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We perform experiments with 72 electronic limit-cycle oscillators, globally coupled via a linear or nonlinear
feedback loop. While in the linear case we observe a standard Kuramoto-like synchronization transition, in the
nonlinear case, with increase of the coupling strength, we first observe a transition to full synchrony and then
a desynchronization transition to a quasiperiodic state. However, in this state the ensemble remains coherent so
that the amplitude of the mean field is nonzero, but the frequency of the mean field is larger than frequencies
of all oscillators. Next, we analyze effects of common periodic forcing of the linearly or nonlinearly coupled
ensemble and demonstrate regimes when the mean field is entrained by the force whereas the oscillators are not.
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I. INTRODUCTION

An ensemble of many interacting oscillatory units is a
popular model, widely used for description of collective
dynamics of such various objects as lasers and Josephson
junctions, spontaneously beating atrial cells and firing and/or
bursting neurons, pedestrians on the footbridges and hand-
clapping individuals in a large audience, electrochemical
oscillators, metronomes, and many others. Quite often the
networks of such elements can be approximately considered
as fully connected, with the same strength of interaction
within each pair of elements. In this case one speaks of
the global or mean-field coupling. Analysis of collective
behavior of globally coupled systems is not only important for
applications but also poses a number of problems which are
highly nontrivial from the standpoint of nonlinear dynamics.
Due to these reasons, this topic has remained a focus of interest
in the past three decades. Basic theory and further references
can be found in Refs. [1–3].

The main effect of global coupling is emergence of a
collective mode, or mean field, due to synchronization of some
or all elements of the population. The degree of the collective
synchrony is reflected in the amplitude of the collective mode;
this amplitude is often called the order parameter. Typically, the
order parameter increases with the interaction strength, if the
latter is larger than a certain threshold value. This effect is well
understood within the framework of the Kuramoto-Sakaguchi
model [4,5] of sine-coupled phase oscillators, which is analyt-
ically solvable in the limit case of infinitely large ensemble.
The character of the Kuramoto transition from the incoherent
state, where the order parameter is zero, to the partially or fully
synchronous state with nonzero mean field depends on the
distribution of the natural frequencies within the population;
this transition can be either smooth [4,6] or abrupt [7]. The
described scenario is not universal, however: Consideration of
more complicated oscillators and/or general coupling results
in such effects as clustering [8], chaotization of the mean

field [9,10], and appearance of robust heteroclinic network
attractors [8,11]. Another subject of recent interest is partial
synchrony in networks of identical integrate-and-fire units,
coupled via the so-called α function, imitating the synaptic
delay [10,12]. This model exhibits a collective mode that is
not synchronized with individual units, while the synchronous
state is unstable. A similar regime was numerically observed
for a model of active mechanical oscillators, coupled via an
inertial load [13]. Coherent but not synchronous dynamics in
ensembles of nonlinearly coupled Stuart-Landau oscillators
was demonstrated numerically and analyzed theoretically in
the framework of phase approximation in Refs. [14–16].
The latter system demonstrates self-organized quasiperiodic
dynamics (SOQ); in this state the frequency of the mean
field differs from the frequencies of all oscillators and the
dependence of the order parameter on the coupling strength is
nonmonotonic. Experimental investigation of such regimes is
the primary goal of this paper.

In spite of the high interest in the field, there are relatively
few experimental studies of the dynamics of globally cou-
pled systems. Before reviewing these studies, we mention a
number of observations of synchronous collective dynamics
in systems, where the coupling is assumed to be of the
all-to-all type, although it is most likely not homogeneous. This
includes observations of the synchronous emission of optical
or acoustical pulses by groups of insects [17], rhythmical
hand clapping in opera houses [18], glycolytic oscillation in
populations of yeast cells [19], etc. A well-known example
is pedestrian synchrony on the London Millennium Bridge;
the experiments with the pedestrian groups of different sizes
demonstrated that collective synchrony is a threshold phe-
nomenon [20], in correspondence with the theoretical results
for globally coupled oscillators [4,21]. Next, we mention a
brilliant demonstration of collective synchrony in a very simple
experiment with metronomes, performed within a framework
of student research [22]. Well-controlled experiments on arrays
of 64 globally coupled electrochemical oscillators verified
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most theoretical predictions [23]. In particular, this group
provided the first experimental demonstration of the Kuramoto
transition for both periodic and chaotic oscillators. Other
laboratory experiments have been conducted with Josephson
junctions [24], photochemical oscillators [25], vibrating mo-
tors on a common support [26], and two groups of metronomes
exhibiting chimera states [27].

In this paper we extend our experimental analysis of
electronic oscillators, coupled via the common load, commu-
nicated in Ref. [28]. Using an experimental setup with 72
units instead of 20, we systematically analyze the ensemble
dynamics for the cases of linear and nonlinear coupling.
The latter is implemented as follows: The phase shift in the
feedback loop depends on the voltage across the common
load (mean-field amplitude). We demonstrate that increase
of the global coupling first results in the full synchrony and
then in its destruction. After synchrony breaking, the system
exhibits a quasiperiodic state: Frequency of the mean field is
larger than frequencies of all individual oscillators. Next, we
investigate the effect of the external forcing of the globally
coupled system. Here the main result is a confirmation of the
theoretical prediction, made in Ref. [15]. Namely, we show
that in case of nonlinear coupling the weak external driving
entrains only the mean field but not individual oscillators.
Thus, the forced global dynamics remains quasiperiodic.

The paper is organized as follows. In the rest of this section
we introduce in more detail the mechanism of appearance of
the SOQ dynamics. In Sec. II we present the experimental
setup. In Secs. III and IV we describe and discuss the results.
Some details of the experiment and mathematical model of the
electronic oscillator are presented in the Appendix.

A. Self-organized quasiperiodic dynamics of globally
coupled systems

Consider a system of N all-to-all coupled limit cycle
oscillators, where N is large. The dynamics of the collective
mode is determined by three factors: (i) dynamics of individual
units, (ii) distribution of their parameters, e.g., of frequencies,
and (iii) organization of the global coupling. A complete
theoretical description of the problem is known only for the
case when the oscillators are close to the Hopf bifurcation
point and, hence, can be described by the normal form. The
equations of the coupled system then read

ȧk = (μ + iωk)ak − |ak|2ak + eiβF , (1)

where μ is the Hopf bifurcation parameter (due to the
formulated assumption it is positive and small) and ωk are
natural frequencies of oscillators. Forcing F depends on the
mean field Z = N−1 ∑N

k ak; in the simplest case F = εZ,
where ε is the coupling strength. Parameter β is an inherent
phase shift which describes how the forcing affects individual
units.

If ε � μ, the dynamics of Eq. (1) can be described within
the framework of phase approximation [2]. For F = εZ this
approach yields the paradigmatic Kuramoto-Sakaguchi model
[4,5] of sine-coupled oscillators,

ϕ̇k = ωk + εR sin(� − ϕk + β) , k = 1, . . . ,N, (2)

where ϕk are phases of oscillators and R and � are the
amplitude and the phase of the complex Kuramoto order
parameter (mean field)

Rei� = N−1
∑

k

eiϕk . (3)

[Notice that R = |Z|/√μ and � = arg(Z).] For the following
it is important that the parameter β in Eq. (2) determines
the character of the interaction between the oscillators: For
|β| < π/2 the coupling is attractive; otherwise, for π/2 < β <

3π/2, it is repulsive. The stationary solution of the Kuramoto-
Sakaguchi model can be obtained analytically for different
frequency distributions [2,7]. Moreover, it admits a complete
low-dimensional description in terms of collective variables
[16,29].

Generally, the organization of the global coupling can be
more complicated than just discussed. So, the mean field can
have its own dynamics, described by additional differential
equation(s); see, e.g., the models of the array of Josephson
junctions [30] and of crowd synchrony on the Millennium
Bridge [21]. Physically, it means that the oscillators interact
via some medium or common load, which, naturally, can be
nonlinear. Consider a simple example of medium dynamics:

Ḟ = −γF + iνF + iη|F |2F + ε̃Z. (4)

In the linear case η = 0, the medium is a damped harmonic
oscillator (cf. [21,30]); it means that the amplitude of the mean
field is multiplied by a constant and its phase is shifted. If the
medium is nonlinear, η �= 0, the phase shift depends on the
mean-field amplitude. As shown below, this feature results in
an interesting dynamics.

In the phase approximation, Eqs. (1) and (4) yield extension
of the Kuramoto-Sakaguchi model [14]:

ϕ̇k = ωk + ε sin[� − ϕk + α(R,ε)], (5)

where ε = ε̃/γ and α(R,ε) = β + β1ε
2R2, β1 = ηγ −3 [31].

Notice that the phase model of the same form appears if
the forcing in Eq. (1) is a nonlinear function of the mean
field, F = ε̃Z + (η1 + iη2)|Z|2Z [32]. This nonlinear model
(5) [33] can exhibit an asynchronous but coherent solution.
Indeed, suppose ωk = ω and |β| < π/2. Then, for small
ε, the synchronous solution R = 1 is stable. However, if
the coupling exceeds the critical value, determined by the
condition π/2 = β + β1ε

2
cr , synchrony becomes unstable, and

the order parameter decreases. On the other hand, if R

becomes very small, then α < π/2 and the coupling again
becomes attractive. Thus, the system settles exactly at the
border of stability and instability of the fully synchronous
solution, so that for ε > εcr we have β + β1ε

2R2 = π/2, or
R = εcr/ε < 1. In this critical, self-organized state, the mean
field has a nonzero amplitude, although the system is not
synchronized. Moreover, in this state the frequency of the
mean field differs from the oscillator frequency [14]. Since
oscillators are not entrained by the mean field, they generally
exhibit quasiperiodic dynamics [34]. An analysis of the model
(5) was extended to the cases of Lorentzian and uniform
frequency distributions [16]. We briefly discuss the latter case,
since it is closer to the distribution of oscillator frequencies
in our experiment. First, with the increase of ε the oscillators
synchronize. Then, with further increase of ε, they leave the
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FIG. 1. Wien-bridge oscillator. Here Vi is the output voltage of
the ith oscillator and Vf is the output voltage of the global feedback
loop (cf. Fig. 3).

synchronous cluster one by one, and finally the SOQ state
appears. In this state all oscillators differ in frequency from
the mean field; i.e., they all are in a quasiperiodic state.

In summary, nonlinear coupling naturally appears if the
oscillators interact via a medium. For cubic nonlinearity and
for the oscillators described by the normal form equations,
the phase approximation yields the solvable model (5),
which exhibits SOQ solutions. Although we cannot perform
analytical analysis for general self-sustained oscillators [35],
we expect that the emergence of coherent asynchronous regime
is mainly determined by the property of the nonlinear coupling,
namely by an amplitude-dependent phase shift. Therefore, we
expect to observe this state also for systems which go beyond
the sine-coupling approximation.

II. ENSEMBLE OF ELECTRONIC OSCILLATORS

In this section we describe our setup with 72 globally cou-
pled electronic generators. First we present the implementation
of an individual unit. Next, we discuss organization of the
linear and the nonlinear global coupling and of the common
external forcing.
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FIG. 2. (a) Output voltage V of an autonomous Wien-bridge
oscillator. (b) Limit cycle of the system; here V̂ is the Hilbert
Transform of V . (c) Power spectrum of V .
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FIG. 3. Scheme of the globally coupled system. Individual
generators are shown here by one symbol and a detailed scheme
is given in Fig. 1, whereas the schemes of the linear and nonlinear
phase-shifting units (PSUs) are given in Fig. 4. With the help of the
switch, the nonlinear unit can be excluded from the feedback loop.
The strength of the feedback is governed by the potentiometer Rc.
Common forcing by the external voltage Vext is organized via the
summator

∑
.

A. Wien-bridge oscillator

A scheme of an individual generator is given in Fig. 1; it
represents a nonlinear amplifier with a positive frequency-
dependent feedback via the Wien bridge. The amplifier is
implemented by the operational amplifier U1; resistors R4, R5,
R6, R7; and diodes D1, D2 [36]. The Wien bridge consists of
resistors R1, R2, R3 and capacitors C1, C2. These elements
determine the frequency of the oscillation. Fine frequency
tuning is performed by the trimmer resistor R3, so that all
oscillators in the ensemble have close frequencies ≈1.1 kHz.
With the help of the trimmer resistor R5 the amplitudes of all
uncoupled oscillators were tuned to approximately same value
V ≈ 1.5 V; see Fig. 2. In Appendix we demonstrate that the
oscillator is described by an equation of the van der Pol type,
which is a paradigmatic model of the nonlinear dynamics [37].

B. Global coupling and common forcing

Global coupling is organized via the common resistive
load Rc; see Fig. 3. A fraction of the voltage VL across this
potentiometer is fed back to the individual oscillators via the
linear and nonlinear phase-shifting units and resistors Rin. The
input to the feedback loop can be written as Vc = εVL, where
parameter ε, 0 � ε � 1, quantifies the strength of the global
coupling. It is easy to show that

Vc = ε

∑N
i=1 Vi

N + Rout/Rc

, (6)

where Vi is the output voltage of the ith oscillator. Since
Rout � NRc, we have VL ≈ N−1 ∑

Vi = Vmf , where the
subscript mf stands for the mean field. Thus, the coupling
Vc ≈ εVmf is of the mean-field type.

The voltage Vc from the common load is fed back to
all oscillators via the feedback loop, which includes either
linear or both linear and nonlinear phase-shifting units; their
schemes are depicted in Fig. 4. The linear subunit is an active
all-pass filter which shifts the phase of the signal but keeps
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(a) (b)

FIG. 4. Linear (a) and nonlinear (b) phase-shifting units.

its amplitude; see Figs. 5(a) and 5(b). The phase induced by
the linear PSU is denoted by γlin; it can be gradually adjusted
by the resistor R10 in the range from 0 to π , as shown in
Fig. 5(c). The nonlinear PSU is implemented by a high-pass
first-order filter, where nonlinear properties of diodes provide
a dependence of the phase shift γnl between input and output
on the amplitude of the input [Figs. 5(a) and 5(b)]. Thus, the
total phase shift in the feedback loop is γlin + γnl , where the
first summand serves, along with the coupling coefficient ε,
as a control parameter in our experiments, while the second
summand depends on the dynamical state of the system.
In the experiments with external forcing of the globally
coupled ensemble, the sine-wave generated by the NI ELVIS
II Instrumentation, Design, and Prototyping Platform was
supplied to the feedback loop via a summator.
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FIG. 5. (Color online) Characteristics of the linear (black circles)
and nonlinear (squares, red online) phase-shifting units: (a) output
voltage and (b) phase shift γlin,nl = φout − φin vs the input voltage.
(c) Phase shift of the linear unit γlin vs R10.

III. EXPERIMENTAL RESULTS

A. Acquisition and processing of data

In our experiments we vary parameter γlin of the linear
phase-shifting unit, the strength ε of the global coupling,
and the amplitude of the external forcing. For each set of
parameters we record output voltages, Vi , for all N = 72
oscillators and the mean-field voltage, Vmf , across Rc. The
sampling frequency is fs = 20 kHz. In each measurement we
make five recordings, with M = 5 × 104 points per record.

For the presentation of our results we compute the following
quantities:

(1) Instantaneous phases ϕi = arctan(V̂i/Vi), i = 1, . . . ,

72, of all oscillators; here V̂i are Hilbert transforms of Vi .
(2) Instantaneous phase � = arctan(V̂mf /Vmf ) and ampli-

tude Amf =
√

V̂ 2
mf + V 2

mf of the mean field, where V̂mf is the
Hilbert transform of Vmf .

(3) Frequencies fi of all oscillators are obtained from
unwrapped phases as [ϕi (M)−ϕi (1)]fs

2π(M−1) and averaged over five
measurements. Mean-field frequency fmf is obtained in a
similar way from the unwrapped phase �.

(4) The Kuramoto order parameter R is obtained by
averaging the quantity N−1| ∑N

j=1 eiϕj | over M time points
and over five measurements.
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FIG. 6. (Color online) Synchronization transition in ensemble
with the linear global feedback loop, for different values of the
phase shift γlin. In relatively small ensembles, the transitions between
coherent and incoherent states can be better traced by the minimal
mean-field amplitude Amin than by the order parameter R; see the
text for discussion.
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FIG. 7. (Color online) Collective dynamics in ensemble of 72 oscillators with the linear phase-shifting unit in the global feedback loop
[panels (a), (b), and (c)] and with both linear and nonlinear PSUs [panels (d), (e), and (f)]; linear phase shift is γ = 0.5π . Order parameter: In
the linear case (a) it grows monotonically with ε, but in the nonlinear case (d) the dependence is not monotonic. Panels (b) and (e): Minimal
amplitude of the mean field is a measure of the coherence of the ensemble; its deviation from zero reveals the transition to synchrony. Panels
(c) and (f): Frequencies of individual oscillators (circles, red online) and of the mean field (solid line, blue online).

(5) The minimal (over time and over all five measurements)
value Amin of the instantaneous mean-field amplitude Amf . As
shown in Ref. [28] and as argued below, the deviation of this
measure from zero is a good indicator of coherent ensemble
dynamics.

We notice that estimates of the instantaneous phases
obtained with the help of the Hilbert transform were processed
according to Ref. [38]. This processing makes the distribution
of the instantaneous phase uniform, as required by the theory,
and thus removes some artifacts due to phase reconstruction;
see the discussion below.

B. Collective dynamics of globally coupled ensemble

First we perform the experiments with the linear PSU only.
In Fig. 6 we present R and Amin in dependence on γlin,ε. We
see that for the weak coupling, ε � 0.4, the results qualitatively
agree with what we expect for the Kuramoto-Sakaguchi model
(2). Indeed, we see that for very small γlin synchronization
arises already for very small ε, as reflected by rapid growth of
the order parameter R. Synchronization transition is delayed
for larger γlin, as is the case of the model (2), and for γlin � π/2
the ensemble remain asynchronous. We emphasize that this
comparison is qualitative since we cannot directly associate
γlin and parameter α in Eq. (2), e.g., because the forcing of the
oscillators is represented by a combination of the mean field
and its derivative; see Eq. (A2). For the strong coupling, ε �
0.5, the dynamics is different from that of the phase model; in
particular, for γlin ≈ 0.95π the dependence of R on ε becomes
nonmonotonic and for ε ≈ 1 the synchrony breaks up.

Figures 7(a)–7(c) and 8(a)–8(c) show in detail the dynamics
of coupled oscillators for two particular settings of the linear
PSU, i.e., for γlin ≈ 0.5π and γ ≈ 0.65π . In Figs. 7(d)–7(f)
and 8(d)–8(f) we show for comparison the main results for
the case of our interest, namely when the nonlinear PSU
in the global feedback loop is switched on. As expected, in
the linear case we observe a monotonic growth of the order
parameter R with the coupling strength ε. Due to the finite
size of the ensemble, R is not small in the asynchronous
state; the transition to synchrony is much better characterized
by the minimal mean-field amplitude Amin [28]; see also
discussion of Fig. 9 below. One can see that Amin is practically
zero when frequencies of oscillators differ and it starts to
grow when some oscillators synchronize. Generally, we can
understand Amin as a measure of coherence of the ensemble.
Indeed, if the finite-size ensemble is in a coherent state
(synchronous or partially synchronous), the mean field looks
like a periodic process, corrupted by some noise [39], and its
minimal amplitude essentially deviates from zero. Otherwise,
if the ensemble is in an asynchronous state, the mean field
fluctuates and looks like filtered noise; the amplitude then
can be very small. We emphasize that the main source of the
mean-field fluctuations is the small ensemble size N = 72.
The thermal noise in the setup is rather small: The variations
of the oscillators’ frequencies for repeated measurements are
less than 0.1%.

Now we discuss the case when the nonlinear PSU is
switched on. The transitions for γlin ≈ 0.5π and γlin ≈ 0.65π

are shown in Figs. 7(d)–7(f) and 8(d)–8(f). We see that

062917-5



AMIRKHAN A. TEMIRBAYEV et al. PHYSICAL REVIEW E 87, 062917 (2013)

0.2

0.6

1

0

1

2

0 0.2 0.4 0.6 0.8 1

1.10

1.12

1.14

1.16

(a)

(b)

(c)

ε

R
A

m
in

[V
]

f m
f
,f

i
[k

H
z]

0.2

0.6

1

0

1

2

0 0.2 0.4 0.6 0.8 1

1.10

1.12

1.14

1.16

ε

(d)

(e)

(f)

FIG. 8. (Color online) Same as in Fig. 7 but for γlin = 0.65π .

the oscillators synchronize for the coupling ε ≈ 0.35 and
ε ≈ 0.5, respectively, and then synchrony becomes unstable.
The slow oscillators leave the synchronous group and the order
parameter decreases. For γlin ≈ 0.65π and for sufficiently
large coupling all oscillators are not entrained by the mean
field. However, the mean field has a nonzero amplitude; i.e.,
the SOQ state emerges. The picture quantitatively coincides
with the theoretical and numerical result for phase oscillators
in Eq. (5) with uniform frequency distribution [16].

In order to get more insight into the collective dynamics,
we illustrate in detail two states, for γlin = 0.65π and coupling
ε=0.0048 and ε=1 (see Fig. 9). The value of the time-averaged
order parameter is nearly the same for both cases, R ≈ 0.2;
however, as can be seen from the dynamics of the mean field,
these states are, respectively, noncoherent and coherent.

C. Phase dynamics from data

Here we check whether the dynamics of our experimental
setup is consistent with the mechanism of the SOQ described
in Ref. [14] within the framework of Eq. (5). We recall that
this mechanism implies that the system settles at the border
between synchrony and asynchrony, so that the synchronous
solution becomes neutrally stable. Neutral stability means that
the derivative of the coupling function computed for the phase
difference � − ϕi in the synchronous state is zero. To check
this, we pick up two data sets, obtained for the phase shift
γlin = 0.65π and close values of the coupling strength. For
the first value, ε = 0.573, the system is synchronous, and all
oscillator frequencies are equal. If coupling is increased to ε =
0.598, the system undergoes a desynchronization transition
when one oscillator (let its index be k) leaves the synchronous
group. Notice that N − 1 oscillators which remain in the group

have same frequencies, though different phases. By neglecting
the contribution of the kth oscillator to the mean field Vmf , we
can consider this oscillator as driven by Vmf and search for the
phase model in the form

ϕ̇k = ω + H (� − ϕk), (7)

where H (x) = H (x + 2π ), cf. [40]. In order to reconstruct
Eq. (7) we estimate the instantaneous frequency ϕ̇ with the
help of the Savitsky-Golay filter of order 4. Next, we fit the
dependence ϕ̇k(t) on � − ϕk by a Fourier series of the order
10; the results are shown in Fig. 10.We emphasize that model
reconstruction is not possible for ε = 0.573, because here the
phase difference attains only one value � − ϕk ≈ 1.2.

Before interpreting the reconstructed model, we emphasize
that prior to numerical derivation and to Fourier fitting both
phases are transformed according to Ref. [38]. The idea behind
this transformation is as follows: Suppose we estimate the
oscillator’s phase from a scalar signal with the help of the
Hilbert transform or any other embedding. Let us denote this
estimate (protophase) as ψ . For an autonomous system we
generally have ψ̇ = ω + g(ψ), while the true phase obeys
ϕ̇ = ω [2]. Function g(ψ) depends on the observable and
the embedding; it reflects the nonuniformity of motion along
the limit cycle. In the theory, g(θ ) is always eliminated by
a simple transformation; see, e.g., Ref. [3]. If the oscillator
interacts with others, the true phase obeys Eq. (7), while for
the protophase we have ψ̇ = ω + g(ψ) + Ĥ . If the interaction
is small (which is the most interesting case), then the
nonuniformity of phase growth due to the coupling function
Ĥ is smaller than that due to the function g, which essentially
complicates recovery of interaction. Next, ψ and g depend on
the embedding and observables, while ϕ and H are unique; the
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FIG. 9. (Color online) Collective dynamics of the electronic
ensemble for γlin = 0.65π and ε = 0.0048 (a) and ε = 1 (b). Here
red (gray) circles show the snapshot of oscillator phases on the unit
circle. We see that in both cases the phases are scattered, though
their distribution is nonuniform. Magenta (gray) triangles show the
instantaneous complex order parameter. Blue (gray) solid lines show
the phase portrait of the mean field in V,V̂ coordinates, where V̂ is the
Hilbert transform of the mean field V , measured in volts. (Notice that
the amplitude of the mean field is directly related to the nonuniformity
of phase distribution: zero mean field corresponds to the uniform
distribution.) These plots clearly demonstrate the difference in the
dynamics of the two states: In panel (a) the nonuniformity of the
phase distribution changes with time and, therefore, the amplitude
of the mean field fluctuates and sometimes drops practically to zero,
as we would expect for a noisy process; these fluctuations are due
to the relatively small ensemble size. This picture is typical for
asynchronous, noncoherent dynamics. In panel (b) the mean-field
dynamics resembles that of a noisy limit cycle; the fluctuation of the
mean-field amplitude is relatively small. Though all oscillators here
have different frequencies, they exhibit coherent collective motion.

transformation [38] ensures invariant model reconstruction.
Practically, it is performed according to

ϕ = ψ + 2
nF∑
n=1

Im

[
Sn

n
(einψ − 1)

]
,

where Sn = n−1 ∑N
j=1 e−inψ(tj ) are the coefficients of the

Fourier expansion of the probability distribution density of

ψ , computed from its time series ψ(tj ), where j = 1, . . . ,N .
The optimal number nF of the Fourier modes is determined
according to Ref. [41]; MATLAB code for the transformation
is available upon request from the authors. This invertible

transformation eliminates the component of the instantaneous
frequency which depends on ψ only, so that on average the
transformed phase grows uniformly in time. For our data, this
transformation is crucial for a successful model reconstruction:
Without the transformation the plotted dependence φ̇k vs
� − φk exhibits no structure. It means that deviation from
the uniform phase growth due to the external forcing (the
issue of our interest) is small if compared to the systematic
φk-dependent variation of the instantaneous frequency, which
is an artifact of the phase plane reconstruction.

In Fig. 10(a) we see that frequencies of the chosen oscillator
and of the mean field are indeed different: The � vs ϕk plot
exhibits a typical picture of nearly synchronous behavior with
phase slips. Due to these slips, the trajectory fills the square
and makes the reconstruction possible. In Fig. 10(b) we see
that the coupling function attains the maximum exactly at the
phase shift � − φk corresponding to the synchronous solution,
which indicates the neutral stability of the observed dynamical
states and therefore confirms consistency of interpretation of
the dynamics after the synchrony breaking in terms of SOQ.

D. Globally coupled ensemble under periodic forcing

In this section we present the results of experiments where
linearly or nonlinearly coupled ensemble was forced by a com-
mon periodic signal. This problem was theoretically addressed
in Refs. [42,43]; the case of the nonlinearly coupled ensemble
in the SOQ state was treated in Ref. [15]. Investigation of
the common forcing of large ensembles is relevant, e.g., for
neuroscience, where this model can be used for description
of rhythms of a large neuronal population, influenced by the
rhythms from other brain regions. In the first approximation the
ensemble exhibiting a collective mode can be considered as a
macroscopic oscillator, and therefore it is natural to expect that
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1.04
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1.14
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k

[k
H
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Θ − ϕk

FIG. 10. (Color online) Phase model of the system, reconstructed from data, for ε = 0.598 and γlin = 0.65π . Here the ensemble is close
to the synchrony breaking point: N − 1 oscillators form the synchronous group and one oscillator, labeled by index k, is asynchronous with
respect to the majority, as can be seen from the plot of ϕk vs the phase � of the mean field (a). Panel (b) shows the recovered coupling function
ϕ̇k = H (� − ϕk); here red (gray) dots show the data points while the blue (gray) line is obtained via Fourier fit; it can be interpreted as the
reconstructed coupling function H [see Eq. (7)]. The maximum of the coupling function is marked by the black diamond; the dashed line
shows the value of � − ϕk for slightly smaller ε = 0.573, when complete synchrony is observed. Zero derivative of the coupling function at
the synchronous solution indicates neutral stability of the latter, which is a characteristic feature of the self-organized quasiperiodic dynamics.
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FIG. 11. (Color online) Results of harmonic forcing of the linearly coupled ensemble, for three different amplitudes of the force: 0.08 (a),
(b); 0.5 (c), (d); and 1.5 (e), (f). Here fex is the frequency of the common external forcing. fmf − fex is shown with red (gray) dots, and fi − fex

is shown by blue (gray) lines; γlin = 0.65π , ε = 0.57.

it can be entrained by an external forcing. However, if we go
beyond this simplistic description and consider the dynamics
on the level of individual units, we can expect different effects.
So, in the case of the harmonically forced Kuramoto model
one observes formation of synchronous subpopulations of
oscillators with different frequencies [42]. For the nonlinearly
coupled ensemble in the SOQ state, the theory for identical
oscillators [15] predicts that external force can lock the mean
field without entraining individual oscillators. Here we verify
this prediction.

Results on forcing the linearly coupled ensemble are
presented in Fig. 11 (cf. [44]), to be compared with the results
for nonlinear coupling, given in Fig. 12. First, we see that in

both cases the mean field is entrained by the external force,
if the amplitude of the forcing exceeds a critical value. Such
behavior is typical for noisy and chaotic oscillators. Since the
mean field of a finite-size ensemble is not exactly periodic but
fluctuates, it is natural that the response of the ensemble to an
external forcing is similar to the response of a macroscopic
noisy oscillator. Next, we see that in the linear case the
entrainment of the mean field is always accompanied by the
entrainment of at least some subpopulation of oscillators.
In contrast, in the case of the ensemble in the SOQ state,
we observe regimes where the mean field is locked to the
external force but the oscillators are not. Thus, the system
remains in the SOQ state. For stronger coupling we have
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FIG. 12. (Color online) The same as in Fig. 11, but for the nonlinearly coupled ensemble. Feedback parameters are γlin = 0.65π , ε = 0.98.
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both SOQ and fully synchronous states. It means that for
some (relatively narrow) range of external frequencies, the
force destroys the quasiperiodic dynamics and imposes full
synchrony; this is accompanied by an essential increase (up
to three times) of the order parameter. In the linear case, the
variation of the order parameter with fex is not so strong
and can be easily understood as follows. When fex is close
to the mean-field frequency (i.e., it is in the middle of the
synchronization plateau), the forcing facilitates synchrony.
However, since the oscillators are already synchronized, the
increase of the order parameter is not large. When fex is outside
of the synchronization region but close to it, then some part
of the population synchronizes with the forcing, while the
rest remains in the synchronous cluster; as a result, the order
parameter decreases.

IV. DISCUSSION

We have performed experiments with an ensemble of 72
globally coupled van der Pol–like electronic oscillators, treat-
ing the cases of linear and nonlinear coupling. The nonlinear
coupling was implemented via a circuit with an amplitude-
dependent phase shift. We have observed synchronous ensem-
ble dynamics, with all elements of the ensemble oscillating
with a common frequency. Next, we have shown that in case of
nonlinear feedback, increase of coupling results in synchrony
breaking, but the ensemble remains in a coherent state. In this
state, all oscillators have different frequencies, but, contrary
to the simple case of asynchronous dynamics, their phases
are distributed nonuniformly and therefore the oscillators
produce a nonzero, coherent mean field whose frequency is
larger than all oscillator frequencies. Thus, oscillators are
not frequency locked to the mean field and therefore exhibit
quasiperiodic behavior. With these observations we extended
the theoretical predictions for sine-coupled oscillators [14,15]
to a different class of systems, namely to van der Pol oscillators.
We emphasize that the van der Pol model not only played a
central role in the development of nonlinear science [45], but
also describes, together with the equivalent Rayleigh model
[46], a variety of natural phenomena; see, e.g., Ref. [37] and
references therein.

Global nonlinear coupling is a less explored topic. However,
such coupling naturally arises if oscillators interact via a
medium with nonlinear properties. Another option is coupling
via a transmission line with amplitude-dependent velocity
of signal propagation; such setup can be described by an
amplitude-dependent time delay in the feedback loop, what
is roughly equivalent to amplitude-dependent phase shift. Our
results shed lights on the importance of the latter property of
the global coupling. We believe that the mechanism leading to
synchrony breaking and emergence of SOQ dynamics due to
amplitude-dependent phase shift in the feedback loop is quite
general. Indeed, previously this mechanism was demonstrated
theoretically for normal form oscillators and numerically for
nonlinearly coupled Josephson junctions [14], which represent
a different class of systems (rotators). Here we have shown
this mechanism for van der Pol–like systems. (Notice that our
system cannot be described by the Kuramoto model, because
the phase coupling function is not a sine; see Fig. 10). We
conclude that common properties of collective dynamics of

these different systems indicate a decisive role of the nonlinear
coupling. Since the Kuramoto and the van der Pol equations
represent only an approximate description of real dynamics,
we are convinced that it was important to demonstrate the
robustness of the effect in a physical experiment.

Furthermore, we conducted experiments with periodic
forcing of the globally coupled ensemble and compared the
results with the theory developed in Ref. [16]; we have
demonstrated that external forcing can entrain the mean field,
without locking individual units. We believe that our results
are relevant for investigation of other oscillator populations
with amplitude-dependent phase shift or time delay in the
global feedback loop. As a possible direction for future
experiments we mention investigation of different forms of
nonlinear coupling and of different scenarios of transitions
from synchrony to asynchronous, though coherent states.
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APPENDIX: EQUATION OF THE WIEN-BRIDGE
OSCILLATOR

The experimentally obtained input-output characteristic of
the operational amplifier along with its analytical approxima-
tion is shown in Fig. 13(a). For the range of input voltages u that
is of interest for us, the characteristic can be well approximated
by the fifth-order polynomial

Va = f (u) = a1u − a3u
3 + a5u

5, (A1)

where a1 = 3.1557, a3 = 0.8072, and a5 = 0.95282; the
approximation is illustrated by Fig. 13(b).

Now we derive the equation of the oscillator, driven by
external voltage Vf . Denoting the input and output voltages
of the operational amplifier as u and V , respectively, and the
input-output characteristics of the amplifier as V = f (u) [see
Eq. (A1)], we write the Kirchhoff laws for balance of currents
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FIG. 13. (Color online) (a) Experimentally obtained input-output
characteristics of the operational amplifier. (b) Practically, the gener-
ator operates in the regime where input voltages are approximately
in the interval from −0.7 to 0.7 V, which corresponds to the output
voltages in the range ±2 V. This region can be well approximated
by the fifth-order polynomial; see Eq. (A1). Here the characteristic
V (u) and its approximation Va(u) are shown by black symbols and
the red (gray) line, respectively. For better visibility the linear growth
is subtracted: here V̄ = V − a1u, V̄a = Va − a1u.
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and voltages at point 1 in Fig. 1:

I = C2u̇ + u

R2 + R3
+ u − Vf

Rin

,

f (u) = u + IR1 + 1

C1

∫
Idt,

where I is the current through the R1C1 grid. Using C1 = C2,
excluding I and differentiating with respect to time, we obtain
with the help of Eq. (A1) the equation of the van der Pol type:

ü − μ(1 − αu2 + βu4)u̇ + �2u = νV̇f + νωVf . (A2)

The parameters here are ω = (R1C1)−1, ν = (RinC1)−1, �2 =
ω

(R2+R3)C1
+ ων ,μ = ωη, α = 3a3η

−1, and β = 5a5η
−1,

where

η = a1 − 2 − R1

R2 + R3
− R1

Rin

.

For the given components, the latter parameter is 0.10 �
η � 0.29, in dependence on the resistance of the trim-
mer potentiometer R3. For positive values of η and, re-
spectively, positive μ, Eq. (A2) exhibits a limit-cycle
solution.
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