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We propose a method for the recovery of delay time from time series of time-delay systems. The method
is based on the nearest neighbor analysis. The method allows one to reconstruct delays in various
classes of time-delay systems including systems of high order, systems with several coexisting delays,
and nonscalar time-delay systems. It can be applied to time series heavily corrupted by additive and
dynamical noise.
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1. Introduction

Self-sustained oscillators with delay-induced dynamics are
highly widespread in nature. Their abundance results from such
fundamental features as the finite velocity of signal propagation
that is especially displayed in spatially extended systems [1] and
time-delayed feedback inherent in many physical [2,3], chemical
[4], climatic [5], and biological [6–8] systems and processes. Study-
ing time-delay systems it is important to know the delay times
whose values in many respects define the system dynamics and
features. Knowledge of delay times is of considerable significance
in model construction and prediction of system behavior in time
and under parameter variation. That is why the problem of delay
time reconstruction from experimental time series attracts a lot of
attention.

To solve this problem a variety of methods has been proposed,
which allows one to recover the delay times of time-delayed
feedback systems from their chaotic time series. Many of these
methods are based on the projection of the infinite-dimensional
phase space of time-delay systems onto low-dimensional sub-
spaces [9–14]. They use different criteria of quality for the system
reconstruction, for example, the minimal forecast error of the con-
structed model [9–11], minimal value of information entropy [12],
or various measures of complexity of the projected time series
[13,14]. The methods of delay time recovery are known based
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on employment of regression analysis [15,16], statistical analy-
sis of time intervals between extrema in the time series [17],
information-theory approaches [18,19], multiple shooting approach
[20], optimization algorithm [21], and adaptive synchronization
[22,23]. A separate group of methods for delay time estimation
is based on the analysis of the time-delay system response to
external perturbations [24–27]. These methods can be applied to
systems performing not only chaotic, but also periodic oscillations.

In this Letter we propose a novel method for recovering delay
time from time series. It is based on the nearest neighbor method.
The method of nearest neighbors is widely used in different sci-
entific disciplines for nonlinear time series analysis [28–31]. Its
main areas of application are classification of objects and forecast
of time series. In the object classification problem the basic idea of
the nearest neighbor method is that the object is assigned to the
class of its nearest neighbor or to the class most common amongst
its k nearest neighbors. In application to the forecast of a time se-
ries the method idea is to use for prediction of a future state of a
system its states in the past, which are most similar to the current
state. We propose using the nearest neighbor method for the first
time for estimating the delay time of a delayed feedback system
from time series.

The Letter is organized as follows. In Section 2 we present the
idea of the method and apply it to recover first-order time-delay
systems with a single delay in chaotic and periodic regimes. In
Sections 3 and 4 the method is applied for the reconstruction of
delays in scalar time-delay systems of second order and with sev-
eral coexisting delays, respectively. We show that the proposed
method can be used for determining an a priori unknown order
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Fig. 1. (a) The time series of the Mackey–Glass equation in the chaotic regime. (b) Dependences of D on the trial delay time m for different numbers k of nearest neighbors.
(c) Dependences D(m) for different numbers l of close in time vectors excluded from consideration.
of the model equation and the number of delays. In Section 5 the
method is applied for the recovery of delay time in nonscalar time-
delay system. In Section 6 we summarize our results.

2. Recovery of delay time in first-order time-delay systems with a
single delay

Let us explain the method idea with one of the most popular
first-order delay-differential equation with a single delay:

εẋ(t) = −x(t) + f
(
x(t − τ )

)
, (1)

where τ is the delay time, the parameter ε characterizes the iner-
tial properties of the system, and f is a nonlinear function. Note
that the Mackey–Glass equation [6] and the Ikeda equation [1],
which became standard equations in the study of time-delay sys-
tems, can be reduced to Eq. (1).

Analyzing time series, we always deal with variables measured
at discrete instants of time. Therefore, it is convenient to pass from
differential Eq. (1) to the difference equation

ε
x(t + �t) − x(t)

�t
= −x(t) + f

(
x(t − τ )

)
, (2)

where �t is the sampling time. Eq. (2) can be rewritten as

x(t + �t) = a1x(t) + a2 f
(
x(t − τ )

)
, (3)

where a1 = 1 − �t/ε and a2 = �t/ε. Let us write Eq. (3) in the
form of the discrete-time map

xn+1 = a1xn + a2 f (xn−d), (4)

where n = t/�t is the discrete time and d = τ/�t is the discrete
delay time.

Assume that we have a time series {xn}N
n=1 from the sys-

tem (1), where N is the number of points. Let us define vector
�Xi = (xi, xi−d) and find vector �X j = (x j, x j−d) with j �= i, which is
a nearest neighbor of �Xi . The nearest neighbor for a given vector
can be chosen according to some metrics [30]. The most widely
used metrics is the Euclidean metrics

L( �Xi, �X j) =
√

(xi − x j)
2 + (xi−d − x j−d)

2. (5)

The vector �X j will be the nearest neighbor of �Xi , if the distance
L( �Xi, �X j) is minimal. Generally, it is a common practice to find not
one, but k nearest neighbors for a given vector.

The basic idea of the proposed method is that the nearest
neighbor vectors containing the system (4) dynamical variable at
the instants of time n and n − d, where n ∈ [d + 1, N − 1], will lead
to the close states of the system at the instants of time n + 1, be-
cause the system (4) evolution is defined by its current state and
the state at the delayed instant of time. Since the delay time is a
priori unknown, we vary the trial delay times m within some in-
terval and for k nearest neighbors of each vector �Xn = (xn, xn−m)

constructed from the time series estimate the variance σ 2
n of the

system states at the corresponding instants of time n + 1.
In the case of false choice of m(m �= d), the variance of these

states may be great, because the system states at the instants of
time n + 1 do not depend on the system states at the instants of
time n − m. True delay time d can be estimated as the value at
which the minimum of the following dependence:

D(m) = 1

N − m − 2

N−1∑
n=m+1

σ 2
n (6)

is observed.
We apply the method to time series of the Mackey–Glass equa-

tion

ẋ(t) = −bx(t) + ax(t − τ )

1 + xc(t − τ )
, (7)

which can be converted to Eq. (1) by division by b. The parameters
of Eq. (7) are chosen to be a = 0.2, b = 0.1, c = 10, and τ = 300
to produce a dynamics on a chaotic attractor. The sampling time is
�t = 1 and the number of points is N = 10 000. Part of the time
series is shown in Fig. 1(a).

Fig. 1(b) depicts the dependence of D on the trial delay time
m for different numbers k of nearest neighbors for vector �Xn =
(xn, xn−m). The value of m is varied from 1 to 500 with a step
of 1. All the dependences D(m) exhibit a well-pronounced absolute
minimum at m = 300, which provides an accurate recovery of the
discrete delay time d = τ/�t = 300.

If the time series points are sampled with a high frequency,
a situation is possible in which the vectors �X j = (x j, x j−d) with
j = i ± p (p = 1,2, . . . , P ) that are close in time to vector �Xi =
(xi, xi−d) will be detected as its nearest neighbors. To avoid this
undesirable situation in the search for the nearest neighbors of
vector �Xi = (xi, xi−d), one should exclude from consideration l =
2P vectors �X j = (x j, x j−d) close to �Xi in time.

The dependences D(m) are plotted in Fig. 1(c) for k = 10
and different numbers l of close in time vectors, which are not
taken into account in searching for nearest neighbors. All the plots
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Fig. 2. Dependences D(m) for the Mackey–Glass system in the chaotic regime for different levels of additive noise (a) and dynamical noise (b). The levels of noise are
indicated in % near the corresponding curves.
Fig. 3. (a) The time series of the Mackey–Glass equation in the periodic regime.
(b) Dependences D(m) for different levels of dynamical noise indicated in % above
the corresponding curves.

exhibit a sharp absolute minimum at m = d = 300, as well as the
plots in Fig. 1(b).

It should be noted that instead of searching for a fixed num-
ber k of nearest neighbors for vector �Xi = (xi, xi−d), one can assign
all vectors �X j = (x j, x j−d) to its nearest neighbors, if L( �Xi, �X j) < δ,
where δ is a small quantity. The plots of D(m) constructed in this
way of finding nearest neighbor vectors are similar to the plots
presented in Fig. 1(b). The appropriate choice of the parameters k
and δ enables one to achieve almost complete coincidence of the
results of searching for nearest neighbors in both ways. In addi-
tion, we have found that the choice of the metrics for searching
nearest neighbors has almost no effect on the form of the depen-
dences D(m).

To test the method efficiency in the presence of noise we ap-
ply it to the data produced by adding a zero-mean Gaussian white
noise to the time series of Eq. (7). The obtained results are pre-
sented in Fig. 2(a) for different levels of additive noise at k = 10
and l = 10. The location of the minimum of D(m) allows us to
recover the delay time accurately even for noise level of about
30% (the signal-to-noise ratio is about 10 dB). Such level of noise
greatly exceeds the noise level that is allowed for applying most of
other methods of delay time reconstruction.

The proposed method is even more robust with respect to the
dynamical noise. In Fig. 2(b) the dependences D(m) are shown at
k = 10 and l = 10 for the case, where a zero-mean Gaussian white
noise is added to the right-hand side of Eq. (7). In all the plots
constructed in Fig. 2(b) for different levels of noise the minimum
of D(m) is observed at m = 300.

Let us consider the case where the system (7) performs periodic
oscillations (a = 0.2, b = 0.1, c = 10, and τ = 10). Part of the time
series of these oscillations is shown in Fig. 3(a). In the construction
of the dependences D(m) we consider vectors �X j as nearest neigh-
bors of vector �Xi , if L( �Xi, �X j) < 0.02. In the absence of noise there
is no pronounced minimum in the plot of D(m) (Fig. 3(b)). How-
ever, the presence of dynamical noise turns out to be useful for
recovering the delay time. A clear minimum appears in the plot of
D(m) at m = d = 10 in the case of a 10% noise (the signal-to-noise
ratio is 20 dB) (Fig. 3(b)). Certainly, the presence of additive noise
has no positive effect on determining the delay time.

In contrast to most of other methods for the reconstruction of
delay time, the proposed method can be applied to estimating the
Fig. 4. Dependence D(m) for the Hutchinson system at a 5% dynamical noise.

delay time not only in the systems (1) characterized by a linear
dependence from the current state and nonlinear dependence from
the delayed state. It can be also applied to time series gained from
more general type of time-delay systems with nonlinear function
F depending on both variables x(t) and x(t − τ ):

ẋ(t) = F
(
x(t), x(t − τ )

)
. (8)

The reasoning presented above for the system (1) holds for the
system (8), since the proposed method takes into account the de-
pendence of evolution of the system on its current state and the
state at the delayed instant of time, while the form of this depen-
dence is of no importance.

Let us apply the method to time series of the Hutchinson sys-
tem [32]:

ẋ(t) = rx(t)

(
1 − x(t − τ )

q

)
. (9)

At r = 1.7, q = 1, and τ = 10 the system (9) performs peri-
odic oscillations. We added a zero-mean Gaussian white noise to
the right-hand side of Eq. (9) and constructed the dependence
D(m). Fig. 4 presents the plot of D(m) for k = 10, l = 10, and a
5% dynamical noise (the signal-to-noise ratio is about 26 dB). For
the sampling time �t = 1 the minimum of D(m) is observed at
m = 10, which coincides with the delay time d = τ/�t = 10.

3. Recovery of delay time in second-order time-delay systems

The proposed method can be easily extended to high-order
time-delay systems. In particular, it can be modified for the sys-
tems described by the second-order delay-differential equations

ε2 ẍ(t) + ε1 ẋ(t) = F
(
x(t), x(t − τ )

)
, (10)

where ε1 and ε2 are the parameters characterizing the inertial
properties of the system. As an example we consider the follow-
ing system:

ε2 ẍ(t) + ε1 ẋ(t) = −x(t) + f
(
x(t − τ )

)
. (11)

Using the described above formalism, one can pass from differ-
ential Eq. (11) to the discrete-time map

xn+2 = b1xn+1 + b2xn + b3 f (xn−d), (12)
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Fig. 5. (a) The time series of Eq. (11) with quadratic nonlinearity in the chaotic regime. (b) Dependences D(m) constructed under the assumption that the model equation is
of the first order (black color) and the second order (grey color).
where b1 = 2 − (ε1�t)/ε2, b2 = −1 + (ε1�t − (�t)2)/ε2, and b3 =
(�t)2/ε2.

For each vector �Xn = (xn+1, xn, xn−m) constructed from Eq. (11)
time series we find k nearest neighbor vectors and estimate for
them the variance σ 2

n of the system states at the corresponding
instants of time n + 2. Then we calculate the dependence

D(m) = 1

N − m − 3

N−2∑
n=m+1

σ 2
n (13)

under variation of the trial delay time m. The location of the min-
imum of (13) will give us an estimation of the discrete delay time
d = τ/�t .

The proposed methods can be used for determining an a priori
unknown order of a delayed feedback system from its time series.
To define the order of the time-delay system one has to recover
initially its delay time under the assumption that the system is de-
scribed by the first-order equation (1). Then, one has to recover the
delay time under the assumption that the system model equation
is the second-order equation (11) and construct the dependences
(6) and (13) in the same plot. The dependence D(m) constructed
under the true choice of the model equation order will lie below
the dependence D(m) constructed under the false choice of the
order of the model equation.

For example, let us have a time series from the second-order
time-delay system (11) with quadratic nonlinear function f (x) =
λ − x2, where λ is the parameter of nonlinearity. The system pa-
rameters τ = 1000, λ = 1.9, ε1 = 7, and ε2 = 10 correspond to
chaotic oscillations. The sampling time is �t = 1 and the number
of points is N = 10 000. Part of the time series is shown in Fig. 5(a)
for the case, where a 10% dynamical noise is added into the sys-
tem. Let us suppose that the order of the system model equation
is unknown and first recover the delay time under the assumption
that the system is governed by the first-order equation (1). The de-
pendence (6) is depicted in Fig. 5(b) in black color for k = 10 and
l = 10. It has a minimum at m = 1001 that is slightly larger than
the delay time d = τ/�t = 1000.

Let us reconstruct now the delay time assuming that the sys-
tem is described by the second-order delay-differential Eq. (11).
The dependence (13) is shown in Fig. 5(b) in grey color for k = 10
and l = 10. It lies below the dependence (6) indicating that the
second-order equation describes the system better than the first-
order equation. The minimum of dependence (13) is observed at
m = d = 1000. Thus, the delay time is recovered accurately at the
true choice of the model equation order.

Then we consider the case, where a time series is gained
from the first-order time-delay system (1) with quadratic nonlinear
function and parameters τ = 1000, λ = 1.9, and ε = 10 corre-
sponding to chaotic oscillations. As well as in the considered above
example, �t = 1, N = 10 000, and a 10% dynamical noise is added
into the system.

The plot of D(m) constructed under the assumption that the
model equation has the form of Eq. (1) exhibits minimum at
m = d = 1000. This plot is depicted in Fig. 6 in black color for
Fig. 6. Dependences D(m) constructed from time series of Eq. (1) with quadratic
nonlinearity under the assumption that the model equation is of the first order
(black color) and the second order (grey color).

k = 10 and l = 10. The dependence D(m) constructed under the
assumption that the model equation has the form of Eq. (11) is
shown in Fig. 6 in grey color. It has a minimum at m = 999 and
lies mainly higher than the black curve indicating that the model
equation of the system has the first order.

4. Recovery of delay times in time-delay systems with two delays

The proposed method can be also extended to systems with
multiple delays. Let us consider a time-delay system with two dif-
ferent delay times τ1 and τ2:

εẋ(t) = −x(t) + f1
(
x(t − τ1)

) + f2
(
x(t − τ2)

)
. (14)

Using the described above approach, we pass from differential
Eq. (14) to the discrete-time map

xn+1 = a1xn + a2 f1(xn−d1) + a2 f2(xn−d2), (15)

where a1 = 1 − �t/ε, a2 = �t/ε, d1 = τ1/�t , and d2 = τ2/�t .
From Eq. (15) it follows that the nearest neighbor vectors con-

taining the dynamical variable at the instants of time n, n−d1, and
n − d2, where n ∈ [d2 + 1, N − 1](d2 > d1), will lead to the close
states of the system at the instants of time n + 1. Since the delay
times d1 and d2 are unknown, we vary the trial delay times m1
and m2 within some interval and for k nearest neighbors of each
vector �Xn = (xn, xn−m1 , xn−m2 ) constructed from the time series es-
timate the variance σ 2

n of the system states at the corresponding
instants of time n + 1.

In the case of false choice of m1 and/or m2 (m1 �= d1 and/or
m2 �= d2), the variance of these states may be great. The location
of the minimum of the dependence

D(m1,m2) = 1

N − m2 − 2

N−1∑
n=m2+1

σ 2
n (16)

can be used as an estimation of the delay times d1 and d2.
We demonstrate the method efficiency with a generalized

Mackey–Glass equation obtained by introducing a further delay,

ẋ(t) = −bx(t) + 1

2

ax(t − τ1)

1 + xc(t − τ1)
+ 1

2

ax(t − τ2)

1 + xc(t − τ2)
. (17)

Division of Eq. (17) by b reduces it to Eq. (14) with ε = 1/b.
For a = 0.2, b = 0.1, c = 10, τ1 = 70, and τ2 = 300 Eq. (17) ex-
hibits chaotic oscillations. The dependence D(m1,m2) representing
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Fig. 7. Dependences D(m1,m2) (a) and D(m) (b) for the generalized Mackey–Glass system in the chaotic regime.
a two-dimensional surface is shown in Fig. 7(a) for N = 10 000 and
�t = 1. In the construction of this figure the vectors �Xi and �X j
were considered as nearest neighbors, if the distance

L( �Xi, �X j) =
√

(xi − x j)
2 + (xi−m1 − x j−m1)

2 + (xi−m2 − x j−m2)
2

(18)

was less than 0.02. The dependence D(m1,m2) has a global min-
imum at m1 = d1 = 70 and m2 = d2 = 300 providing an accurate
recovery of both delay times.

For comparison Fig. 7(b) presents the dependence D(m) con-
structed by applying the method proposed in Section 2 for the
system (1) with a single delay to the time series of Eq. (17). The
plot of this dependence described by Eq. (6) shows deep minima
at m = 68 and m = 298. Hence, the delay time estimation appears
to be less accurate without taking into account the form of model
Eq. (14). One more distinctive minimum of D(m) is observed in
Fig. 7(b) close to m = d1 + d2.

Note that applying the method of two delays reconstruction to
time series of Eq. (1) with a single delay, we observed the mini-
mum of D(m1,m2) at m1 = m2 = d.

The method described in this section can be applied to the re-
covery of delay times not only in the systems (14), but also in
more general class of systems with two delays governed by equa-
tion

ẋ(t) = F
(
x(t), x(t − τ1), x(t − τ2)

)
. (19)

5. Recovery of delay time in nonscalar time-delay systems

The method for the recovery of delay time from time series
based on the nearest neighbor analysis can be extended to non-
scalar time-delay systems

ẋ(t) = F
(
x(t), x(t − τ ), y(t − τ )

)
,

ẏ(t) = F
(

y(t), y(t − τ ), x(t − τ )
)
. (20)

In this case, using the time series of both variables x(t) and
y(t) one has to search for the nearest neighbors for vectors �Xn =
(xn, xn−m, yn−m) or �Yn = (yn, yn−m, xn−m) under variation of trial
delays m and determine the delay time by the location of the min-
imum of the dependence (6).

Let us apply the method to time series of a system of two cou-
pled nonlinear delayed equations

ẋ(t) = rx(t) − μ
[
x2(t − τ ) + cy2(t − τ )

]
x(t),

ẏ(t) = ry(t) − μ
[

y2(t − τ ) + cx2(t − τ )
]

y(t) (21)

introduced in [33]. We choose the parameters to be r = 4, μ = 4,
c = 0.5, and τ = 0.35. As it was shown in [33], at these parameter
values the system (21) shows periodic oscillations. Part of the time
series of x(t) is presented in Fig. 8(a).

To construct the plot of D(m) we use the time series of x(t)
and y(t) with N = 10 000 and �t = 0.01. In the absence of noise
Fig. 8. (a) The time series of Eq. (21). Dependence D(m) for 40% dynamical noises.

the dependence D(m) has no pronounced minimum. However, the
dependence D(m) shows a minimum, if independent dynamical
noises with sufficiently large intensity are added to the right-hand
side of both equations in the system (21). In Fig. 8(b) the depen-
dence D(m) is constructed for k = 10, l = 10, and 40% dynamical
noises (the signal-to-noise ratio is about 8 dB). It has a minimum
at m = 35, which coincides with the delay time d = τ/�t = 35.

6. Conclusion

We have proposed the method for the reconstruction of delay
time in time-delay systems from their time series. The method is
based on the nearest neighbor analysis. It allows one to recover
the delay times in scalar time-delay systems of different order
and with multiple delays and nonscalar time-delay systems. The
method can be applied to time-delay systems with arbitrary form
of nonlinear function, including the function depending on both
the delayed and non-delayed variables. Moreover, the method can
be used for determining an a priori unknown order of a time-delay
system from its time series. The parameters of the method can be
chosen within a wide range.

The proposed method remains efficient under very high lev-
els of dynamical and additive noise. It is shown that the method
can be successfully applied to the recovery of delay time in time-
delay systems performing chaotic oscillations and time-delay sys-
tems performing periodic oscillations in the presence of dynamical
noise.
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