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Abstract – The detection of causal influences is a topical problem in time series analysis. A
traditional approach is based on Granger causality and increasingly often used in very diverse
fields. However, a principal possibility of spurious detection of a bidirectional coupling due to
low sampling rate, noted by statisticians and econometricians, remains overlooked in physical
research. With models widely used in physics, including linear oscillators and nonlinear chaotic
maps, we show that spurious coupling characteristics can be rather large and one may even
incorrectly identify directionality of a unidirectional coupling if a sampling interval is not small
enough. To avoid erroneous conclusions, we suggest a practical test to distinguish between uni-
and bi-directional couplings and illustrate it with mathematical systems and climatic data.

Copyright c© EPLA, 2012

Introduction. – The problem of detecting directional
couplings (causal influences) between complex systems
from time series attracts increasing attention [1–5] in vari-
ous fields of physical research, including geophysics [6],
biophysics [7,8], electronics [9], and communication [10].
Particularly, it is often fundamentally important to deter-
mine whether coupling between two systems is uni- or
bi-directional [6,8,11]. The concept of Granger causality
originating from econometrical studies [12] has appeared
fruitful to address such problems and, thus, it becomes
popular in physical research as well, e.g., [1,5–7].
One says that a system X “Granger causes” Y if a

knowledge of the past of X improves predictions of Y
as compared to self-predictions. A nonzero prediction
improvement (PI) in a certain direction is associated
with an influence in that direction, so that nonzero
PIs in both directions are interpreted as a sign of a
bidirectional coupling (BC). The predictions are one
step ahead, where the step is a sampling interval Δt
determined by an observation procedure, e.g., a given
sampling frequency of an analogue-to-digit converter or
usage of monthly values of climatic indices. At that,
it is overlooked or underestimated in physical research
that the PIs may vary with Δt in a rather nontrivial
manner. Indeed, in the mathematical and econometrical
literature it was indicated [13,14] that, if Δt is not
small enough, PIs are typically nonzero in both directions
even for unidirectionally coupled systems. This important

circumstance has not yet been appreciated by physicists.
It was described mostly in an abstract mathematical
setting [13] and applied to evidence the principal existence
of false conclusions [14] rather than to analyze quantitative
characteristics of spurious couplings.
In this letter, we perform such a quantitative analysis

with various models widely used in physical research and
show that the “spurious” PIs can be rather large, depend-
ing on a sampling interval. Even more surprising, a single
nonzero PI may correspond to a unidirectional coupling
(UC) in an opposite direction. This “downsampling effect”
appears ubiquitous, ranging from linear autoregressive
(AR) processes to continuous-time oscillators and nonlin-
ear chaotic maps. It takes place also if transfer entropy [2]
(a widely used generalized version of Granger causality)
is applied instead of PI. Taking the effect into account,
we suggest a practical test to distinguish BC from UC
and apply it to an analysis of coupling between large-scale
climatic phenomena such as El-Niño/Southern Oscillation
(ENSO) and Indian monsoon.

Granger causality. – Let (X(t), Y (t)) be a bivariate
random process with xn =X(nΔt), yn = Y (nΔt),
n∈Z. The self-predictor of xn given by xindn =
E[xn|xn−1, xn−2, . . .], where E[·|·] stands for a conditional
expectation, gives the least (over all self-predictors)
mean-squared error σ2x,ind =E[(xn−xindn )2]. The joint
predictor xjointn =E[xn|xn−1, yn−1, xn−2, yn−2, . . .] gives
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the error σ2x,joint. The normalized PI value Gy→x =

(σ2x,ind−σ2x,joint)/σ2x,ind characterizes the Granger
causality Y →X. Everything is similar for X→ Y . The
idea was first realized [12] in the application to stationary
Gaussian processes (xn, yn). The latter yield to a bivariate
linear AR equation

xn =

∞∑

k=1

ax,kxn−k +

∞∑

k=1

bx,kyn−k+ ξn,

yn =

∞∑

k=1

ay,kyn−k +

∞∑

k=1

by,kxn−k +ψn,

(1)

where (ξn, ψn) is bivariate zero-mean Gaussian white noise
with variances σ2ξ , σ

2
ψ and covariance E[ξnψn] = γ. White-

ness assures that σ2ξ = σ
2
x,joint and σ

2
ψ = σ

2
y,joint [15]. Simi-

larly, a process xn yields to a univariate AR description,
i.e., the first line of eqs. (1) with all bx,k = 0 and white

noise ξ
′

n with variance σ
2

ξ
′ = σ2x,ind. Now, Gy→x can be

determined (and similarly for Gx→y). To estimate these
theoretical values from a finite time series {xn, yn}Nn=1, one
truncates all infinite sums at a certain p-th term and fits
univariate and bivariate AR(p) models to the data via the
ordinary least-squares technique. In the numerical simu-
lations below, N is sufficiently large and p is selected just
so big that the estimates do not change with its further
rise (namely, p= 10 is used for uniformity). We check the
significance of the PIs positivity via Fisher’s F -test [16].
Equations (1) at different Δt are valid representations

of the original system (X,Y ). But how do Gy→x and
Gx→y change with Δt? If there is no real influence
Y →X, one would hope to have Gy→x = 0 (i.e., all
bx,k = 0) at any Δt or, at least, Gy→x≪ 1. However,
both expectations fail and, moreover, a relative measure
of the downsampling-induced “spurious” causality r=
Gy→x/Gx→y can be arbitrarily large as demonstrated
below.

Examples with exact results. – We start with
analytic consideration of three instants of a Q-order
moving-average process X (a nonrecursive filter) driving
a first-order AR-process Y (a recursive filter):

X(t) = Ξ(t)+

Q∑

k=1

ΘkΞ(t− k),

Y (t) =Ψ(t)+AyY (t− 1)+X(t− 1),
(2)

where Ξ and Ψ are independent zero-mean Gaussian white
noises, Θk are parameters. We put Ay = σ

2
Ψ = 0 to get

exact results and consider nonzero Ay and σ
2
Ψ afterwards.

i) Specify Q= 2 and Δt= 2. The auto-covariance function
(ACF) ρX(l) =E[X(t)X(t+ l)] takes the values ρX(0) =
σ2Ξ(1+Θ

2
1+Θ

2
2), ρX(2) =Θ2σ

2
Ξ, and ρX(l) = 0 for l > 2.

ACF of xn is ρx,l =E[xnxn+l] = ρX(2l) so that ρx,l = 0
for l > 1. The latter means that xn is a first-order moving-
average process and can be written as xn = ξ

∗

n+ θ
∗ξ∗n−1.

Its parameters θ∗ and σ2ξ∗ relate to ACF and can be

found from ρx,1 = θ
∗σ2ξ∗ = ρX(2) and ρx,0 = σ

2
ξ∗(1+ θ

∗2) =
ρX(0). Under the univariate AR representation, xn has an
infinite order [15] and prediction error is σ2x,ind = σ

2
ξ∗ .

Under the bivariate description, the first line in eqs. (1)
involves xn−k =X(2n− 2k) and yn−k =X(2n− 2k− 1),
i.e., the entire past of X up to the time 2n− 2 inclusively.
Hence, bx,k are nonzero (!) and σ

2
x,joint equals a two-steps-

ahead prediction error of the original eq. (2), i.e., σ2Ξ(1+
Θ21). In particular, at Θ1 =Θ2 = 1/2 one derives θ

∗ =
(3−
√
5)/2, σ2ξ∗ = σ

2
Ξ/(3−

√
5)≈ 1.31σ2Ξ, σ2x,joint = 1.25σ2Ξ

and Gy→x ≈ (1.31− 1.25)σ2Ξ/(1.31σ2Ξ)≈ 0.045. Thus, the
exact value of “spurious” PI in the Y →X direction
is positive. Similar considerations give Gx→y = (1.31−
1.0)σ2Ξ/(1.31σ

2
Ξ)≈ 0.24, i.e., a big enough ratio r≈ 0.19.

ii) To evidence greater r, consider Q= 3 and Δt= 2.
Start with Θ1 =Θ2 = 0. Then, ρX(l) = 0 for l= 2 and all
l > 3 making xn a white noise, so that σ

2
x,ind =E[x

2
n] =

σ2Ξ(1+Θ
2
3). The first line in eqs. (1) involves a term

with yn−1 =X(2n− 3) which dominates over all others if
|Θ3| is small enough (e.g., Θ23 < 0.1), giving σ2x,joint ≈ σ2Ξ
and Gy→x ≈Θ23. Similarly, σ2y,ind = σ2Ξ(1+Θ23) and the
second line in eqs. (1) involves xn−2 = Y (2n− 3) giving
σ2y,joint ≈ σ2Ξ and r= 1. Thus, PIs in both directions are
the same despite a UC in the original system.
iii) To evidence infinite r, specify Q= 4 and Δt= 3.

At Θ1 =Θ2 =Θ3 = 0, one gets σ
2
x,ind = σ

2
Ξ(1+Θ

2
4),

σ2x,joint = σ
2
Ξ, and Gy→x =Θ

2
4/(1+Θ

2
4). If |Θ4| ≫ 1,

Gy→x even approaches unity, i.e., a maximal theoreti-
cally possible value. For the opposite direction, σ2y,ind =

σ2y,joint = σ
2
Ξ(1+Θ

2
4) and, hence, Gx→y = 0. Thus, the

UC X→ Y exhibits the opposite configuration of PIs
after the downsampling: Gx→y = 0, Gy→x > 0, r=∞.
Numerical estimations evidence that r and Gy→x

remain positive and decrease gradually when |AY |, σ2Ψ,
and |Θk| increase considerably, e.g., up to 1 (not shown).
Coupled oscillators. – To give a vivid and general

explanation of the downsampling effect, consider paradig-
matic systems of stochastic linear dissipative oscillators.
In discrete time, they read [17]

X(t) =

2∑

k=1

AX,kX(t− k)+BXY (t− 1)+Ξ(t),

Y (t) =
2∑

k=1

AY,kY (t− k)+BYX(t− 1)+Ψ(t),
(3)

where Ξ and Ψ are as above, BX and BY are coupling coef-
ficients. An individual oscillation period Tx and relaxation
time τx are given by AX,1 = 2 cos(2π/Tx) exp(−1/τx),
AX,2 =− exp(−2/τx) and similarly for Ty and τy.
Start with moderate values of the oscillation periods and

relaxation times Tx = Ty = 5, τx = τy = 4, noise variances
σ2Ξ = σ

2
Ψ = 1, and UC X→ Y provided by BX = 0 and

BY = 0.3. PIs estimated from long time series (to suppress
statistical fluctuations) at different Δt are shown in
fig. 1(a)–(c) (circles). UC is reflected correctly at Δt= 1:
Gy→x = 0, Gx→y > 0, γ = 0. At greater Δt, nonzero γ and
“spurious”Gy→x are observed.Gy→x is maximal at Δt= 3
(r= 0.08) and its positivity is highly significant (at the
level of 10−12). For Δt→∞, one gets Gy→x =Gx→y = 0,

10005-p2
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Fig. 1: PIs, γ, and r estimated from time series (N = 105)
of the oscillators (3) with UC X→ Y . (a)–(c) PIs and γ vs.
Δt for Tx = Ty = 5 (circles) and Tx = Ty = 4.4 (rhombs); the
horizontal dashed lines show E[X(t)Y (t)]. (d)–(f) The ratio r
at Δt= 2 vs. Ty at fixed Tx = 5, vs. T = Tx = Ty, vs. τ = τx at
fixed τy = 4 (circles) and τ = τy at fixed τx = 4 (rhombs).

γ =E[X(t)Y (t)] because (xn, yn) turns into a white noise,
see, e.g., Δt= 15 in fig. 1(a)–(c).
For a useful interpretation of the downsampling-induced

nonzero Gy→x, note that X(t) is a second-order Markov-
ian process, so that the vector (X(t), X(t− 1)) contains
complete information about a distribution of X(t+ l)
for any l > 0: g(X(t+ l)|X(t), X(t− 1)) = g(X(t+
l)|X(t), Y (t), X(t− 1), Y (t− 1), X(t− 2), Y (t− 2), . . .),
where g(·|·) is a conditional probability density. In
terms of state space models, (X(t), X(t− 1)) determines
the state of X at time t. At Δt > 1, a forecast of X
based on {X(t), X(t−Δt), . . .} is not the best possible
since X(t− 1) cannot be precisely restored from the
downsampled X-data. Some predictive information may
still be restored from Y due to the correlation between
X(t− 1) and Y , allowing a nonzero Gy→x. Thus, the
rationale of the “spurious causality” is an incomplete
information about a driver state in its downsampled data.
A further illustration is a “stroboscopic effect” at Δt= 5
in fig. 1(a), (b) when both PIs are small (Gy→x = 2 · 10−5,
not significant at 0.05; Gx→y = 0.001, highly significant).
The reason for this is that at Δt= Tx = Ty the oscillators
are almost first-order AR processes, e.g., ax,1 ≈ 0.29 and
other |ax,k|< 0.002 in our example. A nonzero PI in the
direction of a first-order AR driver is impossible since its
state is a scalar and completely specified by observations
at any Δt. For Tx = Ty = 4.4, PIs at Δt= 5 become much
larger (fig. 1(a), (b), rhombs).
Positive Gy→x and r are observed in wide ranges

of parameters values: in fig. 1(d)–(f) one of the para-
meters changes while the others are fixed at their
starting values. At Ty = 3.5, r is even greater than 1

(fig. 1(d)). Note that r is so large for nonidentical
oscillators, while for identical ones r < 1 (fig. 1(e)),
which seems typical. Figure 1(f) shows that r depends
on the two relaxation times in different ways: it rises
with τx and falls down with τy, the latter seems due
to worse restoration of information about X(t− 1)
from Y -data. Hence, a strong downsampling-induced
Gy→x should be observed if the driver relaxation time is
comparatively large and the response relaxation time is
small. Indeed, at τx = 10, τy = 1, σ

2
Ψ = 0.01, Tx = Ty = 5,

one gets large Gy→x = 0.14, while it is not greater than
0.01 for all cases shown in fig. 1(d)–(f).
As majority of models in physics “live” in continuous

time, let us show the same effect for linear oscillators
specified by stochastic differential equations (DEs),

Ẍ(t)+αxẊ(t)+ω
2
xX(t) = Ξ(t),

Ÿ (t)+αyẎ (t)+ω
2
yY (t) =Ψ(t)+ kX(t),

(4)

where Ξ and Ψ are independent Gaussian noises
with E[Ξ(t1)Ξ(t2)] = σ

2
Ξδ(t1− t2), E[Ψ(t1)Ψ(t2)] =

σ2Ψδ(t1− t2), δ(t) is Dirac’s delta, k is the coupling
coefficient, αx,y are inversely proportional to relaxation
times, ωx,y control oscillation frequencies, Tx,y = 2π/ωx,y.
Derivatives are used in (4) instead of differentials for a
vivid notation.
PIs in fig. 2(a)–(c) were computed from time series

obtained via the forward Euler scheme at ωx = ωy = 1,
αx = αy = 0.3, σΞ = σΨ = 0.3, k= 0.3, and integration step
0.006. The “spurious” Gy→x starts to significantly exceed
zero at Δt≈ 1.08 and reaches its maximum at Δt≈ 3.9.
Individual oscillation periods are about T = 6.27 and low
PIs occur at Δt≈ kT/2 where the oscillators are close to
first-order AR processes, similarly to the above example.
The state here is specified by X(t), Ẋ(t) rather than by
subsequent X(t) and cannot be precisely restored from
X at any Δt. Thus, a principal possibility of nonzero
Gy→x exists at any Δt. However, even if theoretically
positive, Gy→x is rather small at small Δt so that one
would need an extremely long time series to detect it with
significance. The nonzero Gy→x remains in a wide range
of the oscillators parameters (fig. 2(d)–(f)).
A widely used time-delay embedding based on the first

minimum of the mutual information [18] corresponds to
the above Δt≈ T/4. Hence, it may well exhibit spurious
causality and should be used for coupling analysis with
care and an additional testing procedure developed below.

Note on nonlinearity. – In nonlinear systems, includ-
ing those with chaotic properties, we observed the same
effect due to the same reasons as in the above linear exam-
ples. In particular, consider a stochastically perturbed
two-dimensional quadratic map X(t) = 1+ aX(t− 1)−
bX2(t− 2)+Ξ(t), where Ξ(t) is a sequence of independent
random variables uniformly distributed over [−ǫ/2, ǫ/2].
At a= 0.4, b= 1, ǫ= 0, the map exhibits a chaotic attrac-
tor with the largest Lyapunov exponent λ≈ 0.08. Take
Y (t) =X(t− 1) and Δt= 2. We express X(t) via X(t− 2)

10005-p3
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Fig. 2: PIs, γ, and r estimated from time series (N = 105) of the
oscillators (4). (a)–(c) PIs and γ vs. Δt, the horizontal dashed
line shows E[X(t)Y (t)]. (d)–(f) The ratio r at Δt= 2.4 vs. Ty
at fixed ωx = 1, vs. T = Tx = Ty, vs. α= αx at fixed αy = 0.3
(circles) and α= αy at fixed αx = 0.3 (rhombs).

andX(t− 4) to derive a nonlinear univariate AR model for
X with an AR-order p= 2 and a 4th-degree polynomial. It
gives σ2x,ind ≈ σ2Ξ(1+ a2+4b2(E[X2])2) for ǫ < 0.1. Simi-
larly, a bivariate AR model gives σ2x,joint ≈ σ2Ξ(1+ a2). In
particular, at a= 0.4, b= 1, and ǫ= 0.1, one gets rather
large Gy→x ≈ 0.6.
If Y is also a stochastic nonlinear map driven by X,

nonlinear Granger causality estimation with polynomial
AR models exhibits smaller but significantly positive
Gy→x in a wide range of parameter values, similarly to
our linear examples (not shown for brevity). The effect
occurs both for perturbed chaotic and regular regimes.
Spurious causality remains if transfer entropy (TE)

[2,3,10] is used instead of PI. Indeed, TE is defined as the
difference between Shannon entropies of the conditional
distributions g(xn|{xn−k}) and g(xn|{xn−k, yn−k}). It
represents the Kullback-Leibler divergence [2], which is
nonzero as soon as g(xn|{xn−k}) and g(xn|{xn−k, yn−k})
are nonidentical, while PI is nonzero only if the expec-
tations E[xn|{xn−k}] and E[xn|{xn−k, yn−k}] of those
distributions do not coincide. Thus, a nonzero PI (e.g., as
in the above example) implies nonidentical distributions
and, hence, a nonzero TE. This is even more obvious for
linear systems, where TE uniquely relates to PI [5].

Test for bidirectionality. – Thus, to infer a BC, it
is not enough to obtain significantly positive estimates
of Gy→x and Gx→y from a time series {xn, yn}Nn=1 at
a certain Δt. One must specially test against the null
hypothesis of UC. For that, we suggest to specify a class
M of (X,Y ) models with UC and an “intrinsic time step”
less than Δt and search for a model capable of reproducing

all appropriate properties of the observed (xn, yn)-data. If
such a model exists, the UC hypothesis cannot be rejected.
To implement the idea for stationary Gaussian

processes, consider the class M of discrete-time models,

X(t) =

P∗∑

k=1

A∗x,kX(t− kτ)+
S∗∑

k=1

B∗x,kY (t− kτ)+Ξ∗(t),

Y (t) =

Q∗∑

k=1

A∗y,kY (t− kτ)+
R∗∑

k=1

B∗y,kX(t− kτ)+Ψ∗(t),

where noise variances are σ2Ξ∗ and σ
2
Ψ∗ , a step τ =Δt/L

∗,
i.e., τ is L∗ times smaller than the sampling interval.
Both X→ Y and Y →X directions of UC can be checked
in turn. For definiteness, consider testing UC X→ Y ,
i.e., models with S∗ = 0. Then, M is specified by the
quadruple (P ∗, Q∗, R∗, L∗). Since all the properties of
Gaussian processes are completely determined by ACFs
and the cross-covariance function (CCF) [15], let us derive
a distribution of sample ACF and CCF estimates for the
model and, thereby, an analytic criterion for a statistical
agreement between CFs of the model and sample CFs of
the data.
Denote θ∗ = ({A∗x,k}, {A∗y,k}, {B∗y,k}, σ∗Ξ, σ∗Ψ), a para-

meter vector of dimension D∗ = P ∗+Q∗+R∗+2. Given
θ∗, ACFs and CCF of the model are found exactly
from a linear set of equations obtained via multiplying
model equations by X(t− t′) and Y (t− t′) in turn and
taking expectations of both sides. Solving those equa-
tions for 0� t

′

�KΔt, one gets a vector of CF values
ρ∗(θ∗) = ({ρ∗X(lΔt)}Kl=0, {ρ∗Y (lΔt)}Kl=0, {ρ∗XY (lΔt)}Kl=−K)
of dimension D= 4K +3. Denote estimates of ρ∗ from Δt-
sampled model realizations x∗n =X(nΔt), y

∗

n = Y (nΔt)

via ρ̂∗, having, e.g., ρ̂∗XY (lΔt) = (1/N)
∑N
n=1 x

∗

ny
∗

n+l.
If N is large enough, ρ̂∗ is distributed according to
D-dimensional Gaussian law with expectation ρ∗ and
covariance matrixC. The latter is expressed via ρ∗ accord-
ing to Bartlett’s formula, see, e.g., [15]. The quantity
χ∗ 2D = (ρ̂

∗− ρ∗)TC−1(ρ̂∗− ρ∗) (T means transposition)
yields to χ2 distribution with D degrees of freedom.
Now, denote ρ̂ the vector of sample CFs for the observed

data {xn, yn}Nn=1 and χ̂2 = (ρ̂− ρ∗)TC−1(ρ̂− ρ∗). Mini-
mise χ̂2 over θ∗ and get the value of χ̂2min. If the observed
process belongs to M, then χ̂2min yields to χ

2 distribution
with D−D∗ degrees of freedom. Denote (1− q)-quantile
of that distribution via χ21−q. If χ̂

2
min >χ

2
1−q, the null

hypothesis is rejected at the significance level q which
represents the rate of false positives. Below, we use
q= 0.05.
The null hypothesis can be erroneously rejected if
P ∗, Q∗, R∗ are not large enough or L∗ is inappropriate.
Hence, one should vary those values in some range (of
course, prior substantial ideas about appropriate values
are always desirable but rarely available) repeating the
test for different P ∗, Q∗, R∗, L∗. Under such multiple
testing, the hypothesis of UC is to be rejected if it is
rejected for all trial P ∗, Q∗, R∗, L∗, i.e., if no UC model
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Fig. 3: Rejection rate vs. parameters: (a) crosses, filled
rhombs, filled circles correspond to N = 1000, 2000, 3000 at
P ∗ =Q∗ = 2, R∗ = 1; open triangles, rhombs, circles: the same
at P ∗ =Q∗ =R∗ = 5. (b) For P ∗ =Q∗ and R∗ = 1 crosses, filled
rhombs, filled circles (dashed lines): the same at BX = 0.16;
open triangles, rhombs, and circles (no lines): the same at
BX = 0. The horizontal dashed lines show the allowable false-
positives rate, exceeding q= 0.05 due to finite ensemble size.

consistent with the data is found. If one checks the values
up to P ∗max, Q

∗

max, R
∗

max, L
∗

max (denote it Mmax) and all
trial L∗ are dividers of L∗max, then the largest classMmax
contains all the other trial classes and, therefore, total
significance level of the multiple test equals a separate
q-level for Mmax. Power (the rate of true positives) of
the multiple test also coincides with that for Mmax. If
several aliquant L∗ are considered, the total significance
level is at least not greater than q. Below, we check only
the rates of false and true positives for eachM separately.
We take K = 20 to cover nonzero values of CFs and set
all nondiagonal values of C equal to zero to simplify
the minimization of χ̂2(θ∗). The latter may lead only to
underestimation of χ̂2min, so that the false-positives rate
does not increase as required.
For the oscillators (3) with BY = 0.3 and various BX

we generate ensembles of 100 time series of a fixed length
N = 1000, 2000, 3000 at fixed Δt= 2. BX = 0 corresponds
to UC X→ Y and still nonzero Gy→x (fig. 1(a)). A time
series estimate of Gy→x is significantly positive (at the
level of 0.05 via F -test) with a probability of 0.22 at
N = 1000, 0.53 atN = 2000, and 0.68 atN = 3000. Thus, a
spurious BC detection is quite probable. The test against
the null hypothesis of UC X→ Y is performed for each
simulated time series with L∗ = 2 and P ∗, Q∗, R∗ ranging
from 1 to 5. We calculate the rejection rate f , which is the
rate of false positives at BX = 0 and then must not exceed
the claimed q= 0.05. This is the case at all P ∗, Q∗, R∗ in
fig. 3(a), (b). At BX > 0, f is the rate of true positives
which rises with BX and achieves rather large values
if P ∗, Q∗, R∗ are not too large (fig. 3(a)). f decreases
with decreasing N and rising P ∗, Q∗, R∗ (fig. 3(b)) as
expected, since a wider model class is more probable to
contain models with CFs close to the observed ones within
estimation errors which are greater for smaller N . All the
results are very similar for Δt= 3 and Δt= 4 at L∗ =Δt
(not shown). Thus, the test works properly.
One can use M consisting of linear stochastic DEs

with the only difference that ρ∗ is found via solving
the corresponding ordinary DEs1. The test can be

1Testing against UC was done in ref. [14] for two concrete linear
DEs. Those approaches require exact formulas for a ∆t-sampled

0 4 8 12 16 20

lag [months]

-0.4

0

0.4

0.8

1.2 x, X

a) 0 4 8 12 16 20

lag [months]

0

0.8

1.6 y, Y

b)

-20 -10 0 10 20

lag [months]

-0.3

-0.2

-0.1

0

0.1 xy , XY

c)

Fig. 4: Covariance functions of climatic data (circles) and a UC
model with P ∗ =Q∗ = 3, R∗ = 1, L∗ = 2 (crosses).

implemented for nonlinear systems, but with greater
difficulties. First, a global search for a UC model in a
richer class of nonlinear equations is a harder computa-
tional problem. Second, one should require a model to
reproduce various statistical moments of the data, while
exact formulas for the model moments are rarely available
so that their simulation-based estimates are to be used.
Up to now, we have realized such a nonlinear test only
for quadratic maps where some moments are expressed
exactly via model coefficients.

Climatic example. – ENSO and Indian monsoon are
large-scale phenomena in Asian-Pacific region, which have
even a global impact [19]. Positive PIs in both directions
were revealed [20] from monthly values of xn (monsoon
index [21] with removed annual cycle) and yn (ENSO
index Niño-3 [22]) over the period 1871–2006, i.e., Δt= 1
month, N = 1632. Namely, Gy→x = 0.020 and Gx→y =
0.017 (significant at the level of 0.001) were obtained
with linear AR models, while including nonlinear model
terms did not give any changes. Thus, a BC was inferred
and possible mechanisms underlying influences in both
directions were discussed. The monsoon-to-ENSO effect
appeared physically less clear for climatologists. It was
suggested to be due to an influence of the monsoon system
on the trade winds in the Pacific and, hence, on the ENSO
dynamics [20], but a further check is desirable. Moreover,
we have demonstrated an example (3) with a UC and
similar PIs, especially when relaxation times differ for the
two processes. And ACF of the monsoon index decays
faster than that of the ENSO index (fig. 4(a) (b)), giving
another motivation to test against a UC.
Since the observed indices represent the total monthly

value of all-India rainfall and the mean monthly value
of the sea surface temperature, one deals here with
physical quantities averaged over Δt corresponding to
xn = (1/Δt)

∑∆t
i=1X((n− 1)Δt+ i) in the example (3).

representation of an original DE and, thus, are not readily applicable
in practice to a general linear DE and, especially, to a discrete-time
system. Moreover, they just compare UC and BC models but do not
check validity of a UC model, that may distort the conclusions.
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Such a combination of averaging and downsampling
induces spurious causalities which are very close to those
for “pure” downsampling (not shown). In the above
test, averaging is straightforwardly taken into account by
computing ρ∗ as CFs of Δt-averaged model variablesX,Y .
Both “ENSO → monsoon” and “monsoon → ENSO”

hypotheses were checked with the suggested test at L∗ = 2
(a model time step of two weeks), L∗ = 3 (a decade), and
L∗ = 4 (a week). These time scales are shorter than a
month, that seems appropriate for atmospheric processes.
P ∗, Q∗, R∗, S∗ were varied in the range from 1 to 5. Both
UC hypotheses were rejected at q= 0.05 in all cases. The
best agreement between model and observed CFs was
achieved at L∗ = 2, P ∗ =Q∗ = 3, R∗ = 1, i.e., monsoon-to-
ENSO driving (fig. 4). ACFs of that model (crosses)
are reasonably close to those of the data in contrast to
CCFs (fig. 4(c)). Namely, the CCF of the data exhibits
a maximum absolute value at a time lag of two months
(monsoon “leads”) while its values at small negative lags
are also big enough. However, any model with UC X→ Y
could exhibit such a slowly changing CCF only if ACF of
X were not quickly decaying. Thus, it can reproduce either
ACF of monsoon or CCF, but not both functions together,
that reflects inadequacy of a UC model with monsoon-to-
ENSO driving. The test gives a quantitative measure for
that inadequacy, namely, χ̂2min = 144>χ

2
0.95 = 95.1. The

models with the opposite UC disagree with the data even
more strongly (not shown). Thus, a BC is confirmed by the
suggested test, at least, for the trial range of “intrinsic”
time steps from a week to a month.

Conclusion. – Our quantitative study of Granger
causality characteristics shows that a sampling interval
can strongly influence results of a directional coupling
analysis: Large “spurious” PIs are often induced by down-
sampling and even a reliable determination of a UC direc-
tionality is not assured. The effect is demonstrated with
various examples, including linear oscillators and nonlin-
ear chaotic maps. It persists if transfer entropy is used
instead of PI. This investigation complements mathemat-
ical discussions [13,14] by showing the importance of the
effect for physical research. In particular, it suggests that
even the coupling estimation based on optimized time
lags [3] should be interpreted with care. We have developed
a practical test for coupling bidirectionality and confirmed
a BC between ENSO and Indian monsoon.

∗ ∗ ∗

The work is supported by RFBR, RAS program, and FP
Scientific brain-power of innovative Russia for 2009–2013.

REFERENCES

[1] Ancona N., Marinazzo D. and Stramaglia S., Phys.
Rev. E, 70 (2004) 056221;Marinazzo D., Pellicoro M.
and Stramaglia S., Phys. Rev. Lett., 100 (2008) 144103.

[2] Schreiber T., Phys. Rev. Lett., 85 (2000) 461; Staniek
M. and Lehnertz K., Phys. Rev. Lett., 100 (2008)
158101; Hlavackova-Schindler K. et al., Phys. Rep.,
441 (2007) 1; Hahs D. W. and Pethel S. D., Phys.
Rev. Lett., 107 (2011) 128701.

[3] Vlachos I. and Kugiumtzis D., Phys. Rev. E, 82 (2010)
016207; Faes L., Nollo G. and Porta A., Phys. Rev.
E, 83 (2011) 051112.

[4] Rosenblum M. G. and A. S. Pikovsky, Phys. Rev. E,
64 (2001) 045202(R); Smirnov D. A. and Bezruchko
B. P., Phys. Rev. E, 68 (2003) 046209.

[5] Barnett L., Barrett A. B. and Seth A. K., Phys.
Rev. Lett., 103 (2009) 238701.

[6] Wang W. et al., J. Clim., 17 (2004) 4752; Palus M. and
Novotna D., Nonlinear Proc. Geophys., 13 (2006) 287;
Verdes P. F., Phys. Rev. Lett., 99 (2007); Smirnov
D. A. and Mokhov I. I., Phys. Rev. E, 80 (2009)
016208.

[7] Pereda E., Quian Quiroga R. and Bhattacharya
J., Prog. Neurobiol, 77 (2005) 1; Brea J., Russell
D. F. and Neiman A. B., Chaos, 16 (2006) 026111;
Schelter B. et al., J. Neurosci. Methods, 152 (2006)
210; Andrzejak R. G. and Kreuz T., EPL, 96 (2011)
50012.

[8] Porta A. et al., Biol. Cybern., 81 (1999) 119; Rosen-
blum M. G. et al., Phys. Rev. E, 65 (2002) 041909;
Palus M. and Stefanovska A., Phys. Rev. E, 67 (2003)
055201(R).

[9] Bezruchko B. et al., Chaos, 13 (2003) 179.
[10] Hung Y.-C. and Hu C.-K., Phys. Rev. Lett., 101 (2008)

244102.
[11] Mokhov I. I. and Smirnov D. A., Geophys. Res. Lett.,

33 (2006) L0378; Smirnov D. et al., EPL, 83 (2008)
20003.

[12] Granger C. W. J., Econometrica, 37 (1969) 424.
[13] Sims C. A., Econometrica, 39 (1971) 545; Christiano

L. J. and Eichenbaum M. S., Carnegie-Rochester Conf.
Ser. Public Policy, 26 (1987) 63;Marcellino M., J. Bus.
Econ. Stat., 17 (1999) 129.

[14] Renault E., Sekkat K. and Szafarz A., J. Empir.
Finance, 5 (1998) 47; McCrorie J. R. and Chambers
M. J., J. Econom., 132 (2006) 311.

[15] Box G. E. P. and Jenkins G. M., Time Series Analysis.
Forecasting and Control (Holden-Day, San Francisco)
1970.

[16] Seber G. A. F., Linear Regression Analysis (Wiley, New
York) 1977.

[17] Timmer J., Lauk M., Pfleger W. and Deuschl G.,
Biol. Cybern., 78 (1998) 349.

[18] Fraser A. M. and Swinney H. L., Phys. Rev. A., 33
(1986) 1131.

[19] Solomon S. et al. (Editors), Climate Change. 2007:
The Physical Science Basis (Cambridge University Press,
Cambridge) 2007; Yamasaki K., Gozolchiani A. and
Havlin S., Phys. Rev. Lett., 100 (2008) 228501;Maraun
D. and Kurths J., Geophys. Res. Lett., 32 (2005)
L15709.

[20] Mokhov I. I., Smirnov D. A. and Nakonechny P. I.
et al., Geophys. Res. Lett., 38 (2011) L00F04.

[21] http://climexp.knmi.nl/data/pALLIN.dat.
[22] http://climexp.knmi.nl/data/iersst nino3a.dat.

10005-p6


