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1. INTRODUCTION

Researchers have become increasingly concerned
not only about couplings between different global and
regional climate processes, but also about the direc�
tion of influence, which may not be unidirectional and
may vary in time and, in particular, due to external
natural and anthropogenic effects [1–28]. A useful
approach to studying the cause�and�effect relation�
ships in the earth’s climate system is one based on the
notion of Granger causality [29], making it possible to
estimate the degree of the mutual effect of climate
processes taking into account external impacts (see,
e.g., [13, 14, 18, 19, 21, 23, 25, 26, 28]). Coupling
between two processes may be either unidirectional
(UC), when one of two processes influences the other,
or bidirectional (BC), with mutual effect, such as was
identified in an analysis of Granger causality for phe�
nomena of El Niño and the Indian Monsoon [25, 26].

System Y influences system X according to Granger
if the future behavior of X is better predicted when data
on Y are incorporated than when data on X alone are
used. The nonzero improvement of prediction (IP) is
associated with the presence of influence of Y on X,
and nonzero IPs in both directions are usually inter�
preted as BC signature. It is noteworthy that the pre�
diction is performed one time step , i.e., sampling
interval, ahead. However, the IP may depend on Δt in
a complex way, and works [30, 31] noted that, for quite
a sparse sample, and even in the case of unidirection�
ally coupled systems, nonzero IPs in both directions,

tΔ

i.e., “false couplings,” may be observed. This key find�
ing should be taken into account, in particular, in an
analysis of climatic data.

In this paper we analyzed the effect of the sparse
sample on the determination of the interrelation
between processes according to time series of data on
the basis of the Granger causality. The presence of this
effect, leading to unreliable conclusions on BC, was
identified in a study of variations in global surface tem�
perature (GST) and solar radiative flux. The possibility
for misidentification is demonstrated with reference
stochastic systems with UC as an example. We present
a statistical test for distinguishing between UC and BC
based on accounting for the effect of the sparse sam�
ple. This test is used to verify the conclusion about BC
between the El Niño Southern Oscillation (ENSO)
and the Indian Monsoon [25, 26].

2. GRANGER CAUSALITY

Let  be a two�dimensional random pro�
cess, the realizations of which are recorded at discrete
times with the sampling interval : 

 where n is an integer. We can introduce

notations  and  for the sets
of x and y values until the time n. Among all other pos�
sible methods for an individual (without accounting
for Y) prediction of , the least standard error is

( ( ), ( ))X t Y t

tΔ ( ),nx X n t= Δ

( ),ny Y n t= Δ

1{ }n n k kx x− ∞

− =

= 1{ }n n k ky y− ∞

− =

=

nx

Estimation of Interaction between Climatic Processes: 
Effect of Sparse Sample of Analyzed Data Series

D. A. Smirnova and I. I. Mokhovb

a V.A. Kotel’nikov Institute of Radio Engineering and Electronics, Saratov Department, ul. Zelenaya 38, Saratov, 410019 Russia
e�mail: smirnovda@yandex.ru

b A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, per. Pyzhevskii 3, Moscow, 119017 Russia
e�mail: mokhov@ifaran.ru

Received October 29, 2012; in final form, February 28, 2013

Abstract—It is shown that the approach based on the Granger causality may lead to erroneous conclusions
about bidirectional coupling (BC) in the case of unidirectional coupling (UC) and quite a sparse sample
of the data series analyzed. This effect was revealed in an analysis of coupling between variations in the solar
irradiance and global surface temperature. We present a statistical test to confirm or reject speculations
about the character (unidirectional or bidirectional) of coupling. The corresponding analysis of coupling
between phenomena of El Niño and the Indian Monsoon confirmed the earlier conclusions about their
mutual influence.

Keywords: time series, estimates of couplings, unidirectional coupling, bidirectional coupling, Granger cau�
sality, temperature, solar activity, El Niño, Southern Oscillation, Indian Monsoon

DOI: 10.1134/S0001433813050113



486

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS  Vol. 49  No. 5  2013

 SMIRNOV, MOKHOV

achieved at  where  means

the conditional mathematical expectation of  condi�

tioned upon  The variance of this error will be

denoted through  The best
joint (with accounting for Y) prediction is given by the

formula ; it has the error with the

variance  The normalized IP

value  =  characterizes the
Granger causality (influence) in the direction 
The influence  is defined analogously.

This approach was first implemented in [29] for
stationary Gaussian processes  It was consid�
ered that this process is uniquely described by two�
dimensional linear autoregression (AR) equation of
the form

(1)

where  is a two�dimensional Gaussian white
noise with zero mean, respective variances of compo�

nents  and  and covariance  The
condition that the noise is “white” is equivalent to the

minimum of prediction error [32], with  and

 Further, the process  obeys the one�
dimensional AR equation, i.e., the first equation in (1)

with zero  and white noise  the variance of which

 Now the variances of the noises   are
used to determine IP  Analogously, we determine

In order to estimate the theoretical quantities 

and  for a finite time series  all sums in
Eqs. (1) are restricted to the term  (instead of

), and the coefficients and variances of noises in
AR models of order p are estimated with the help of the
standard least squares method. In the numerical
examples analyzed below, the length N of the series is
large; therefore, the p value is chosen to be just great
enough that the estimation results practically no
longer change with the further p increase (namely, p =
10 was found to be sufficient in all examples consid�
ered here). The Schwarz criterion [33] is used in an
analysis of the climatic time series when polynomial
order is selected. The statistical significance of non�
zero  and  estimates is verified with the help
of the Fisher F�test [34].

It should be noted that Eqs. (1) for different  are
different valid representations of the initial system
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 Then how do  and  change with vari�
ations in Δt? If there is no real influence  it
would be reasonable to expect that  for any

, or at least that  and  How�
ever, these expectations do not always come true [35]
and, moreover, the relative measure of the “false cau�
sality”  may substantially exceed unity.

3. EFFECT OF SPARSE SAMPLE

To evaluate the influence of the sampling interval
on the estimation of couplings, we analyzed the sto�
chastic linear dissipative oscillators with discrete time:

(2)

where Ξ, Ψ are independent Gaussian white noises

with zero means and variances  and   and 
are the coupling coefficients. The intrinsic oscilla�
tion period of X (position of the peak in the power
spectrum) and its relaxation time (which deter�
mines the width of the peak) are given by the for�
mulas  and

 [36]. Formulas for Y look similar.
We used the oscillation periods , relax�
ation times  variances of the noises

 and the coupling coefficients  and
 (UC ) as the initial values for analy�

sis. The IP values were estimated on the basis of time

series of quite a large length  so the statistical
fluctuations were negligibly small. Figure 1 (circles)
demonstrates that UC is adequately characterized by
IP at   and  However, as 
grows, the values of  also become positive and
this “false coupling” is just a manifestation of the
effect of a sparse sample. The value of  is maximal
at  where r = 0.1 means that IP in the direction

 not corresponding to the real influence, is
quite large at 10% of that in the direction of real influ�
ence  As , the dependence between x
and y values at very strongly separated consecutive
times disappears, so that   are close to zero
(see Figs. 1a and 1b at ), implying that the pro�
cess (  ) becomes white noise.

For interpreting nonzero  at  it should
be noted that X is a second�order Markov process and
the vector (  ) contains complete informa�
tion on the distribution of future values  for any

 In this case, (  ) totally determines
the state of the process X at time t, with no IP of the
process X if Y is taken into consideration. For 
the prediction of  on the basis of {
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  …} is not the best, since the
 value cannot be retrieved exactly using down�

sampled data for X. At the same time, additional prog�
nostic information can be obtained according to data
on Y owing to the correlation existing between 
and observed Y values, thereby leading to positive IP of

 not corresponding to the real influence. Thus,
false couplings stem from incompleteness of informa�
tion on the state of the master system in the data
observed.

Positive values of  and r are found in wide
ranges of parameter values, as is shown in Fig. 2, where

 and where one of the parameters varies in each
plot, while all the other parameters have fixed values
taken out of the base set  

   For small noises in the

slave system , states of the master system are better
retrieved according to data on Y; as a consequence, we
obtain large values for both  and r > 0.1
(Figs. 2g, 2h). The ratio r exceeds unity for 
(Fig. 2d) or  (Fig. 2b). It should be noted that

( ),X t t− Δ ( 2 ),X t t− Δ

( 1)X t −

( 1)X t −

,y xG
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2
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0.06,y xG
→

>

3XT =

3.5YT =

r is large for nonidentical oscillators (for , in
the cases indicated above); for identical oscillators

(i.e., for   ) it remains within
 Figures 2e and 2f indicate that r depends in dif�

ferent ways on two relaxation times: it grows with
increasing  and decreases with increasing  the
latter being because the information on the state of X
is worse retrieved according to data on Y. Therefore,

 and r have even larger values when the relaxation
time is relatively large for the master system and small
for the slave system. For instance, when 

  and, with all the other parameters
being those out of the base set, we have 
which exceeds all values in Fig. 2.

These results indicate that the effect of false cou�
plings that arise due to a sparse sample is typical
(shows up not only for some selected parameters) and
may be very strong (r > 1). Both these conclusions are
nontrivial and should be taken into consideration
when real couplings are detected and analyzed. On the
whole, it should be expected that, for systems with
continuous time, the effect of a sparse sample may be

X YT T≠
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2 2
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Fig. 1. Characteristics of Granger causality for unidirectionally coupled oscillators (2) at  with downsampling (solid
lines + circles) and with downsampling plus averaging (dashed lines + diamonds). 
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manifested for any sampling interval, because this just
looks like downsampling. This is confirmed in numer�
ical experiments dealing with analogous stochastic
oscillators with continuous time. However, 
diminishes with a decreasing sampling interval and is
not accepted as significant anymore when estimated
over a finite time series. In this regard, false couplings
are practically manifested only for a sampling interval
that is not too small, which depends on the length of
the time series and theoretical value of 

The general conditions for the maximal manifesta�
tion of the effect of false couplings and its dependence
on system parameters require special consideration.
This effect is not necessarily associated with the rela�
tionship between the sampling frequency of the ana�
lyzed downsampled data and the Nyquist frequency
for more detailed data. Its manifestation should
depend on the relationship between sampling interval
and key parameters of the studied system, including
characteristic oscillation periods of oscillators. In
accordance with the results obtained in this work and,
in particular, for oscillators with nearly identical peri�
ods, the effect is maximal for the sampling interval in
the range from 1/3 to 2/3 of the characteristic oscilla�
tion period. For the case, presented in Fig. 1a, with

, this relationship, with the maximum for
, is close to 2/3.

It should be noted that climatic studies consider
not only downsampled data, but also data downsam�
pled and averaged over the sampling interval (time

y xG
→

.y xG
→

4.4XT =

3tΔ =

step). For the initial system with discrete time, this
reduces to the following manipulations:

(3)

The analogous effect of scarce sample takes place here.
The values of “false couplings” for  turn out to be
close to those in the case of ordinary downsampling,
and may even exceed these latter (see results shown
with diamonds in Fig. 1).

4. COUPLING OF VARIATIONS IN SOLAR 
RADIATION AND GNT

The effect of sparse sample for climate processes
can be estimated by analyzing coupling between varia�
tions in the solar irradiance  and global surface
temperature  the unidirectional character of
which is known a priori. The influence  was
obvious [18, 37, 38], while the influence  was
unrealistic. The monthly (  month) data for 
and , presented in Figs. 3a and 3b (see, e.g.,
http://climexp.knmi.nl), span the period of 1882–
2008, i.e., N = 1524 months. The slow growth in both
values may be due to the stochastic trend of stationary
processes [3], suggesting that AR models are inappli�
cable of estimating Granger causality. Below we con�
sider IP estimates based on the initial data, as well as
those based on downsampled and averaged data
according to (3) for the intervals  3, 6, 9, and
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Fig. 3. Effect of sparse sample in analysis of coupling between (a) variations in the solar irradiance (solar constant) and (b) anom�
alies in the global near�surface temperature: (c, d) the corresponding dependences of the Schwarz criterion on the order of indi�
vidual AR model with the polynomial on the order of one (circles), two (crosses), and three (diamonds); (e, f) the characteristics
of Granger causality and the significance level of the conclusion about their positivity as functions of the sampling interval. The
optimal values of AR orders: px = 6, 10, and 5 at Δt = 1, 3, and 6 and py = 5, 2, 4, 4, and 4 at Δt = 1, 3, 6, 9, and 12. At Δt = 9 and

12, the optimal values px = 12 and 9, even with , give the number of coefficients greater than  so that IP estimates are
untrustworthy (not shown). The dashed line indicates the level q = 0.05.
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12 months with lengths of the corresponding time
series of N = 508, 254, l69, and 127.

The Granger causality was estimated from time
series of variations in the solar irradiance and global
surface temperature using individual AR models with
different orders of autoregression p and with polyno�
mials of different orders K in the right�hand side. An
optimal model of process x was selected according to
Schwarz criterion [33] from the minimization condi�

tion Sx =  +  where k is the number of

coefficients to be estimated. Analogously, the individ�
ual orders and degrees were also selected for the pro�
cess y. Linear models of x and y were always optimal
for the data analyzed here; this can be seen from
Figs. 3c and 3d for  where the optimal order of
AR was  for x and py = 5 for y. To estimate 
according to this same criterion, we selected the opti�
mal number  of accounted�for y values in the pre�
diction of x. It was found to be unity in all cases, except
at  where it was zero. Analogously, in the 
calculation, the optimal number  of included x val�
ues in the prediction of y was unity in all cases. It is
noteworthy that the number of estimated coefficients

in AR models should always be less than  for a suf�
ficient statistic [25]; otherwise, the estimate of signifi�
cance level according to the F�test is untrustworthy.

Thus, at  the  value statistically insignif�
icantly differs from zero (an estimate of the signifi�
cance level of q according to an F�test is much larger
than 0.05; see Fig. 3f) for any nonzero  (such as for

 in Fig. 3e); i.e., no false coupling  is
identified. As to the opposite influence, the

 value is significantly positive at the level
q < 0.002; i.e., the influence  is correctly identi�
fied according to monthly data. For , statisti�
cally significant IPs are recorded in both directions
(Figs. 3e, 3f), once again exemplifying the effect of
scarce sample. Thus, misidentifications of BC in an
analysis of the climatic time series are quite possible
and necessitate special verification.

5. TEST FOR BIDIRECTIONAL COUPLING

The results indicate that an analysis of time series

 provides no reliable answer about the pres�
ence of BC, even if both  and  estimates sta�
tistically significantly differ from zero. This conclu�
sion can only be reached through a special test, reject�
ing or accepting the “zero hypothesis” about UC. In
this case, the probability of erroneous rejection should
not exceed some small value (significance level). We
suggest, in particular, the following approach to testing
[35]. Consider a certain class M of models for the pro�
cess  with UC and some “internal” time step,

2
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which is less than the sampling interval Δt. Within M,
we search for a model capable of adequately reproduc�
ing the statistical characteristics of observed data

 If this model exists, the UC hypothesis cannot
be rejected (the test for BC fails). It should be under�
lined that the test is performed only on the basis of
available data with sampling interval  because data
with a shorter sampling interval (as was the case in sec�
tion 4) are usually unavailable. A shorter time step is
used only in a model whose downsampled characteris�
tics are comparable with their counterparts inferred
from observation data.

This approach will be implemented by the example
of stationary Gaussian processes with discrete time;
for this we will consider the class M models of the form

(4)

where the time step  i.e., τ is the integer
number L times smaller than   and  are
independent Gauss noises with the respective vari�

ances  and  Both UC directions  and
 should be checked sequentially. For the sake of

definiteness, we will test the UC hypothesis ;
i.e., we will test the model (1) with S = 0. Interestingly,
the class M is characterized by four parameters: P, Q,
R, and L. The properties of the Gauss processes X and
Y are totally determined by their auto� and cross�cova�
riance functions (ACF and CCF) [32]. Resting upon
this, we can find the distribution law of sampling esti�
mates of the ACF and CCF for model (4) and, thereby,
an analytical criterion of statistical consistency
between the CF of the model and the sampling CF of
data analyzed.

For the ( )�dimensional vector of
parameters of model (4), we can introduce the nota�

tion θ'    For

a specified value of θ', ACF and CCF in model (3) can
be determined exactly by solving linear algebraic
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the notation  for the vector of sampling estimates of

CF obtained for the analyzed time series 
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(it corresponds to a certain a priori unknown value

) and N is large, for  the distribution is charac�
terized by D�dimensional Gauss law with mean ρ'

(also corresponding to ) and covariance matrix
C, expressed via ρ' according to Barlett’s formula [32].

The quantity  where T means
transposing, is then distributed according to “chi�

square” law with D degrees of freedom [32]. Since 
is a priori unknown, for the purpose of searching for
the best model of analyzed processes in the class M, we

will determine the minimum value  of  as a
function of parameters in the θ' model. If the analyzed

process belongs to class M, the quantity  is distrib�
uted according to chi�square law, but now with 
degrees of freedom, since we performed optimization
with respect to D' variables. The (1 – q)�quantile of

this distribution will be denoted through  If

 the UC hypothesis is rejected at the signif�
icance level q (with the error probability q). Further
analysis uses the usual value q = 0.05. The K value was
assumed to be 20 so that vector  includes all nonzero
values of the ACF and CCF in the examples consid�
ered.

The hypothesis can be rejected erroneously if in
class M the values P, Q, and R are insufficiently large
or the value L is improper. These parameters should be
varied in a certain range and the test should be per�
formed again for different P, Q, R, and L. If data are
obtained by averaging as is given by (3), this is taken
into account in the calculation of ρ' in the model and
no other changes in the testing procedure are required.

The efficiency of the test was checked using, e.g.,
oscillators (2) for  and different  For each
set of parameters, we generated ensembles of 100 time
series with fixed length N = 1000, 2000, and 3000 with
an ordinary downsampling at  The value

 corresponds to UC and positive IP
 (see Fig. 2a for ). The estimates of 

statistically significantly differ from zero (at 0.05 level

' 0'θ = θ ρ̂

' 0'θ = θ

T' '2 ˆ ˆ( ) ( ),χ = ρ − ρ ρ − ρC

0'θ
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minχ̂
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χ
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minχ̂
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2
1 .q−χ

2 2
min 1ˆ ,q−χ > χ

ρ̂

0.3YB = .XB

2.tΔ =

0XB = X Y→

y xG
→

5YT = y xG
→

according to F�test) with 0.22 probability at N = 1000,
0.53 probability at N = 2000, and 0.68 probability at
N = 3000. Thus, misidentifying BC only from IP esti�
mates is very likely. The hypothesis of UC  was
tested for each time series separately for L = 2 and for
different P, Q, and R in the range from 1 to 5. We cal�
culated the relative frequency f of rejections of zero
hypothesis (the fraction of time series in ensemble, for
which the hypothesis turned out to be rejected). For

, this quantity characterizes the misidentifying
frequency and, hence, should be no greater than the
declared significance level q = 0.05 in order for test to
be correct. Figures 4a–4d show that this is true even if
P, Q, and R are markedly greater than the order of the
initial system (2).

At , f quantifies the frequency of correct
rejections of the UC hypothesis (the sensitivity of the
method to BC). The greater f is, the higher the effi�
ciency of the test is. The efficiency grows with increas�

ing  and reaches large values if P, Q, and R are not
too large (Figs. 4a, 4b). The value of f decreases with
diminishing N and growing P, Q, and R (Fig. 4d). This
is as expected, because a broader class of models gives
a larger probability to find a model with CF close to
the observed sampling CF with accuracy to within
their estimation errors, which grow with decreasing N.
All results are analogous for  and  (not
shown). Thus, the test works correctly and has suffi�
ciently high sensitivity.

This approach can also be used to describe pro�
cesses with the help of stochastic differential equations
instead of finite�difference equations (4). It is note�
worthy that the only difference will be the method for
calculating the model values of ρ', which are deter�
mined by solving the corresponding system of ordinary
differential (and not algebraic) equations. The appli�
cability range of the approach can also be extended to
the case of nonlinear systems [35].

X Y→
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0XB >

XB
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Fig. 4. Frequency of rejection of UC hypothesis for system (2) at : N = 1000 (crosses), N = 2000 (diamonds), and N = 3000
(circles); (a) P =2, Q = 2, R = 1; (b) P = 3, Q = 3, R = 3; (c) BX = 0; (d) BX = 0.2 ((c, d) P = Q, R = 1). At BX = 0, f characterizes
the misidentification frequency. The dashed line shows the admissible misidentification frequency at q = 0.05 and with account�
ing for the Bernoulli law for the frequency distribution with ensemble of 100 time series. At BX > 0, f characterizes the sensitivity
of the method.
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6. ESTIMATE OF COUPLING BETWEEN THE 
ENSO AND THE INDIAN MONSOON

This test was also used to verify the earlier conclu�
sion about BC [25, 26] between the ENSO and the
Indian Monsoon, i.e., the phenomena with which the
processes important in the Asian Pacific region and on
a global scale are associated [12, 25, 26, 39, 40]. There
are actual reasons for this conclusion on BC, implying
that the mechanism acts in both directions. Owing to
the formation of anomalies in the sea surface temper�
ature at equatorial Pacific latitudes during El Niño and
La Niña events, with the corresponding changes in
convective processes, zonal Walker and meridional
Hadley circulations, and shift in the Intertropical
Convergence Zone, significant seasonal anomalies of
temperature and precipitation occur in many regions
and, in particular, in the region of the Indian Mon�
soon. In turn, regimes of the Asian and Australian
Monsoons drive circulation features, positions of the
regions of intense convection and clouds in zones
where El Niño and La Niña form (see, e.g., [25, 26]).

Figure 5 presents the time series of monthly values
of  for the monsoon index (Fig. 5a), i.e., deseason�
alized anomalies in the precipitation amount over
India (see, e.g., http://climexp.knmi.nl/data/pAL�
LIN.dat), and  for the ENSO index (Fig. 5b), i.e.,
anomalies in sea surface temperature in the region
Niño�3 (see, e.g., http://climexp.knmi.nl/data/
iersst\_nino3a.dat) for the period of 1871–2006 with
the length of time series N = 1632 at  month. An

nx

ny

1tΔ =

analysis of these time series in [25, 26] with the use of
linear AR models gave positive IP in both directions
with  and  significantly
differing from zero at less than 0.001 level according to
F�test. Retaining nonlinear terms did not alter the
result by very much. At the same time, it should be
noted that these IP values may also be obtained for sys�
tems with UC, like in the case with the model system
(2), especially when two processes have different
relaxation times. The ACF for the monsoon index
decreases faster than the ACF for the ENSO index
(Figs. 5a, 5b), further motivating a more detailed ver�
ification of the type of interrelation between two pro�
cesses.

The test with the inclusion of averaging (3) was
used because we analyzed the monthly total precipita�
tion amount over India and the monthly average sea
surface temperature in the region where the ENSO
was apparent. We applied only linear AR models (4)
because nonlinearity plays a minor role.

We tested the hypothesis about UC for each direc�
tion at L = 2 (with 2�week “internal” time step τ in the
dynamic of the processes), at L = 3 (with 10�day step
τ), and at L = 4 (with 1�week step τ). Timescales of the
order of week are characteristic of atmospheric pro�
cesses. The P, Q, R, and S values were varied in the
range from 1 to 5. Both hypotheses about UC turned out
to be rejected at the significance level q < 0.05 for all mod�
els. The best correspondence between model�derived and
observed CFs was achieved at L = 2, P = Q = 3, R = l,
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Fig. 5. Analysis of coupling between (a) the Indian Monsoon and (b) the ENSO: (a, b) time series; (c–h) covariance functions of
observed data (circles) and model predictions (crosses) with (c–e) UC in the direction “Monsoon → ENSO at P = Q = 3, R = l,
and L = 2 and (f–h) in the direction “ENSO → Monsoon” at P = Q = 4, S = 1, and L = 3.
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i.e., for “Monsoon → ENSO” UC (Figs. 5c–5e).
Unlike the CCF (Fig. 5e), the ACFs of this model
(crosses) are quite close to ACFs of the data analyzed.
The CCF of data analyzed has the maximum for the
time lag of 2 months (“monsoon is master”), but its
values for small negative lags are also quite large. Evi�
dently, any model (4) with UC X → Y may have such a
CCF, slowly changing around zero, only if the ACF of
process X is simultaneously not as rapidly decreasing
as the one in Fig. 5c (circles). Thus, this model may
reproduce either the ACF of the monsoon index or the
CCF, but not both functions together, indicating the
inadequacy of the model with UC “Monsoon →

ENSO.” The test quantifies the measure of this inade�
quacy: for the indicated best model (see Figs. 5c–5e),

 >  Models with oppositely
directed UC diverge even more strongly from the data

analyzed:  >  for the best model
with    (see Figs. 5f–5h). Thus,
the conclusion about BC for the ENSO and the Indian
Monsoon has passed an additional test: it is not the
result of the sparse sample, at least if the time step of
the processes τ is within the range from a week to a
month.

7. CONCLUSIONS

We showed how a sparse sample influences the
analysis of couplings between climatic processes in
terms of time series. In particular, when the sampling
interval is quite long, the analysis of the Granger cau�
sality may misidentify unidirectional system coupling
as BC. Owing to the sparse sample, this effect of “false
couplings” shows up in an analysis of variations in the
solar radiative flux and global surface temperature. An
analysis of data downsampled and averaged over an
interval of 3 or 6 months reveals a significant nonzero
“influence” of GST on solar activity that is indiscern�
ible from monthly data. We presented a special test for
the reliable identification of BC; this test was used to
analyze the interaction between the ENSO and the
Indian Monsoon. The previous conclusion about the
mutual influence of these processes is confirmed by
this test, at least at the time steps from a week to a
month under analysis here.

The test, which is suggested to confirm or reject the
speculations on the type of coupling between pro�
cesses, can be implemented in describing the pro�
cesses with the help of differential equations resting
upon physical model�based considerations with quite
a wide applicability range. This test seems to be poten�
tially useful for judiciously studying the interaction of
climatic processes with the verification of conclusions
on BCs, as was done in this work. A relevant broader
scope treatment of causality in the presence of three or
more interacting processes requires special studies.
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