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Experiments on oscillator ensembles with global nonlinear coupling
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We experimentally analyze collective dynamics of a population of 20 electronic Wien-bridge limit-cycle
oscillators with a nonlinear phase-shifting unit in the global feedback loop. With an increase in the coupling
strength we first observe formation and then destruction of a synchronous cluster, so that the dependence of the
order parameter on the coupling strength is not monotonic. After destruction of the cluster the ensemble remains
nevertheless coherent, i.e., it exhibits an oscillatory collective mode (mean field). We show that the system is
now in a self-organized quasiperiodic state, predicted in Rosenblum and Pikovsky [Phys. Rev. Lett. 98, 064101
(2007)]. In this state, frequencies of all oscillators are smaller than the frequency of the mean field, so that the
oscillators are not locked to the mean field they create and their dynamics is quasiperiodic. Without a nonlinear
phase-shifting unit, the system exhibits a standard Kuramoto-like transition to a fully synchronous state. We
demonstrate a good correspondence between the experiment and previously developed theory. We also propose a
simple measure which characterizes the macroscopic incoherence-coherence transition in a finite-size ensemble.
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Mean-field approximation is widely used in the description
of oscillator networks with high degrees of connectivity.
Models of oscillator ensembles with mean-field, or global,
coupling describe collective dynamics of oscillating objects
of various nature, including fireflies, pedestrians on the
footbridges, hand-clapping individuals in a large audience,
Josephson junctions, lasers, electrochemical oscillators, and
neurons, to name just a few [1]. The main effect of the
global coupling is the well-understood emergence of collective
synchrony, reflected in the increase in the mean-field amplitude
with the interaction strength and often referred to as the Ku-
ramoto transition. Further well-known effects are clustering [2]
and chaotization of the mean field [3,4]. Experiments on glob-
ally coupled oscillators have been performed by Hudson, Kiss,
and collaborators [5]. Using an ensemble of 64 electrochemical
oscillators, they have confirmed most theoretical predictions.
In particular, they have demonstrated the Kuramoto transi-
tion in ensembles of periodic and chaotic oscillators. Other
laboratory experiments have been conducted with Josephson
junctions, photochemical oscillators, and vibrating motors on
a common support [6].

A subject of recent interest is coherent though not syn-
chronous states, also denoted as partial synchrony. Such
regimes have been observed in networks of pulse coupled
integrate-and-fire units [4,7] and in ensembles of Stuart-
Landau and phase oscillators with global nonlinear coupling
[8]. The latter systems exhibit an interesting transition from
synchrony to self-organized quasiperiodicity (SOQ). In the
SOQ state the frequency of the mean field differs from the
frequency of oscillators, i.e., the emergent collective mode and
individual units are not locked. The primary goal of this Rapid
Communication is experimental verification of these results.
For this purpose, we performed experiments with electronic
oscillators, globally coupled via a common feedback loop with
a phase-shifting unit. The coupling is nonlinear in the sense
that the phase shift depends on the amplitude of the collective

oscillation. We demonstrate, with an increase in the strength
of the global coupling, a transition from an asynchronous state
to collective synchrony and then to SOQ.

Typically the tendency to synchrony increases with the
coupling strength. However, in some setups the increase of the
coupling parameter makes the initially attractive interaction
repulsive, leading to the breakup of synchrony. As a result, the
system undergoes a transition either to an asynchronous state
or to a state of partial synchrony. In the latter case, the system
stays at the border between synchrony and asynchrony and
exhibits interesting dynamics, in particular, SOQ states. We
discuss the SOQ dynamics using as an illustration a solvable
model [8] of N � 1 identical globally coupled Stuart-Landau
oscillators:

ȧk = (1 + iω)ak − |ak|2ak + eiαA, k = 1, . . . ,N, (1)

where α is the phase shift of the coupling. Suppose first
a simple mean-field coupling of strength ε > 0, i.e., A =
εN−1 ∑N

k=1 ak . For ε � 1, this system reduces to the well-
studied Kuramoto-Sakaguchi model [9]

ϕ̇k = ω + εR sin(� − ϕk + α), (2)

where ϕk = arg ak and the mean-field phase � and am-
plitude (order parameter) R are determined by Rei� =
N−1 ∑N

k=1 eiϕk . The dynamics of Eq. (2) is determined by
the phase shift α: For |α| < π/2 the coupling is attractive
and the system synchronizes (R = 1), otherwise the coupling
is repulsive and the system remains asynchronous (R = 0).
Suppose now that the mean field has its own dynamics,
described by

Ȧ = −γA + iω̄ + iη|A|2A + εN−1
N∑

k=1

ak. (3)
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For weak coupling and large γ , Eqs. (1) and (3) reduce to

ϕ̇k = ω + ε̄R sin[� − ϕk + β(R,ε̄)], (4)

where ε̄ = ε/γ and β(R,ε̄) = α + ηγ −1ε̄2R2 [8]. This phase
equation differs from Eq. (2) by the dependence of the
phase shift on R, ε, which is crucial for the dynamics.
Indeed, let |α| < π/2, then for small ε̄ the phase shift β is
also smaller than π/2, the system synchronizes, and R =
1. However, if the coupling increases beyond the critical
value ε̄ > εcr = γ (π/2 − α)/η, then β becomes larger than
π/2 and, hence, the interaction becomes repulsive. As a
result, the system tends to desynchronize and to decrease
the order parameter, which would make β < π/2, i.e., the
interaction again would become attractive. Finally, the system
settles exactly at the border between synchrony and asyn-
chrony, with the order parameter R < 1 determined from the
condition β(R,ε̄) = π/2. This desynchronization transition
results in the divergence of frequencies of the mean field
and of individual oscillators; generally these frequencies are
incommensurate, and, hence, the dynamics of oscillators is
quasiperiodic [8]. An analytical treatment of the model (4)
was extended to the cases of Lorentzian [10] and uniform [11]
distribution of frequencies. We briefly discuss the latter case,
since it is closer to experimental implementation. With the
increase of ε̄ first the transition to synchrony is observed.
If the frequency distribution is sufficiently narrow then all
oscillators form a synchronous cluster, otherwise part of
them remains asynchronous. Next, oscillators, one by one,
leave the synchronous cluster, and finally the SOQ state is
formed, where all oscillators differ in frequency from the
mean field they create. The transition from synchrony to
SOQ is accompanied by a decrease in the order parameter.
Although the theoretical treatment has been performed for
phase oscillators, we expect that this effect can be observed
for general limit-cycle oscillators, provided the phase shift in
the global feedback monotonically depends on the mean-field
amplitude.

FIG. 1. Scheme of the experimental setup of N = 20 globally
coupled oscillators. All oscillators have an identical structure and
therefore only the first one is shown in detail. The global coupling is
organized via the common load Rc. A fraction of the voltage across
Rc is fed back to each oscillator via the feedback loop, consisting of
a linear (standard RC circuit) and nonlinear phase-shifting units.
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FIG. 2. (Color online) Characteristic of the nonlinear phase-
shifting unit: phase shift between the output and input vs the amplitude
of the input.

We performed experiments with N = 20 electronic gen-
erators, coupled via a global feedback loop—see Fig. 1.
Coupling is organized via a common load Rc; a fraction of
the voltage across this potentiometer is fed to the input of the
phase-shifting unit, and the output of the latter, Vf , is fed back
to all oscillators via resistors R1. With the voltage across Rc

denoted as VL, the input voltage to the feedback loop can be
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FIG. 3. (Color online) Results of the experiment with the linear
phase-shifting unit. Order parameter R (a) and minimal mean-field
amplitude Amin [(b), blue circles] reveal the synchronization transition
at the coupling strength ε ≈ 0.17. This is also confirmed by the
plot of η [(b), red squares]: This quantity shows that for ε � 0.17,
the instantaneous frequency of the mean field is always positive, as
expected for a coherent, oscillatory mean field. The transition can
be also very good seen from the frequency plot in (c): At ε ≈ 0.17
several oscillators form a synchronous cluster and for ε � 0.2 full
frequency locking is observed, with R close to 1. Here the circles
show the frequencies of oscillators fi and the bold blue line shows
the mean-field frequency fmf. Notice that for subthreshold coupling
R is not small due to the finite-size effect; here Amf is more efficient
for the determination of the threshold.
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FIG. 4. (Color online) The same as in Fig. 3 but for the experiment
with the linear and nonlinear phase-shifting units. At ε ≈ 0.12
we observe the transition to a partially synchronous state, where
the fastest oscillators lock onto each other and to the mean field.
Between ε ≈ 0.43 and ε ≈ 0.72 the oscillators leave the cluster and
for ε � 0.72 the SOQ state is observed: The mean field is faster
than all oscillators. Although the values of the order parameter in
the asynchronous (ε � 0.12) and SOQ states are almost the same,
these states are qualitatively different (see Fig. 5), and can be easily
distinguished by the quantities Amin and η (see text).

written as Vc = εVL. The parameter ε, 0 � ε � 1, quantifies
the strength of the global coupling. Individual units are
Wien-bridge oscillators with saturation of the amplitude due
to the negative feedback loop of the operational amplifier (not
shown) [12]. The input-output characteristic of the operational
amplifier is a sigmoid curve which can be approximated as
V = kus tanh(u/us), where u and V are the input and output
voltages, us = 3.2 V determines the range of the input voltages
where the amplifier works without saturation, and k = 10 is the
slope of the characteristics in the linear regime. All oscillators
were tuned to have approximately the same output voltage
≈1 V and close frequencies ≈3.1 kHz. The phase-shifting unit
has a linear and nonlinear parts. The former is implemented
via two standard RC circuits plus amplifiers, and the details of
the latter are shown in Fig. 1; the characteristic of the nonlinear
part is shown in Fig. 2.

We performed three experiments. In the first one the phase-
shifting unit was excluded so that the signal from the common
load was directly applied to the inputs of oscillators, i.e., Vf =
Vc. In the second experiment only the linear phase-shifting
unit was included, and in the third run we had both linear
and nonlinear units, as shown in Fig. 1. In each experiment
we gradually changed the input to the feedback loop Vc from
zero to its maximal value VL and recorded the outputs of
all oscillators, Vi , i = 1, . . . ,N , and the mean-field voltage
VL [13]. In each recording we obtained 105 points per channel,
with the sampling rate 65 kHz. For each value of the coupling
strength ε = Vc/VL we performed ten recordings.

For the presentation of results we have computed, for each
ε, the following quantities: (i) Instantaneous phases ϕi of all
oscillators and the instantaneous phase and amplitude Amf of
the mean field VL were obtained with the help of the Hilbert
transform; (ii) frequencies fi of all oscillators and frequency
fmf of the mean field were computed from the unwrapped
phases for each recording and then averaged over ten record-
ings; (iii) the order parameter R was obtained by averaging the
quantity N−1 ∑N

j=1 eiφj over time and over ten measurements;
(iv) the minimal (over all ten measurements) value Amin of the
instantaneous mean-field amplitude Amf; and (v) the fraction
η of the data points where the instantaneous frequency of the
mean field is negative. Typically, synchronization transition in
a globally coupled system is traced by plotting R vs ε. In the
limit N → ∞, R = 0 in the incoherent state. However, since
in our case N = 20, the finite-size fluctuations of the mean
field in this state are quite large (they are known to scale as
1/

√
N ) and therefore R is not small either. We find that the

distinction between incoherent (fluctuating mean field) and
coherent (oscillatory mean field) states can be better revealed
by Amin and η (see also the discussion of Fig. 5 below).

In the first and second experiments (no phase-shifting unit
and linear unit, respectively), we observed standard Kuramoto
transitions to collective synchrony. These transitions occurred
at ε ≈ 0.85 and ε ≈ 0.17, respectively [14] (see Fig. 3, where
the second experiment is illustrated), and were characterized
by a monotonic dependence of R and Amin on ε. In the third,
main, experiment, we observed a nonmonotonic dependence of
R and Amin on ε (Fig. 4). We have found that with an increase
of ε, ten oscillators formed a cluster at ε ≈ 0.12, while the
other ten remained asynchronous. Next, the frequency-locked
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FIG. 5. (Color online) Phase portraits for the mean field.
(a) Asynchronous state, ε = 0.05. (b) SOQ state, ε = 0.85 (cf. Fig. 4);
ṼL is the Hilbert transform of the mean field VL. The pattern in (a) is
typical for a fluctuation process with the amplitude dropping to zero,
whereas the portrait in (b) clearly demonstrates coherent, oscillatory
mean-field dynamics with the well-defined phase and frequency.
(c) Power spectra of one oscillator So (circles) and of the mean field
Sf (solid line), for ε = 0.85.
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oscillators leaved the cluster one by one. Finally, the SOQ
state appeared at ε ≈ 0.72. In order to show that this is indeed
a transition to SOQ but not simply a breakup of synchrony,
we plot in Figs. 5(a) and 5(b) the Hilbert transform of the
mean field versus the mean field itself. We see that in the
asynchronous state the pattern is typical for a narrowband
random process, with the amplitude dropping practically to
zero, whereas in the SOQ state the mean field is clearly
oscillatory and its phase and frequency are well defined. The
SOQ dynamics is illustrated by power spectra in Fig. 5(c).

Thus, we have experimentally demonstrated a state where
oscillators are synchronized neither with each other nor with
the mean field, but the amplitude of the latter is, nevertheless,
nonzero. This peculiar coherent state is possible because
phases of oscillators, though not locked, are coordinated
in a way that their distribution is nonuniform. Our results
correspond well to analytical results for phase oscillators
[8,11]. The SOQ regime we observe emerges when the system
is brought, due to the phase shift, close to the point where

attractive interaction becomes repulsive. Thus, we expect SOQ
to be observed in other physical systems where the global
coupling is characterized by an amplitude-dependent phase
shift or time delay. Next, the same dynamics appears in systems
with nonlinear coupling, e.g., described by Eq. (1) with
A = c1B + c2|B|2B, where B = N−1 ∑N

k=1 ak and c1,2 are
complex coupling coefficients [8]—cf. Ref. [15]. Moreover,
numerical observations, e.g., reported in Ref. [16], indicate
that SOQ states can appear in linearly coupled ensembles of
strongly nonlinear oscillators. An analysis of such systems is
a topic for future theoretical and experimental studies. Finally,
we have proposed a simple measure Amin which reliably
reveals a macroscopic incoherence-coherence transition; we
believe that it can be useful for other studies of the finite-size
ensemble, both experimental and numerical studies.
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