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Transfer entropy (TE) seems currently to be the most widely used tool to characterize causal influences in
ensembles of complex systems from observed time series. In particular, in an elemental case of two systems,
nonzero TEs in both directions are usually interpreted as a sign of a bidirectional coupling. However, one
often overlooks that both positive TEs may well be encountered for unidirectionally coupled systems so that
a false detection of a causal influence on the basis of a nonzero TE is rather possible. This work highlights
typical factors leading to such “spurious couplings”: (i) unobserved state variables of the driving system,
(ii) low temporal resolution, and (iii) observation errors. All are shown to be particular cases of a general
problem: imperfect observations of states of the driving system. Importantly, exact values of TEs, rather than
their statistical estimates, are computed here for selected benchmark systems. Conditions for a “spurious” TE to
be large and even strongly exceed a “correct” TE are presented and discussed.
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I. INTRODUCTION

In studies of an ensemble of systems with nontrivial tem-
poral evolution, it is fruitful to characterize their interactions
which often determine basic features of the collective behavior
[1–6]. For a deeper understanding, it is particularly important
to reveal “directional couplings” or “causal influences” [7–9],
i.e., to answer the question “who drives whom.” To mention
just a couple of fields with multiple examples of such a
problem setting, one looks for couplings between brain areas
or different rhythms in electroencephalograms (see, e.g.,
Refs. [10–16]) and between large-scale modes of climate
variability, such as El Niño Southern Oscillation and North
Atlantic Oscillation, or global climate processes (see, e.g.,
Refs. [17–21]). The detection of directional couplings is much
more reliable when one can manipulate with the systems
under study by performing special interventions into them
[7,10,22,23]. If this is impossible, as often the case in biomed-
ical or geophysical research, one must reveal couplings from
passive observations of the systems behavior, e.g., from a time
series of certain observed variables. Sometimes solving such
a problem appears feasible based on the celebrated concept of
the Granger causality [24]. Its generalized, modern, actively
used, and highly trusted version is an information-theoretic
measure called “transfer entropy” (TE) [25]. However, as
is shown in this work, TE may lead to spuriously detected
causalities under simple and widespread practical conditions
which remain underestimated in many studies.

In the case of two systems, one says that a system X

“Granger causes” a system Y if knowledge of the past of
X improves predictions of Y as compared to self-predictions.
Prediction improvement (PI) is usually defined as a decrease
in the mean-squared prediction error, which is easily estimated
from data and often appears sufficient for practical purposes.
Such a PI is not invariant under a nonlinear invertible change
of variables, and, hence, in practice it may be sensitive
to nonlinear distortions of a measurement device. Instead
of mean-squared errors, TE characterizes an “uncertainty
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reduction” in terms of Shannon entropies of the conditional
probability distributions of the future of Y . It agrees with some
early ideas of C. W. J. Granger as well [26]. TE is invariant to
any invertible change of variables and seems currently the most
universal and widely used characteristic of causal influences.
Several techniques are developed for TE estimation from a time
series [27,28], including optimization of time lags [29,30],
a special approach to soften “the curse of dimensionality”
problem [21], a symbolic version of TE [14], an expanded
version of TE for ensembles [16], and analytic assessment of an
estimator confidence band [31]. Moreover, conditional mutual
information, a concept similar to TE, has been introduced and
studied in a series of parallel works [28,32–36]. Similarly to PI,
a statistically significant nonzero value of TE in the direction
from X to Y is usually interpreted as a result of the influence
X → Y , and nonzero TEs in both directions as a result of the
bidirectional coupling (BC).

It was known for linear systems that spurious couplings
can be inferred from nonzero PIs due to the following reasons:
unobserved variables influencing both systems dynamics [26],
low temporal resolution [37,38], and observational noise [39].
Yet such effects were not appreciated and systematically
analyzed for TE, apart from a specific example of nonlinear
maps of a special kind with low observation accuracy [40]. TE
is often stated to reflect an “information flow” or “information
transfer” in the respective direction by its very definition,
so that many works concentrate mainly on its accurate
estimation (e.g., Refs. [28,29]), and it seems to be a sufficiently
widespread opinion that getting spurious causalities with TE is
hardly possible as opposed to the mean-squared PI. This work
demonstrates that TEs may well be nonzero in both directions
even in the case of a unidirectional coupling (UC), so that
“spurious couplings” are rather possible to be inferred from
TE under the naive approach. Moreover, it appears possible
for a “spurious” TE (in the direction of an absent influence)
to be much greater than a “correct” TE (in the direction of an
existing influence). The reasons are similar to those mentioned
above for the linear problems and shown to be particular cases
of a general circumstance, which is imperfect observations of
states of the driving system.
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Exact theoretical values of TEs rather than their statistical
estimates are presented here, so that all the results do not
depend on any method of TE estimation and are, therefore,
highly reliable. This is achieved due to the special choice
of benchmark systems for the analysis: linear autoregression
processes and Markov chains. These paradigmatic systems
may serve as basic mathematical models of a wide range
of natural processes, including oscillatory ones, that ensure
practical importance of the results and allow their vivid
interpretation.

The paper is organized as follows. Section II presents a
mathematical formulation of the problem under study and
a definition of TEs. Section III describes the benchmark
examples and formulas for the TE computation. Section IV
contains numerical results demonstrating the effect of unob-
served variables, low temporal resolution, and observational
noise on TEs. Section V discusses the results and their practical
consequences, including a possible test for BC. Conclusions
are given in Sec. VI. Some cumbersome derivations concern-
ing Markov chains are moved to appendices.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

The problem under study is the following. (i) There are two
systems X and Y . (ii) Simultaneous time series of the variables
u and v represent the dynamics of X and Y , respectively.
(iii) Any hidden system influencing both X and Y is absent.
(iv) The task is to find out whether a coupling between X and Y

is bidirectional or unidirectional, and TEs in both directions are
computed for that. The question is whether the TE values are
always sufficient to reveal the coupling character. If not always,
when are they appropriate? Note that a capability to reveal
directional couplings between two systems is a necessary step
to address a more complicated question about couplings within
larger sets of systems. Moreover, the distinction between UC
and BC is often basically and practically important per se; see,
e.g., Ref. [38] and references therein.

Let u and v be observed at discrete time instants: un,vn,
n ∈ Z. Without loss of generality, scalar-valued quantities u

and v are considered. The case of vector-valued observables
can be treated in the same way and is briefly commented on in
Sec. V. Speaking mathematically, un and vn are strictly station-
ary random processes. Denote ud

n = (un−1,un−2, . . . ,un−d )T

and vd
n = (vn−1,vn−2, . . . ,vn−d )T, where T stands for trans-

position. The dimension d may be called “depth of history”
relatively to the current time instant n. Let P (un|ud

n) be a
probability distribution of un conditioned by a given history ud

n ,
and P (un|ud

n,v
d
n) a distribution conditioned by histories of both

processes. The difference between the Shannon entropies of
the two distributions quantifies to what extent the uncertainty
in the value of un decreases if a history of another process vd

n

is taken into account. Denote that difference T d
Y→X. In case of

discrete-valued u and v, it reads

T d
Y→X = −

∑
un,ud

n

P
(
un,ud

n

)
log2 P

(
un

∣∣ud
n

)

+
∑

un,ud
n,vd

n

P
(
un,ud

n,v
d
n

)
log2 P

(
un

∣∣ud
n,v

d
n

)
. (1)

The base of the logarithms determines just the units of
measurement. Binary logarithms mean that all the entropies
are measured in bits. TE in the direction Y → X is de-
fined as TY→X = lim

d→∞
T d

Y→X, if the limit exists. “Practical”

convergence over d is reached for many systems at quite
moderate values of d, which is the case in all examples below.
Therefore, TEs are computed according to Eq. (1) with d

large enough for the convergence at a given small error to
occur. Thus, the “exact” values of TE imply here “exact up
to a given pre-defined error.” However, this is quite a small
error in comparison with any analysis based on statistical
estimates of TE from a simulated time series due to the “curse
of dimensionality” [21,28]. For brevity, the notation TY→X

without the superscript d is used below for such “almost exact”
values of TE.

If u and v are continuous-valued and characterized by
(piecewise-) continuous probability density functions, then in
the definition of TE (1) the probability distributions P should
be replaced by the probability densities p and the sums by the
integrals:

T d
Y→X = −

∫
p
(
un,ud

n

)
log2 p

(
un

∣∣ud
n

)
dun dud

n

+
∫

p
(
un,ud

n,v
d
n

)
log2 p

(
un

∣∣ud
n,v

d
n

)
dun dud

n dvd
n.

(2)

Here TE is the difference of the differential Shannon entropies,
while the usual entropies are infinitely large for continuous-
valued variables. However, the TE interpretation does not
differ from the discrete case. Indeed, consider coarse-grained
distributions of the continuous-valued quantities with a certain
bin size δ and introduce a “coarse-grained TE” according to
Eq. (1). It would converge to (2) at δ → 0. Thus, it makes a
clear sense that the “differential” TE (2) is also measured in
bits and characterizes the decrease in uncertainty in the same
way as in the discrete case. Below the definition (2) is used
for Gaussian processes (Sec. III A) and the definition (1) for
Markov chains (Sec. III B).

III. TRANSFER ENTROPY FORMULAS
FOR BENCHMARK SYSTEMS

Denote with z a dZ-dimensional state vector of the
combined system Z consisting of the systems X and Y .
“State vector” relates to the concept of state space models and
means that the value zn at a current time instant n completely
determines the probability distribution of zn+1. If one denotes
zd
n = (zT

n−1,z
T
n−2, . . . ,z

T
n−d )T, then the latter property reads

as equality of the conditional distributions: P (zn+1|zn) =
P (zn+1|zn,zd

n) for any d > 0; i.e., zn “shields” the future from
the past so that zn is a first-order vector-valued Markovian
process. The vector z consists of the two components: x of
dimension dX and y of dimension dY , which characterize
the systems X and Y , respectively; i.e., zn = (xT

n,yT
n)T and

dZ = dX + dY .
Being isolated from each other, the systems X and Y would

be completely described by their own state vectors x and y
so that the processes xn and yn would satisfy the generalized
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Markov property

P (xn+1|xn) = P
(
xn+1

∣∣xn,yn,zd
n

)
, (3)

P (yn+1|yn) = P
(
yn+1

∣∣yn,xn,zd
n

)
, (4)

for any d > 0; i.e., given xn (yn), the future x (y) does not de-
pend on a deeper history of X (Y ) and any current or past values
of y (x). An influence X → Y would manifest itself in a depen-
dence of yn+1 on some values of x, given yn, i.e., in violation of
Eq. (4). An influence Y → X violates Eq. (3). Below examples
with a UC X → Y are considered that corresponds to the
system Z for which Eq. (3) holds true and Eq. (4) is violated.

Let u and v be single-valued functions of the state vectors
u = hu(x) and v = hv(y). Without loss of generality, it is
further always assumed that u = x1 and v = y1; i.e., the first
component of each state vector is observed.

A. Transfer entropy for Gaussian processes

The first exemplary class of systems is given by stochastic
linear difference equation

zn = C · zn−1 + ξn, (5)

where C is a constant matrix of dimension dX + dY , ξn is a sta-
tionary Gaussian white noise, i.e., a sequence of independent
random vectors identically distributed according to a Gaussian
law with zero mean and a covariance matrix �. The submatrix
Cij , 1 � i,j � dX, reflects individual dynamical properties of
the system X; the submatrix Cij , dX + 1 � i,j � dX + dY ,
specifies the dynamics of the system Y . The submatrix Cij ,
1 � i � dX, dX + 1 � j � dX + dY , determines the influence
of Y on X and equals zero. The submatrix Cij , dX + 1 �
i � dX + dY , 1 � j � dX, determines the influence X → Y .
Similarly, the respective “on-diagonal” submatrices of the
symmetric matrix � determine individual properties of noises
within the systems X and Y , while the off-diagonal submatrix
determines noise covariances across the systems.

To compute TY→X, one must find the densities p(un,ud
n),

p(ud
n), p(un,ud

n,v
d
n), and p(ud

n,v
d
n) which completely de-

termine the right-hand side of Eq. (2) since p(un|ud
n) =

p(un,ud
n)/p(ud

n) and p(un|ud
n,v

d
n) = p(un,ud

n,v
d
n)/p(ud

n,v
d
n).

These probability densities are Gaussian with zero means, and
their covariance matrices can be denoted R(un,ud

n), R(ud
n),

R(un,ud
n,v

d
n), and R(ud

n,v
d
n). These are square matrices of

dimensions d + 1, d, 2d + 1, and 2d, respectively. According
to Ref. [41], the conditional entropies in Eq. (2) relate to the
determinants of these matrices as

T d
Y→X = 1

2
log2

∣∣R(
un,ud

n

)∣∣∣∣R(
ud

n

)∣∣ − 1

2
log2

∣∣R(
un,ud

n,v
d
n

)∣∣∣∣R(
ud

n,vd
n

)∣∣ . (6)

All these matrices can be found via the selection of appropriate
elements from the full covariance matrix of the vector zd+1

n+1.
This matrix is formed by elements of the following matrices:
Rz,0 = E[znzT

n] (covariance matrix of the vector zn), Rz,1 =
E[znzT

n−1] (covariance between the vectors zn and zn−1), . . . ,

Rz,d = E[znzT
n−d ] (covariance between the vectors zn and

zn−d ), where E stands for the expectation value. To find
Rz,0, transpose both sides of (5) and get zT

n = zT
n−1 · CT + ξT

n ,
then multiply both sides of (5) by their transposed versions,
and take the expectation value. Thereby, one gets Rz,0 = C ·

Rz,0 · CT + �. This is a linear set of algebraic equations
with respect to the elements of Rz,0 which can be solved
by any standard technique. By multiplying both sides of (5)
by zT

n−k (k > 0) from the right and taking the expectation
value, one further gets a recursive formula Rz,k = C · Rz,k−1,
which allows us to compute all the necessary Rz,k , 1 � k � d.
Now, the matrix R(ud

n) is formed by the elements of Rz,k
with the index (1,1), 0 � k � d − 1 (recall that u = x1 = z1

by convention). Similarly, all the other matrices entering
Eq. (6) are formed by the appropriate elements of Rz,k and,
thus, TY→X can be computed via Eq. (6).

B. Transfer entropy for Markov chains

Suppose that each of the variables x1,x2, . . . ,xdX
,y1,

y2, . . . ,ydY
can take on B different values. Then z can take on

BdZ values. Denote them ζk , k = 1, . . . ,BdZ . The dynamics of
a Markov chain are determined by its transition probabilities
matrix A of a dimension BdZ , whose elements Aik are
probabilities of transitions from a state ζk to a state ζi :

Aik = P{zn = ζi |zn−1 = ζk}. (7)

If a probability distribution of z at time instant n − 1 is
specified by a vector Pn−1 with elements Pn−1,k = P{zn−1 =
ζk}, then the distribution at the next instant is given by
Pn = A · Pn−1. A stationary distribution P (z) is then repre-
sented by a vector Pst which satisfies Pst = A · Pst and the
normalization condition (the sum of all its elements equals
unity). These two conditions allow us to find Pst uniquely
from a linear set of algebraic equations. Starting from that one-
dimensional distribution P (z), one finds a stationary (d + 1)-
dimensional distribution P (zd+1

n+1) by recursively multiplying
a lower-dimensional distribution by the respective transition
probabilities (7). Having the stationary distribution P (zd+1

n+1),
one finds all the distributions P (un,ud

n), P (ud
n), P (un,ud

n,v
d
n),

and P (ud
n,v

d
n) determining the right-hand side of Eq. (1) via the

summation over the respective variables. In particular, to find
P (ud

n), one sums (marginalizes) P (zd+1
n+1) over all the variables

which are not components of the vector ud
n. Everything is

analogous for the other three distributions. Next, the value of
TY→X can be computed directly from Eq. (1).

IV. TYPICAL EXAMPLES OF SPURIOUS CAUSALITIES

Gaussian processes (5) and Markov chains (7) with different
concrete structures and parameter values illustrate below
typical practical situations leading to spurious causalities:
unobserved state variable (Sec. IV A), low temporal resolution
(Sec. IV B), and observational noise (Sec. IV C). Namely, for
the case of UC X → Y considered, it is shown that the values
of TY→X can be nonzero and, moreover, even greater than the
“correct” nonzero TX→Y . Gaussian processes represent either
“relaxation systems” or oscillators: An initial perturbation in
the noise-free case tends to zero either in a nonoscillatory or
an oscillatory way. Markov chains are constructed in some
analogy with the Gaussian processes to mimic their positive
or negative autocorrelations. However, being simple versions
of nonlinear systems, Markov chains are particularly useful to
show the general character of the results.
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For the Gaussian processes at each set of the parameter
values, TEs (2) are computed for d ranging from 1 to 20. Con-
vergence with a relative error ε = |T d+1

X→Y − T d
X→Y |/T d

X→Y <

10−7 is achieved in all the examples at most for d � 9 and often
for d = 4 or d = 5. For uniformity, all the results are presented
for d = 10 to ensure the convergence. For the Markov chains,
B = 2 is used, and convergence of (1) over d with ε < 10−2

is achieved for d = 6 or earlier. For uniformity, all the results
are presented for d = 7.

TE values are studied versus different parameters of the
systems as follows. First, certain starting values (a starting set)
of the parameters are specified. Then one of the parameters is
varied in order to maintain stability of the system under study,
while all the others are kept equal to their starting values. For
each set of values of the parameters, TEs in both directions are
computed along with their ratio r = TY→X/TX→Y , which is a
relative measure of the spurious coupling effect. It is necessary
to have r = 0 or at least r << 1 to infer the UC X → Y from
TEs correctly. However, this is often not the case, as shown
below.

A. Unobserved state variable

This subsection deals with a widespread practical situation
where certain state variables of the driving system X (some
components of the vector x) are hidden; i.e., the state of the
system X is not completely observed.

1. Transfer entropies for Gaussian processes with unobserved
state variables

Consider a two-dimensional process X given by the
equations

x1,n = c11x1,n−1 + c12x2,n−1 + ξ1,n,
(8)

x2,n = c21x1,n−1 + c22x2,n−1 + ξ2,n,

where Gaussian white noises ξ1,ξ2 have variances �11,�22

and a covariance �12. The elements cij determine whether the
system (8) is an oscillator or a relaxation system. Namely,
the roots of the characteristic equation for this linear system
are γ1,2 = (a ± √

a2 − 4b)/2, where a = c11 + c22 and b =
c11c22 − c12c21. If |γ1,2| < 1, then the system (8) at zero noise
level has a stable fixed point at the origin. If a2 − 4b < 0,
then a transient process represents exponentially decaying
oscillations; otherwise the system converges to the fixed point
in a nonoscillatory way. There exist many real-world examples
described by similar equations [42] where two variables
determine a state, but only one of them is observed (u = x1). As
the response system Y , consider a one-dimensional relaxation
process

y1,n = c32x2,n−1 + c33y1,n−1 + ξ3,n, (9)

where Gaussian white noise ξ3 has a variance �33 and does
not depend on the noise in the system X, i.e., �13 = �23 = 0.
At �33 = 0 and c32 = 0, the system Y has a fixed stable point
if |c33| < 1 and the value of |c33| determines the speed of
relaxation. The UC X → Y is realized here via the hidden
variable x2. An observable is v = y1.

TEs are studied versus cij and �ij at a starting set of
the parameters c11 = c22 = 1/2, c12 = c21 = 1/4, c32 = 1,
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(d)

FIG. 1. “Spurious” TE TY→X (solid lines) and the relative spuri-
ous coupling measure r (dashed lines) for the Gaussian process (8)
and (9) versus parameters: (a) c12 determines the influence of the
hidden variable x2 on the observable u = x1, spurious causality is not
considerable if c12 is small enough; (b) c21 determines the influence
of u = x1 on x2 and, thereby, on Y so that r is small if c21 is large
enough; (c) c22 controls individual properties of the hidden process
x2 whose amplitude rises with |c22| making stronger the spurious
coupling effect; (d) �11 controls individual properties (amplitude) of
the observed process u = x1.

c33 = 0.1, �11 = �22 = 1, and �33 = 0.1, where the system
X is a relaxation system consisting of two identical relaxation
processes with moderate (as compared to c11) coupling
coefficients c12 and c21.

First, Fig. 1 shows positive “spurious” TY→X in wide ranges
of the parameter values, which is the most important point.
The principal existence of the spurious coupling effect is
explained as follows. If one observed a full state vector of
the driving system X [u = (x1,x2)T or u = hu(x) with hu

a one-to-one function], then a distribution of un would be
completely determined by the previous value un−1 and, given
un−1, would not depend on the previous dynamics of Y , i.e.,
one would get TY→X = 0 naturally reflecting the absence of
the influence Y → X. Since one of the components of the state
vector of X is unobserved, then the uncertainty in un, given the
entire history un−k , k > 0, is greater than the uncertainty in un,
given xn−1 = (x1,n−1,x2,n−1)T. This is because the unobserved
value x2,n−1 cannot be restored absolutely accurately from all
the observed un−k , k > 0. At that, an interdependence between
the variables v and x2 exists due to the influence X → Y .
Therefore, the variable v may carry additional information
about the hidden variable x2, and, thereby, knowledge of
the previous values of v may decrease uncertainty in un as
compared to knowledge of only the previous values of u.
Thus, it is an incomplete observation of the driving system
state vector which leads to nonzero TY→X and r .

Second, numerical values of the “spurious” TE reach 0.1
bits [Fig. 1(c)] that should be considered a large value for the
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following reason. TE multiplied by 2 ln 2 equals approximately
the normalized mean-squared prediction improvement [41],
since TE is proportional to the logarithm of the ratio of the
conditional variances (6). Thus, the TE value of 0.1 bits
corresponds to the normalized prediction improvement of u

(when v is taken into account) by more than 10%, which
is quite considerable. Third, the relative spurious causality
measure r can take on arbitrarily large values [Fig. 1(b)] and
often exceeds unity. The latter means that the “spurious” TY→X

exceeds the “correct” TX→Y . Fourth, the spurious coupling
effect does not depend on whether the system X is an oscillator
or a relaxation system: indeed, X is an oscillator at c12 < 0
in Fig. 1(a) [at c21 < 0 in Fig. 1(b)] and a relaxation system
at c12 > 0 (at c21 > 0), while the values of TE are symmetric
with respect to zero.

Fifth, how TE and r depend on different parameters can
be explained by properties of the systems under study. For
example, consider Fig. 1(b) where r is especially large at
small c21. Indeed, at c21 = 0 there is no influence of the
observed variable u = x1 on the hidden variable x2, and, hence,
there is no influence of u on v. Thus, one has TX→Y = 0,
while the value of TY→X is nonzero for the same reasons
as described above (correlation between v and x2). Hence,
it holds r = ∞. This situation can be also interpreted as
the influence of the unobserved third process (x2) on the
observed processes u and v, which is a well-known problem.
However, under the considered problem setting and from a
physical viewpoint, it may well occur that x1 and x2 definitely
belong to the same physical system so that the “hidden-third-
system” interpretation is not as appropriate (rather formal) as
the “hidden-state-variable” view. Note also that the spurious
coupling effect disappears at c12 = 0 [Fig. 1(a)], which is
explained by the absence of the influence of x2 on x1 = u

so that u is a complete state vector of the subsystem x1. Then
there is no situation of an incomplete state observation for
that subsystem, while the influence of x1 on v is mediated
by the hidden variable x2 and is correctly detected. Thus, the
most “dangerous” situation in the sense of spurious couplings
is that when (i) the driving system X consists of several
components with their own degrees of freedom, (ii) some of
those components are hidden, and (iii) the hidden components
of X strongly influence both the system Y and the observed
components of X. Indeed, in such a case the analysis based on
a single variable u is not adequate to a “nonuniform” (more
complex) structure of the system X.

All these observations show that the spurious causality due
to unobserved state variable of the driving system is a generic
(occurring not only at very special parameter values) effect,
being often quite strong quantitatively.

Now, consider the case when the system Y is also two-
dimensional:

y1,n = c33y1,n−1 + c34y2,n−1 + ξ3,n + c32x2,n−1,
(10)

y2,n = c43y1,n−1 + c44y2,n−1 + ξ4,n,

where Gaussian white noises ξ3,ξ4 have variances �33,�44

and a covariance �34 and do not depend on the noise
in the system X, i.e., �ij = 0,1 � i � 2,3 � j � 4. The
individual structure of the system Y is similar to that of the
system X. Both identical and strongly different systems X
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FIG. 2. “Spurious” TE TY→X (solid lines) and the relative spu-
rious coupling measure r (dashed lines) for the Gaussian process
(8) and (10) versus parameters: (a) c12, the influence of the hidden
variable x2 on the observable u = x1; (b) c21, the influence of u = x1

on x2; (c) c22, controls amplitude and autocorrelations of x2; (d) c32,
the strength of the influence X → Y .

and Y , both oscillators and relaxation systems, are studied.
In all cases, the results appear quite similar to those in
Fig. 1. For an illustration, consider only identical systems
with the starting set ckk = 0.9,1 � k � 4, c12 = c34 = 0.1,
c21 = c43 = −0.1, c32 = 0.4, �11 = �33 = 0.1, �22 = �44 =
1, �12 = �34 = 0, that approximately corresponds to the
Euler integration scheme for some continuous-time linear
oscillators. Parameters in Fig. 2 are varied such that c11 = c33,
c22 = c44, c12 = c34, c21 = c43, �11 = �33, �22 = �44, and
�12 = �34.

Again, nonzero “spurious” TE values are generic and not
small, quantitatively close to the above example (Fig. 1) and
even a bit greater. Note that the value of r does not tend
to zero even for vanishing coupling strength c32 [Fig. 2(d)].
Interestingly, r is often greater than unity and even greater
than 10; i.e., it appears much more probable to observe a
greater TE in the “spurious” direction for identical oscillators!
This counterintuitive result relates to the way how coupling is
realized: The hidden variable x2 affects the observed variable
y1; i.e., the coupling is “not symmetric” with respect to
variables. In a general case of four nonzero coefficients c31,
c32, c41, and c42, the values of r may appear somewhat smaller
(not shown), but the spurious coupling effect per se remains
generic and typically considerable.

2. Transfer entropies for Markov chains with unobserved state
variables

Consider a Markov chain with two binary variables which
would be an analog of the linear systems described above.
First, as a binary analog of the Gaussian white noise, take
a sequence of independent random variables taking on the
values of 0 or 1 with equal probabilities. Then, an analog of
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a relaxation system x1,n = c11x1,n−1 + ξ1,n is a Markov chain
with the transition probabilities matrix of the form

A11 = P{x1,n = 0|x1,n−1 = 0} = 1/2 + p11,

A12 = P{x1,n = 0|x1,n−1 = 1} = 1/2 − p11,
(11)

A21 = P{x1,n = 1|x1,n−1 = 0} = 1/2 − p11,

A22 = P{x1,n = 1|x1,n−1 = 1} = 1/2 + p11,

where p11 has the same sign as c11. Thus, a positive c11

leads to a positive correlation between successive values of x1.
Similarly, a positive p11 provides a probability of x1,n = x1,n−1

greater than 1/2. These are processes with a tendency to
“permanence.” Negative c11 and p11 correspond to the opposite
tendency to “alternation.”

Now, consider a Markov chain with two state vari-
ables which, hence, has four states: (x1,x2) = (0,0),(0,1),
(1,0),(1,1). To make it analogous to the two coupled relaxation
systems (8), let the value x2,n−1 change the probabilities of x1,n

by a certain value p12:

P{x1,n = 0|x1,n−1 = 0,x2,n−1 = 0} = 1/2 + p11 + p12,

P{x1,n = 0|x1,n−1 = 0,x2,n−1 = 1} = 1/2 + p11 − p12,

P{x1,n = 0|x1,n−1 = 1,x2,n−1 = 0} = 1/2 − p11 + p12,

P{x1,n = 0|x1,n−1 = 1,x2,n−1 = 1} = 1/2 − p11 − p12.

(12)

Everything is similar for the conditional probabilities of x2,n

with probability shifts p22 and p21 instead of p11 and p12. Let
x1,n and x2,n be independent of each other, given x1,n−1 and
x2,n−1, analogously to mutually independent noises ξ1 and ξ2

in Eq. (8):

P (x1,n,x2,n|x1,n−1,x2,n−1)

= P (x1,n|x1,n−1,x2,n−1)P (x2,n|x1,n−1,x2,n−1). (13)

From Eqs. (12) and (13), all 16 elements of the entire tran-
sition probabilities matrix can be computed through similar
multiplications, e.g.,

A12 = P {x1,n = 0,x2,n = 0|x1,n−1 = 0,x2,n−1 = 1}
= (1/2 + p11 − p12)(1/2 − p22 + p21). (14)

The obtained system X is a binary analog of Eq. (8), where the
signs of pij correspond to the signs of cij . Again, an observed
variable is u = x1, a hidden one is x2.

Let the system X drive a relaxation system Y which is
described by a single binary variable y1 similarly to Eq. (11)
with a probability shift p33 instead of p11. Let the driving be
mediated through the variable x2, which shifts probabilities of
y1,n by the value of p32:

P{y1,n = 0|y1,n−1 = 0, x2,n−1 = 0} = 1/2 + p33 + p32,

P{y1,n = 0|y1,n−1 = 0, x2,n−1 = 1} = 1/2 + p33 − p32,

P{y1,n = 0|y1,n−1 = 1, x2,n−1 = 0} = 1/2 − p33 + p32,

P{y1,n = 0|y1,n−1 = 1, x2,n−1 = 1} = 1/2 − p33 − p32,

(15)

where y1,n is independent of x1,n−1, given y1,n−1 and x2,n−1.
Due to the unidirectional coupling character, x1,n and x2,n

are determined by x1,n−1 and x2,n−1 (12), being condi-
tionally independent of y1,n−1. Similarly to Eq. (13), the

three quantities x1,n,x2,n,y1,n are mutually independent given
x1,n−1,x2,n−1,y1,n−1. All this specifies completely a Markov
chain with eight states, whose transition probabilities matrix
is found (similarly to the matrix of the isolated system X)
through multiplications of the three conditional probabilities.

As a starting set of the parameters, take p11 = p22 = 1/4
(sufficiently strong “permanence” tendency of the system
X), p12 = p21 = 1/8 (moderately strong symmetric coupling
between the variables x1 and x2), p33 = 0 (an isolated system
Y would generate white noise), and p32 = 1/2 (one-to-
one relationship between x2,n−1 and y1,n so that a precise
restoration of x2,n−2 from y1,n−1 takes place and, hence, a
relatively good restoration of x2,n−1 desirable to predict un

may occur). Figure 3 shows generically nonzero “spurious”
TE versus different parameters and resembles Figs. 1 and 2 in
many respects. In particular, Fig. 3(c) is qualitatively similar
to Figs. 1(c) or 2(c), which show TE versus c22 in the systems
(8) and (9) or (10). The explanation of the nonzero values of
TT →X is the same as that for the Gaussian processes. Numerical
values of TT →X ≈ 0.03 bits achieved at certain p22 correspond
to the Shannon entropies for the distribution of u, conditioned
by the past of u, equal to 0.31 bits. Thus, 0.03 bits corresponds
to the relative reduction of uncertainty (entropy) about 10%;
i.e., the spurious couplings are rather high and as considerable
as in the previous example.

All the results are similar for a two-variable driven system
Y in analogy to what is demonstrated in Sec. IV A1 for the
two-dimensional driven Gaussian process (10). They are not
shown for brevity since the corresponding Markov chain with
16 states is specified by quite a cumbersome expression for its
transition probabilities matrix.
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FIG. 3. “Spurious” TE TY→X (solid lines) and the relative spu-
rious coupling measure r (dashed lines) for the Markov chain (12),
(13), and (15) versus parameters: (a) p12, the influence of the hidden
variable x2 on the observable u = x1; (b) p21, the influence of u = x1

on x2; (c) p22, controls individual properties (autocorrelations) of x2;
(d) p32, the strength of the influence X → Y .
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Note that Markov chains can be appropriate mod-
els of continuous-state nonlinear systems (see, e.g.,
Refs. [40,43,44]), which is especially clear if one considers
a higher resolution (the number of possible values of state
variables B is greater than 2) to make a Markov chain a good
piecewise-constant stochastic analog of a nonlinear chaotic
map. It follows from the above consideration that all the results
are expected to be qualitatively the same for large B, and,
hence, the spurious coupling effect should be typical of diverse
nonlinear systems.

B. Low temporal resolution

This subsection deals with another situation, where ob-
served variables would contain complete information about the
systems states if sampled properly, but insufficient temporal
resolution of the data leads to spurious causalities.

Consider a discrete-time model of a stochastic linear dissi-
pative oscillator in the form of a second-order autoregression
process

xn = axxn−1 + bxxn−2 + ξx,n, (16)

where Gaussian white noise ξx has a variance σ 2
x , while

a quasiperiod of the decaying oscillations Tx and their
relaxation time τx are given by ax = 2 cos(2π/Tx) exp(−1/τx)
and bx = − exp(−2/τx) [45]. An observable is un = x2n;
i.e., a sampling interval is equal to two time units so
that every second value of x is lost, which is a kind
of downsampling. This case reduces to the formalism of
Sec. III A if one introduces a two-dimensional state vector
with coordinates x1,n = x2n (an observed variable) and x2,n =
x2n−1 (a hidden variable). Then Eq. (16) can be rewrit-
ten in the form (8) where c11 = a2

x + bx,c12 = axbx,c21 =
ax,c22 = bx,�11 = σ 2

x (1 + a2
x),�22 = σ 2

x ,�12 = σ 2
x ax , and a

single time step in Eq. (8) corresponds to two time steps in
Eq. (16). Note the nonzero noise covariance �12 arising in this
example.

Let the driven system Y be a similar oscillator

yn = ayyn−1 + byyn−2 + cxn−1 + ξy,n, (17)

where ξy is Gaussian white noise with variance σ 2
y

which is independent of ξx , c is a coupling coeffi-
cient, ay = 2 cos(2π/Ty) exp(−1/τy), by = − exp(−2/τy),
and an observable is vn = y2n. By denoting y1,n =
y2n and y2,n = y2n−1, one gets the system Y in the
form (10) with c33 = a2

y + by,c34 = ayby,c43 = ay,c44 =
by,�33 = σ 2

y (1 + a2
y),�44 = σ 2

y ,�34 = σ 2
y ay , coupling coeffi-

cients c31 = (ax + ay)c,c32 = bxc,c41 = c,c42 = 0, and noise
covariances �13 = axσ

2
x c,�14 = �24 = 0,�23 = σ 2

x c. Since
the system (16) and (17) is reduced to the form (8) and (10), it
can be studied with the same formalism. Thus, low temporal
resolution appears mathematically equivalent to the situation
of unobserved state variable: Imperfect observations of the
states of X occur here because a complete state of X would
consist of the two adjacent values (xn−1,xn), but one of them
is lost due to the downsampling.

For a more diverse analysis, TE is studied below versus
such physically meaningful parameters as basic oscillation
periods and relaxation times of the systems. As a starting
set of values, specify Tx = Ty = 5, τx = 10, τy = 1, σ 2

x = 1,

4 8 12 16 20
Tx

0

0.04

0.08

0.12
TY X , bits

0

0.4

0.8

1.2
r

(a)
4 8 12 16 20

Ty

0.1

0.11
TY X , bits

0

0.2

0.4

0.6

0.8

1
r

(b)

0 20 40 60 80 100

x

0

0.04

0.08

0.12

0.16

0.2
TY X , bits

0

0.1

0.2

0.3

0.4
r

(c)
0 20 40 60 80 100

y

0.07

0.08

0.09

0.1

0.11
TY X , bits

0.04
0.08
0.12
0.16
0.2
0.24
0.28

r

(d)

-0.8 0 0.8
c

0

0.04

0.08

0.12
TY X , bits

0.08

0.12

0.16

0.2

0.24

0.28
r

(e)

FIG. 4. “Spurious” TE TY→X (solid lines) and the relative spuri-
ous coupling measure r (dashed lines) for the linear oscillators (16)
and (17) in the case of downsampling versus parameters: (a, b) and
Tx and Ty , individual periods of the oscillators; (c, d) τx and τy , their
relaxation times; (e) c, the strength of the influence X → Y .

σ 2
y = 0.01, and c = 0.3. Figure 4 evidences that the “spurious”

TE is generically nonzero and takes on considerable values (up
to 0.1–0.2 bits) and the values of r can be rather large (about
0.1–0.3 and sometimes up to unity and even greater) in analogy
with Sec. IV A1. In particular, TY→X is maximal at Tx = 3.2
or Tx = 5.4 [Fig. 4(a)] and at Ty = 4 [Fig. 4(b)]. It rises with
τx [Fig. 4(c)] and falls with τy [Fig. 4(d)]. The plots versus the
coupling strength c [Fig. 4(e)] are rather similar to the previous
examples [Figs. 2(d) and 3(d)]. Note that the largest values of
TY→X and r take place for nonidentical oscillators; i.e., when
their oscillation periods as well as relaxation times differ from
each other. As the oscillators become “more identical” with
respect to those parameters, the values of TY→X and r decrease.
Thus, the spurious coupling effect is not so strong here for
identical oscillators, unlike Sec. IV A1 where the “spurious”
TE is large for identical systems. This distinction is due to the
different forms of coupling in the representation (8) and (10):
Here the driving is performed via both variables x1 and x2 (not
only via the hidden variable x2) on both variables of the system
Y (rather than only on y1). Still, this example illustrates further
the general character of the spurious coupling effect, which is
shown to be considerable for the coupling character different
from that of Sec. IV A1. Variations in the coupling form lead
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to some quantitative differences, while the qualitative picture
of the spurious couplings remains.

For a Markov chain analogous to the above oscillators, an
effect of temporal resolution on TEs can be considered like
in Sec. IV A2. This is done in Appendix A, and the results
appear quite similar to those presented above confirming their
general character. Thus, low temporal resolution can induce
considerable spurious couplings. Such a situation may well be
widespread in practice since a sampling interval is determined
by the conditions of observations or measurements and may
not agree with intrinsic time scales of the systems under study.
Low temporal resolution represents another particular case of
imperfect observations of the driving system states, in addition
to the case of hidden state variables.

C. Observational noise

This subsection deals with the third factor, which can induce
spurious causalities as was shown earlier for the linear Granger
causality [39] and for TE and nonlinear maps of a special
form [40]. Here it is placed into a broader context so that the
present study complements the results of Refs. [39,40] and
shows that their common cause can again be formulated as
imperfect observations of the driving system states.

Consider a relaxation system X specified by the equation

xn = axxn−1 + ξx,n, (18)

where the noise ξx has a variance σ 2
ξ,x and an observable is un =

xn + ηx,n, where the observational noise ηx is Gaussian, white,
independent of ξx , and with a variance σ 2

η,x . The observable u

does not completely determine a state of the system X since
the latter is specified by the hidden variable x. This situation
can again be reduced to the formalism of Sec. III A. If one
denotes x1,n = xn + ηx,n (an observed variable) and x2,n = xn

(a hidden variable), the system X takes the form (8) with
c11 = c21 = 0, c12 = c22 = ax , �11 = σ 2

ξ,x + σ 2
η,x , and �12 =

�22 = σ 2
ξ,x . Similarly to Sec. IV B, the noise covariance in

Eq. (8) is nonzero. As the driven system Y , take a relaxation
system

yn = ayyn−1 + cxn + ξy,n, (19)

where the noise ξy has a variance σ 2
ξ,y and an observable

is vn = yn + ηy,n with the observational noise ηy Gaussian,
white, independent of ξy , and possessing a variance σ 2

η,y , c is a
coupling coefficient. Here ξy and ηy are independent of ξx and
ηx . Analogously, by denoting y1,n = yn + ηy,n (an observed
variable) and y2,n = yn, one reduces the system Y to the form
(10) with c33 = c43 = 0, c34 = c44 = ay , c31 = c41 = 0, c32 =
c42 = c, �33 = σ 2

ξ,y + σ 2
η,y , and �43 = �44 = σ 2

ξ,y . Thus, the
full system (18) and (19) is rewritten in the form (8) and (10)
and can be studied exactly as in Secs. IV A1 and IV B.

As starting values for the analysis, take ax = 0.99, σ 2
ξ,x =

0.1, σ 2
η,x = 1, ay = 0.5, c = 0.2, σ 2

ξ,y = 0.0001, and σ 2
η,y = 0.

Figure 5 shows generically nonzero TY→X and the values of
r , which can often exceed unity similarly to the examples of
Secs. IV A1 and IV B. In particular, the value of the “spurious”
TY→X is greatest (about 0.1 bits) at big absolute values of ax

(close to unity) and intermediate σ 2
ξ,x (around 0.1, i.e., by

the order of magnitude less than σ 2
η,x = 1) and σ 2

η,x (around
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FIG. 5. “Spurious” TE TY→X (solid lines) and the relative spuri-
ous coupling measure r (dashed lines) for the Gaussian process (18)
and (19) in the case of observational noise versus parameters: (a) ax ,
an individual parameter of the system X controlling autocorrelations
of x; (b) σ 2

η,x , an observational noise variance in the system X; (c) σ 2
ξ,x ,

a dynamical noise variance in the system X controlling the amplitude
of x; (d) c, the strength of the influence X → Y .

1.0, i.e., by the order of magnitude greater than σ 2
ξ,x = 0.1).

It rises with the coupling strength c, but saturates already
at c ≈ 0.2. The character of all those dependencies can be
explained via comparison of the contributions of the different
terms entering the right-hand side of Eqs. (18) and (19) to the
variances of u and v. In particular, small spurious couplings
at weak observational noise in the system X [small σ 2

η,x in
Fig. 5(b)] are expected because such a case corresponds to
accurate observations of the states of X so that the necessary
reason for the spurious causalities disappears.

The effect of observational noise on TEs for Markov chains
appears quite analogous to the above results as discussed
in Appendix B, where TEs are analyzed for Markov chains
without such a specific adjustment of their form as in Ref. [40].
Thus, observational noise is shown to be the third factor leading
to spurious causalities (similarly to hidden state variables and
low temporal resolution) by making observations of the driving
system states imperfect.

V. DISCUSSION

Though the above results are presented for two-variable
driving systems whose equations can be written in such a form
that one of the state variables u = x1 is observed and another
one, x2, is hidden, all qualitative conclusions hold true in a
general case where the observables u and v are vectors of
dimensions du and dv , being arbitrary single-valued functions
of the respective state vectors u = hu(x) and v = hv(y).
Similarly to the above consideration, nonzero values of the
“spurious” TY→X are possible if du < dX so that an incomplete
state of the driving system X is observed. The spurious
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coupling effect is impossible if the observation function hu

is one-to-one, i.e., gives a complete state of X.
To summarize the above results from a physical and a

technical point of view, the following main circumstances
leading to spurious causalities can be formulated. The first one
is more physical and relates to a situation where the driving
system X consists of several components with their own
degrees of freedom (i.e., X has a relatively complex structure),
some of which are unobserved and strongly influence both
the observed X components and the system Y . In particular,
such a situation might easily arise in studies of various modes
of climate variability. Indeed, if one focuses on some basic
large-scale modes (e.g., in the Pacific and Atlantic oceans) as
is usually done [18,20], their interdependence may well be
determined by some neglected processes occurring at other
spatial and temporal scales. Additional physical justifications
then seem necessary to select appropriate variables for the
analysis and make the results reliable. The other two reasons
for spurious causalities, insufficient temporal resolution and
observational noise, belong to more technical conditions of
observations. Whether they are considerable in a concrete
practical situation should also be specially analyzed on the
basis of entire substantial information about the systems under
study and intrinsic time scales of their dynamics as well as
about the measurement process.

For an additional mathematical discussion, note that the
spurious coupling effect is theoretically possible only for
stochastic systems. If X and Y are deterministic, then TE
in both directions is zero; more precisely, the conditional
distribution of an observable, given its individual past, is
a Dirac δ function at a sufficient embedding dimension d

as follows from Takens’s theorems [46]. The fact that in
practice it appears possible to determine coupling direction
for deterministic systems based on TE estimation [29,30]
takes its roots, seemingly, in TE estimation errors. It may
appear simpler sometimes to predict the future of a driven
system with a given accuracy based on the past of both
systems than only on its own past due to more flexible
coping with the “curse of dimensionality” problem (easier
approximation of nonlinear predictors under a parametric
approach or coarser binning under nonparametric conditional
distribution estimation). However, the nontrivial problem of an
evolution operator approximation lies apart from the principal
circumstance of incomplete state observations and seems, in a
sense, more technical.

For an additional statistical consideration, note that the
spurious coupling effect may occur in various linear and
nonlinear systems, but in practice it may be masked by the TE
estimation errors; i.e., a TE estimate can be obtained with so
broad confidence interval that a theoretically nonzero but small
“spurious” TE would appear statistically indistinguishable
from zero. Based on some asymptotic distributions of the TE
estimators (see, e.g., Refs. [28,31,47]), one can estimate the
length of a time series at which a given small TE becomes
detectable at a given significance level. A sufficiently short
time series prevents false detections of directional couplings
based on nonzero TEs. However, correct detections may appear
difficult as well, if the existing coupling is not strong enough.

Large estimation uncertainties do not exclude the risk
of false coupling detections in general. In particular, the

“spurious” TE may even exceed the “correct” one, strongly
distorting a researcher’s impression about a coupling character,
which may occur in a wide range of situations described above
with the examples of oscillators and relaxation systems [48].
To avoid errors, one needs a special test for BC, i.e., against a
null hypothesis of UC (indeed, a null hypothesis is always the
simpler one [49]). As follows from the above consideration,
such a test might be based on checking whether an observed
time series is sufficiently likely to be generated by a certain
mathematical model with UC or only by a system with BC.
To do such a check, one should perform an identification
of mathematical models from a certain class, which should
be selected on the basis of substantial information about
possible physical data-generating mechanisms. Such a test
has already been developed to cope with the downsampling
problem [38]. A test suitable in a more general situation could
be implemented similarly. This idea seems to be a useful
practical consequence of the results presented above.

VI. CONCLUSIONS

This work shows that a widely used characteristic of direc-
tional couplings, the transfer entropy, may lead to spurious
causality inference in a wide range of situations. Namely,
in the case of a unidirectional coupling, wrong conclusions
about a bidirectional coupling can often be made based on
nonzero values of TE in both directions. Within the framework
of stochastic systems with finite-dimensional state vectors, it
is shown that a common cause of false coupling detections is
an incomplete observation of the driving system state, which
includes the cases of unobserved state variables, low temporal
resolution, and observational noise. For a reliable quantitative
analysis of those situations, mathematical benchmark systems
(Gaussian processes and Markov chains) are selected here so
to provide computation of exact values of TEs, rather than
their statistical estimates from simulated time series.

A practical consequence of the obtained results is the neces-
sity to perform special tests for bidirectional coupling if such
a conclusion is of importance, which is often the case. An idea
behind such a test follows directly from the performed analysis
of the different sources of false conclusions and consists in
checking whether all appropriate properties of an observed
time series can be reproduced by a mathematical model with a
unidirectional coupling. However, a practical implementation
of such a test may not always appear straightforward and
efficient. In particular, it is highly desirable to make the class
of trial models as narrow as possible due to the use of prior
substantial information about the systems under study.
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APPENDIX A: TRANSFER ENTROPY FOR MARKOV
CHAINS IN THE CASE OF DOWNSAMPLING

To get a Markov chain analogous to the oscillators (16) and
(17), consider the system X described by a binary variable
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whose current distribution depends on its two previous values:

P{xn = 0|xn−1 = 0,xn−2 = 0} = 1/2 + p1 + p2,

P{xn = 0|xn−1 = 0,xn−2 = 1} = 1/2 + p1 − p2,
(A1)

P{xn = 0|xn−1 = 1,xn−2 = 0} = 1/2 − p1 + p2,

P{xn = 0|xn−1 = 1,xn−2 = 1} = 1/2 − p1 − p2.

An observable is again un = x2n. By introducing x1,n = x2n

and x2,n = x2n−1, one gets a chain with two binary state
variables and the following transition probabilities:

P{x1,n = 0,x2,n = 0|x1,n−1 = 0,x2,n−1 = 0}
= P{x2,n = 0|x1,n−1 = 0,x2,n−1 = 0}

× P{x1,n = 0|x2n = 0,x1,n−1 = 0}
= (1 + p1 + p2)(1 + p1 + p2), (A2)

and similarly for all the other transitions:

P{x1,n = 0,x2,n = 0|x1,n−1 = 0,x2,n−1 = 1}
= (1 + p1 − p2)(1 + p1 + p2),

P{x1,n = 0,x2,n = 0|x1,n−1 = 1,x2,n−1 = 0}
= (1 − p1 + p2)(1 + p1 − p2),

P{x1,n = 0,x2,n = 0|x1,n−1 = 1,x2,n−1 = 1}
= (1 − p1 − p2)(1 + p1 − p2),

P{x1,n = 0,x2,n = 1|x1,n−1 = 0,x2,n−1 = 0}
= (1 − p1 − p2)(1 − p1 + p2), (A3)

P{x1,n = 0,x2,n = 1|x1,n−1 = 0,x2,n−1 = 1}
= (1 − p1 + p2)(1 − p1 + p2),

P{x1,n = 0,x2,n = 1|x1,n−1 = 1,x2,n−1 = 0}
= (1 + p1 − p2)(1 − p1 − p2),

P{x1,n = 0,x2,n = 1|x1,n−1 = 1,x2,n−1 = 1}
= (1 + p1 + p2)(1 − p1 − p2),

with P (x1,n,x2,n|x1,n−1,x2,n−1) = P (1 − x1,n,1 − x2,n|1 −
x1,n−1,1 − x2,n−1). Here x1,n and x2,n are no longer
conditionally independent, i.e., do not satisfy (13), similarly
to the nonzero noise covariance in Sec. IV B.

Let Y be a single-variable relaxation system similar to (11)
where the driving changes the transition probabilities of y by
the value of c:

P{yn = 0|yn−1 = 0,xn−1 = 0} = 1/2 + p3 + c,

P{yn = 0|yn−1 = 0,xn−1 = 1} = 1/2 + p3 − c,
(A4)

P{yn = 0|yn−1 = 1,xn−1 = 0} = 1/2 − p3 + c,

P{yn = 0|yn−1 = 1,xn−1 = 1} = 1/2 − p3 − c.

An observable is vn = y2n. Denote a new state variable y1,n =
y2n. To apply the formalism of Sec. III B, one should find the
transition probabilities from the previous state of the three-
variable Markov chain to the current one. For p3 = 0 used
here similarly to Sec. IV A2, the formulas for those transition
probabilities simplify and read

P(x1,n,x2,n,y1,n|x1,n−1,x2,n−1,y1,n−1)

= P(x1,n,x2,n|x1,n−1,x2,n−1)(1/2 ± c), (A5)
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FIG. 6. “Spurious” TE TY→X (solid lines) and the relative spuri-
ous coupling measure r (dashed lines) for the Markov chain (A1) and
(A4) in the case of downsampling versus different parameters: (a) and
(b) p1 and p2, individual parameters of X controlling autocorrelations
of u; (c) c, the strength of the influence X → Y .

where ±c correspond to equal/different values in the pair
(x2,n,y1,n). Thereby, the full transition probabilities matrix for
the Markov chain with three binary variables is specified.

Figure 6 presents the “spurious” TE for this Markov
chain with the following starting set of parameters: p1 = 1/4,
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FIG. 7. “Spurious” TE TY→X (solid lines) and the relative spuri-
ous coupling measure r (dashed lines) for the Markov chains (B1) and
(15) in the case of observational noise versus parameters: (a) p11, a
“permanence” parameter of the system X controlling autocorrelations
of x; (b) perr, an observational noise intensity in the system X;
(c) p33, a “permanence” parameter of the system Y controlling
autocorrelations of v; (d) p32, the strength of the influence X → Y .
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p2 = −1/4 similarly to the negative bx in Eq. (16), p3 = 0,
c = 1/2. The results are quite similar to the previous examples
in that they evidence generically nonzero TY→X and its quite
considerable values. Note that, as compared with Fig. 3, this
example of an “oscillatory” Markov chain exhibits even greater
values of the “spurious” TE.

APPENDIX B: TRANSFER ENTROPY FOR MARKOV
CHAINS IN THE CASE OF OBSERVATIONAL NOISE

To get a Markov chain with observation errors, consider
a single-variable chain (11) and let an observed value un

differ from xn with a fixed probability perr. This is a kind
of observational noise, where perr characterizes the noise
intensity. By introducing x1,n = un and x2,n = xn, one gets
a Markov chain with four states and transition probabilities

P (x1,n,x2,n|x1,n−1,x2,n−1) = P (x2,n|x2,n−1)P (x1,n|x2,n),

(B1)

where the first multiplier is given by Eq. (11) and the second
one is equal to perr, if x1,n �= x2,n, and 1 − perr, otherwise.
Let Y be a single-variable chain (15), i.e., to be driven

by the variable x2, whose previous value x2,n−1 changes
the conditional probabilities of y1,n by the value of p32.
Given y1,n−1 and x2,n−1, the variable y1,n is independent
of x1,n and x2,n which allows us to compute the transition
probabilities matrix for the full three-variable Markov chain
through multiplication of the conditional probabilities. An
observable is again vn = y1,n.

Figure 7 presents the results for this Markov chain at a
starting set of parameters p11 = 0.4, perr = 1/8, p33 = 0,

p32 = 1/2 [p32 = 0.4 only in Fig. 7(c) to provide some
freedom in variations of p33 which must satisfy |p33| +
|p32| � 1/2]. They are similar to Fig. 5 in that they show
generically nonzero “spurious” TY→X, while r can take on
rather large values, especially for strong observational noise
[perr ≈ 1/2 in Fig. 7(b)], a strong coupling [p32 ≈ 1/2 in
Fig. 7(d)], and a large “permanence” parameter of the driving
system X [p11 ≈ 1/2 in Fig. 7(a)]. The value of TE weakly
depends on the “permanence” parameter p33 of the driven
system Y [Fig. 7(c)]. Again, small values of TY→X for small
perr [Fig. 7(b)] agree with the general expectation that accurate
observations of the driving system states prevent the spurious
coupling effect.
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