characteristics are consistently introduced within each
family. Nontrivial interrelations among various characteristics
and their important properties, such as nonmonotone temporal
dependence of the orbital effects, are revealed. In general,
different characteristics are not interchangeable and may not
be unambiguously replaced with a single universal quantifier.
Together, they reveal “how the coupling works in dynamics”
rather than “how strong the coupling is,” reformulating the
very question about the coupling strength.

It is argued that any attempt to develop a model-free
approach to causal coupling quantification is, in essence,
oriented to a certain class of systems and inevitably involves
model assumptions to interpret the results. To avoid misinter-
pretations originating from the lack of explicit formulation
of such assumptions underlying an apparently model-free
technique, a model-based approach seems to be relevant. Yet
it is useful to search for “relatively universal” (applicable to a
wider class) and still-informative characteristics [22].

Overall, the suggested framework shapes the broad field
of causal coupling quantification and can guide a researcher
through multiple ideas and techniques to choose an appropriate
tool for a problem at hand, refusing the idea of a single,
universal, and model-free “coupling strength” quantifier.
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APPENDIX A: MEMBERS OF THE SI-OE FAMILY

This Appendix argues that several well-known measures,
including TE-based ones, belong to the SI-OE family. First,
from the definition of the complete TE (Sec. II A) and Eqs. (4)
and (5), one can show that F KL

X→Y (t) over a sampling interval
t = �t is equal to

F KL
X→Y (�t) = √

TX→Y + T ∗
X→Y , (A1)

where T ∗
X→Y = 〈D(ρ(yn|yn−1))||ρ(yn|xn−1,yn−1)〉xn−1,yn−1 is

the averaged KL divergence between the same distributions
as those in TX→Y but taken in the reverse order. Hence, the TE
can be derived as a component of F KL

X→Y (�t), i.e., belongs to
the SI-OE family.

If the relative difference between ρ(xn−1,yn|yn−1) and
ρ(xn−1|yn−1)ρ(yn|yn−1) is uniformly small (much less than
unity), one derives T ∗

X→Y ≈ TX→Y directly from the definitions
and, thereby, the simple relation F KL

X→Y (�t) ≈ √
2TX→Y .

However, T ∗
X→Y gets large if there are domains in the space

(xn−1,yn), where the joint probability density ρ(xn−1,yn|yn−1)
is close to zero while both individual densities ρ(yn|yn−1) and
ρ(xn−1|yn−1) are not small. Hence, the value of F KL

X→Y (�t)
is more sensitive than TX→Y to such couplings, which make
some domains in (xn−1,yn) “depopulated” at a certain yn−1. In
particular, an increase in coupling coefficient can make some
domains less populated in such a way that F KL

X→Y (�t) tends
to infinity while TX→Y saturates at a finite value or increases
less rapidly (Appendix C). If the joint probability density is
exactly zero in a certain domain, F KL

X→Y (�t) becomes infinite.
For such cases, one can use F KLmean

X→Y (�t) (8) and F KLvar
X→Y (�t)

(9) instead of F KL
X→Y (�t).

The apparent TE along with its modifications [13,24,30] as
well as MIT, information flow [41], “local information flow”
[42], and linear Granger causality measures [25] are justified
as causal coupling characteristics, because they are versions or
approximations of the complete TE. Hence, they relate to the
SI-OE family as well. In particular, MIT corresponds to the
distribution of x∗

0 in Eq. (5) centered around x0 with variance
determined by the noise ξx realization over an interval �t .
The phase dynamics modelling-based characteristics [33] are
similar to the above approaches with a distinction that phases
are used as the only state variables, which are sufficient to
represent states of oscillatory systems under general conditions
(see, e.g., Ref. [48]). Thus, one should attribute these measures
to the SI-OE family.

Widely used coupling characteristics based on time-delay
embedding and nearest-neighbor statistics [9] do not fit well
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into the “intervention-effect” framework. They use the fact
that for a weak unidirectional coupling X → Y between
low-dimensional deterministic systems [5], a time-delay-
embedded vector from the driving system X is a unique
function of a simultaneous time-delay-embedded vector from
Y . Concrete measures of the X → Y influence quantify
closeness of the X vectors corresponding to close Y vectors.
Hence, their numerical values characterize quite a specific
consequence of the causal coupling. They seem to be related
to the SI-OE family, since only an interdependence between
simultaneous pieces of the two time series is analyzed.
However, such a relationship deserves further study.

APPENDIX B: COMPUTING DYNAMICAL
CAUSAL EFFECTS

This Appendix gives concrete formulas to compute dynam-
ical causal effects for a general linear stochastic system

ż = Az + ξ (t), (B1)

where ξ is Gaussian white noise with zero mean and covariance
〈ξ (t1)ξ ′(t2)〉 = �δ(t1 − t2), the prime denotes transposition. At
z(0) = z0, the conditional distribution ρt (z|z0) at any t > 0
is Gaussian with expectation mz|z0 (t) and covariance matrix
Czz|z0 (t) given by

ṁz|z0 (t) = Amz|z0 (t) (B2)

and

Ċzz|z0 (t) = ACzz|z0 (t) + Czz|z0 (t)A′ + �, (B3)

where mz|z0 (0) = z0 and Czz|z0 (0) = 0. These are linear equa-
tions which can be solved via either algebraic tools or nu-
merical integration. In particular, the conditional expectation
is a linear function of the initial condition mz|z0 (t) = B(t)z0,
and the matrix B(t) can be found by integrating Eq. (B2) for
several (dZ) unit initial vectors. Separating two components
x and y of the vector z, one gets B(t) consisting of the
blocks Bxx(t), Bxy(t), Byx(t), Byy(t), where Byx(t) determines
a dependence of the expectation of y(t) on x0. Czz|z0 (t)
consists of the “on-diagonal” blocks Cxx|z0 (t) and Cyy|z0 (t)
and “off-diagonal” Cxy|z0 (t) and Cyx|z0 (t), where Cxx|z0 (t)
and Cyy|z0 (t) are covariance matrices for the distributions
ρt (x|z0) and ρt (y|z0), respectively. The inverse of Cyy|z0 (t) is
needed to calculate F KL

X→Y (4). For the stationary distribution,
one derives mst

z = 0 and covariance matrix Cst
zz satisfying

ACst
zz + Cst

zzA′ = −�. The conditional stationary distribution
ρst(x|y) has covariance matrix Cst

xx|y = (Kst
xx − Kst

xyCst
yyKst

yx)−1,
where Kst

zz = (Cst
zz)−1 and its blocks are denoted Kst

xx, Kst
xy,

Kst
yx, and Kst

yy. Then one derives [F KL
X→Y (t,y0,x0,x∗

0)]2 =
(x0 − x∗

0)′B′
yx(t)C−1

yy|z0
(t)Byx(t)(x0 − x∗

0)/2 and [F KL
X→Y (t)]2 =

tr{B′
yx(t)C−1

yy|z0
(t)Byx(t)Cst

xx|y}, where tr{·} denotes trace of a
matrix.

Other measures are found similarly, e.g., r2
X→Y (t)

(Appendix C) is obtained from the formula for [F KL
X→Y (t)]2

via replacing Cyy|z0 (t) with Cyy|y0 (t) = Cyy|z0 (t) +
Byx(t)Cst

xx|yB′
yx(t). The mean OE reads [F mean

X→Y (t,y0,x0,x∗
0)]2 =

(x0 − x∗
0)′B′

yx|z0
(t)Byx|z0 (t)(x0 − x∗

0). Then, [Fu,mean
X→Y (t)]2 =

max||�x0||=1{(x0 − x∗
0)′B′

yx|z0
(t)Byx|z0 (t)(x0 − x∗

0)} can
be found as the largest singular value of the matrix

B′
yx|z0

(t)Byx|z0 (t). One gets P (t,z0,a,a∗) and other P

quantities by solving Eqs. (B2) and (B3) at a and a∗. S

measures are obtained from the stationary distributions for
the two parameter values.

APPENDIX C: GRANGER CAUSALITY
AND ORBITAL EFFECTS

This Appendix compares Granger causality “in mean”
[25] to F and P quantities. For one-dimensional Gaus-
sian processes x and y (14), the complete TE reads
TX→Y = (1/2) ln [1/(1 − r2

X→Y (�t))], where r2
X→Y (�t) =

cov(xn,yn+1|yn)/
√

var(xn|yn)var(yn+1|yn), cov(·) is covari-
ance. The quantity rX→Y (�t) is called “partial correla-
tion” between xn and yn+1, being useful as a causality
measure [23]. For the linear system, r2

X→Y (�t) equals
var(yn+1|xn,yn)/var(yn+1|yn), i.e., a part of yn+1 variance
explained by xn, given yn. In other words, r2

X→Y (�t) measures
prediction improvement, which is achieved if xn is taken into
account in addition to yn. A usual measure of Granger causality
G2

X→Y is very similar to r2
X→Y (�t), differing only by the

full-history conditioning as discussed in Sec. II B.
One can derive that r2

X→Y (�t) =
〈(my (�t,yn,xn)−my (�t,yn,x

∗
n ))2〉xn,x∗

n

2var(yn+1|yn) and, hence, it is a SI-OE measure

differing from [F KL
X→Y (�t)]2 = 〈(my (�t,yn,xn)−my (�t,yn,x

∗
n ))2〉xn,x∗

n

2var(yn+1|yn,xn)

only by the denominator. Denote a maximum of r2
X→Y (t) over

t as r2
X→Y . Then, for the linear system, the simple relation

[F KL
X→Y ]2 = r2

X→Y /(1 − r2
X→Y ) holds true. However, F KL

X→Y is
more sensitive to changes in large driving amplitudes. Indeed,
rX→Y for the system (14) with unidirectional coupling is
shown by pluses in Figs. 3(e) and 3(i). It shows a stronger
tendency to saturation with kyx and �xx than does F KL

X→Y

(thin solid lines). The fixed-time rX→Y (�t = 1) saturates
almost perfectly [Figs. 3(e) and 3(i), crosses] and is unable
to distinguish among large coupling coefficients and among
large noise levels in the driving system.

For a further comparison, Fig. 5(a) shows that under a
decrease in the driven system noise level �yy , rX→Y saturates
at unity (pluses), while F KL

X→Y (thin solid line) and P KL
X→Y

(thick solid line) tend to infinity according to power laws
F KL

X→Y ∝ �
−1/4
yy and P KL

X→Y ∝ �
−1/2
yy . P KLmean

X→Y ∝ �
−1/2
yy as well

(dashed line) but the stationary effect SKL
X→Y appears stronger

and gives the main contribution to P KL
X→Y . Thus, F KL

X→Y and
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FIG. 5. Causal coupling characteristics for the system (14) with
kxy = 0, αx = αy = 1, �xx = 2, kyx = 0.5. Pluses show rX→Y and its
maximum times.
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FIG. 6. Various coupling characteristics for the system (C1) with
�xx = �yy = 1, ω2

x = 1.1, ω2
y = 0.9, and (a) kyx = 0.5, αx = 0.3,

αy = 0.25, or (b) kyx = 0.3, αx = αy = 0.05. GY→X (dashed line)
and GX→Y (solid line) are computed with the exact method of
Ref. [38].

especially PI-OEs are much more sensitive to changes in
�yy than is the partial correlation coefficient. The maximum
time [Fig. 5(b)] decreases with decreasing noise for F KL

X→Y

and for rX→Y as τ
F,KL
X→Y ∝ �

1/2
yy . The maximum time saturates

around the systems’ relaxation time for P KLmean
X→Y and at a

greater value for P KL
X→Y . Note that for �yy → 0 one gets

rX→Y → 1 and [F KL
X→Y ]2 ≈ 1/(1 − r2

X→Y ). It follows that
TX→Y ≈ ln F KL

X→Y (�t) in this case. The latter shows that F KL
X→Y

is more sensitive than the TE to variations in small �yy .
Another advantage of the model-based dynamical causal

effects over the “model-free” GX→Y and apparent TE concerns
the very detection of causal couplings and avoiding false
positives [36]. Consider stochastic linear oscillators

ẋ1 = x2, ẋ2 = −ω2
xx1 − 2αxx2 + ξx(t),

(C1)
ẏ1 = y2, ẏ2 = −ω2

yy1 − 2αyy2 + kyxx1 + ξy(t),

where observables are u = x1 and v = y1 while state vectors
are two dimensional, αx and αy are damping coefficients,
oscillation frequencies are ω2

x = 1.1 and ω2
y = 0.9, noise

intensities �xx = �yy = 1, and coupling is unidirectional
X → Y . Figure 6(a) shows that SI-OEs and PI-OEs in the
“correct” direction X → Y for this higher-dimensional case
exhibit a curve with a large-scale “bell shape” and superposed
oscillations. All SI-OEs and PI-OEs in the opposite direction
Y → X are zero as directly follows from their definition. In
contrast, Fig. 6(b) shows that the one-step-ahead prediction
improvement in the “spurious” direction GY→X (dashed line)
can be positive and large depending on the sampling interval
�t , sometimes being comparable to the “true” GX→Y (solid
line) and even much greater, e.g., at �t = 9.6.

APPENDIX D: BIDIRECTIONAL COUPLING

This Appendix shows that a nonzero coupling kxy in the
direction Y → X in Eq. (14) changes the causal effects X → Y

in a complex way in comparison with the case of unidirectional
coupling X → Y . Thus, F

u,mean
X→Y (t) at kxy = 0 [Fig. 7(a), thick

solid line] is less than that at kxy = 0.5 (thin solid line)
and greater than that at kxy = −1 (dashed line). Indeed, the
distribution of y at t > 0, given the initial state, is influenced
by all intermediate values of x and y over the interval (0,t),
which depend on both coupling coefficients kxy and kyx .
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FIG. 7. Orbital effects for Eqs. (14) with kyx = 0.5, αx = αy =
1,�xx = �yy = 2: [(a), (b), and (c)] thick solid lines for kxy = 0,
thin solid lines for kxy = 0.5, dashed lines for kxy = −1; (d) thick
solid line [the coupling PI-OE P KL

X→Y (t)] and triangles [the noise level
PI-OE P

KL,noise
X→Y (t)] correspond to kxy = 0, thin solid line and pluses

to kxy = 0.5, and short dashes and long dashes to kxy = −1.

Dependencies of various dynamical causal effects X → Y

on the opposite coupling coefficient kxy may differ from each
other. Thus, F KL

X→Y (t) [Fig. 7(b)] is maximal over the three
cases at kxy = −1, while P

u,mean
X→Y is minimal at kxy = 0 and

maximal at kxy = 0.5 [Fig. 7(c)]. Moreover, P KL
X→Y (t) and

P
KL,noise
X→Y (t) coincide at large t for a unidirectional coupling

[Fig. 7(d), thick solid line and triangles] but differ from
each other for a bidirectional coupling: Figure 7(d) shows
that the CPI-OE P KL

X→Y (t) (thin solid line at large t) is
greater than the NPI-OE P

KL,noise
X→Y (t) (pluses) at kxy = 0.5,

while the situation is reversed at kxy = −1.0 (short-dashed
and long-dashed lines). Indeed, the CPI-SE Svar

X→Y depends
on the two coupling coefficients in a nonmonotone way

since σ 2
y = σ 2

y,0 + αxkyx (kyxσ
2
x,0+kxyσ

2
y,0)

(αx+αy )(αxαy−kxykyx ) , where the denominator
is always positive for stationary processes while the second
term in the numerator may well be negative and give σ 2

y < σ 2
y,0.

The latter occurs in the last example [dashed lines in Fig. 7(d)],
where Svar

X→Y is negative and SKL
X→Y (a horizontal asymptote

for short dashes) is less than S
KL,noise
X→Y (an asymptote for long

dashes).
Figure 8 shows F , P , and S characteristics versus kyx at

kxy = −1. One can see that all F ’s and P ’s [Fig. 8(a)] reflect an
increase in |kyx | reliably over that range. The behavior of S’s
is not as simple. The NPI-SE S

KL,noise
X→Y is positive and exhibits

a monotone increase with |kyx | [dashed line in Fig. 8(b)],
being weakly sensitive (quadratic) to changes in small kyx . The
CPI-SE SKL

X→Y [thin solid line in Fig. 8(b)] is more sensitive to
changes in small couplings and nonsymmetric in respect of the
sign of kyx . The signed quantity Svar

X→Y may be even strongly
negative [thick solid line in Fig. 8(b)]. Such a complex behavior
is not a disadvantage of SKL

X→Y or Svar
X→Y , which reflects different

aspects of how the coupling X → Y affects the dynamics of
Y under other equal conditions including a nonzero kxy .
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FIG. 8. Dynamical causal effects for the system (14) with kxy =
−1, αx = αy = 1, �xx = �yy = 2: (a) F

u,mean
X→Y (solid line), F KL

X→Y

(dashed line), P KL
X→Y (rhombs); (b) SKL

X→Y (thin solid line), S
KL,noise
X→Y

(dashed line), Svar
X→Y (thick solid line).

APPENDIX E: SI-SE CHARACTERISTICS

All SI-SE measures A’s (Sec. III C) are zero for stationary
stochastic linear systems, since the latter possess a single
stationary distribution. However, the situation differs for
a nonlinear system with multiple stationary distributions.
Consider a nonlinear example of a bistable damped oscillator
Y driven by a linear relaxation system X:

ẋ = −αxx + ξx(t), ẏ = αy(y − y3) + kyxx + ξy(t).

(E1)

Being isolated and noise-free, the system Y has two stable
equilibria y = ±1 and an unstable equilibrium y = 0. From
an initial state y0 < 0, it evolves to the attractor y = −1. From
y0 > 0, it goes to y = 1. Let the noise ξy be sufficiently weak
so there are two practically isolated stationary distributions
around those two points. This is the case if the amplitude
of fluctuations around the fixed point is small enough:√

�yy/αy 
 1. Then the point y = 0 is an approximate
boundary between the “basins of attraction” of those two
distributions. Let the system X be much slower than Y , i.e.,
αx 
 αy . Then the state of X remains x(t) ≈ x0 for a relatively
long time and enters the equation for y as a constant, which
shifts the boundary. Hence, one easily derives that for x0 = 1
and

√
�yy/αy 
 |kyx |/αy 
 1, the system Y evolves to the

negative attractor if y0 < −kyx/αy .
This consideration allows an easy calculation of the

quantity A
u,mean
X→Y (y0,x0). If we take x0 = 0 for brevity, then

a unit SI means x∗
0 = ±1. Since the expectation of y equals

±1 for the two attracting stationary distributions, one gets
A

u,mean
X→Y (y0,0) ≈ 2, if |y0| < |kyx |/αy , and A

u,mean
X→Y (y0,0) ≈ 0,

otherwise. Thus, the quantity A
u,mean
X→Y (y0,0) as a function of y0

may serve as an indicator of the basin boundary. In essence,
SI-SE characteristics assess whether a system X can throw the
system Y from one basin of attraction to another one and how
probable it is. They closely relate to the concept of stability
to large perturbations, which is currently a subject of growing
attention [50]. Such a link between the basins of attraction
analysis [49,50] and causal coupling quantification enriches
the latter concept.
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