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The behavior of complex systems of different
natures composed of several interacting elements
depends on not only the properties of these elements,
but also on the character of their coupling. For exam�
ple, the structure and intensity of couplings in an
ensemble of oscillating systems determines the possi�
bility of their synchronization and the formation of
different spatial and temporal structures [1–4]. In
recent years, much attention has been paid to the
problem of revealing the presence of couplings in
ensembles of multielement systems and determining
their structure and characteristics from time series [5–
7]; this problem is solved using methods based on sim�
ulation of the phase dynamics. Here, we propose a
method for reconstructing the coupling architecture
and values in large ensembles of interacting systems
based on a method for reconstructing the model equa�
tions of ensemble elements. Using this method, we
reconstructed for the first time the a priori unknown
architecture of couplings in a large ensemble of cha�
otic time�delay systems with a complex coupling
structure.

Let us consider an ensemble composed of diffu�
sively coupled time�delay systems; each of them is
described by the equation

(1)

where i = 1, …, M; M is the number of elements in the
ensemble; εi is the inertia parameter; τi is the delay
time; fi is a nonlinear function; and ki, j is the coupling
coefficient.

To determine all coupling coefficients in the
ensemble, we propose a method based on reconstruct�
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ing model equation (1) for each element in time series.
First, we reconstruct the delay times. We established
previously that there are hardly any extrema spaced by
the delay time in the time realizations of isolated
(kj, j = 0) time�delay systems of type (1) [8]. Having
determined, for different τ values, number Ni of situa�
tions where the points of a chaotic time series, spaced
by time interval τ, are simultaneously extremal and
having plotted dependence Ni(τ), one can find delay
time τi as a value at which this dependence exhibits an
absolute minimum [8]. The validity of this method for
reconstructing τi in a chain of coupled time�delay sys�
tems was substantiated in [9]. According to our results,
this method for determining the delay time remains
efficient for ensembles of systems (1) with an arbitrary
number of couplings between elements, provided that
the interaction of systems does not induce a large
number of additional extrema in chaotic time realiza�
tions of their oscillations. This assumption remains
valid for weak coupling (ki, j � xi) even in the case of
globally coupled systems (1). Note that the condition
of weak coupling and the absence of synchronization
between ensemble elements is necessary for almost all
methods for revealing couplings [7].

Having determined τi, one can reconstruct param�
eter εi, nonlinear function fi, and the coupling coeffi�
cients ki, j of the ith time�delay system (1), knowing the
time series of oscillations of all ensemble elements.
To this end, we propose the following approach. Let us
write Eq. (1) in the form

(2)
εix· i t( ) xi t( ) ki j, xj t( ) xi t( )–( )

j 1 j i≠( )=

M

∑–+

=  fi xi t τi–( )( ).
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If one plots the dependence of the left�hand side of
Eq. (2) on xi(t – τi), it will coincide with the function
fi. Since εi and ki, j are unknown beforehand, they will
be sought by minimizing the parameter

(3)

This parameter characterizes the distance between
the points in the (yi, zi) plane, which are sorted with
respect to the coordinate yi. Here,

n is the point number and S is the number of points.
When the εi and ki,j values are chosen incorrectly, the
points in the (yi, zi) plane cannot be connected by one�
dimensional curve fi; therefore, the Li(εi, ki,j) value is
larger than that for true εi and ki,j.

For εi and ki,j, we set starting conjectures and then
refine them by the simplex method [10] with minimi�
zation of (3) (its minimum is referred to as Li, M). At
M ≤ 4 and in the absence of noise, all parameters are
reconstructed with a high accuracy. However, at M > 4,
the situation in which the method does not allow one
to reveal the absent couplings between ensemble ele�
ments becomes typical. These couplings are identified
as weak because of the presence of indirect couplings
via other elements. Insignificant couplings can be
rejected by the method of successive trial exclusion of
the coefficients ki,j from model (1). We hypothesize
that the two elements are not coupled (by excluding
the corresponding coupling coefficient ki,j) and recon�
struct the other parameters of the model, finding the
minimum Li, j, M – 1 of function (3). This procedure is
then repeated by excluding another ki,j at a fixed i, etc.,
for all j = 1, …, M (j ≠ i). Finally, we determine the

exclusion of which ki,j yields Li, M – 1 =  and

estimate the statistical significance of the magnitude
L = Li, M – 1/Li, M based on the following consider�
ations. At large S, the differences yi, n + 1 – yi, n and
zi, n + 1 in (3) are distributed according to the close�to�
normal law; here, S/2 of points can be considered as
independent because they have no common coordi�
nates. In addition, Li,M depends on M parameters of
model (2), a fact that reduces the number of indepen�
dent values in (3) to S/2 – M. Then, taking into
account that the sum of K squared independent nor�
mally distributed values obeys the chi�square law with
K degrees of freedom [11], we find that the Li,M values
obtained at different parameters and/or in the pres�
ence of noise are distributed according to the chi�
square law with S/2 – M degrees of freedom and the

Li εi ki j,,( )
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Li,M–1 values are distributed according to the chi�
square law with S/2 – M + 1 degrees of freedom.

The parameter X, which is a ratio of two indepen�
dent random values distributed according to the chi�
square law with v and w degrees of freedom, is known
to obey the Fisher–Snedecor distribution with the dis�
tribution function

(4)

where B is the incomplete β function and d =
vX/(vX + w) [12]. Therefore, the parameter L is
described by distribution function (4) with X = L, v =
S/2 – M + 1, and w = S/2 – M. We denote the L value
at which F

v, w(L1 – p) = 1 – p as L1 – p (p is the statisti�
cal�significance level). Then, if L > L1 – p, one can
conclude at the significance level p that the elements
are coupled and, accordingly, all ki,j ≠ 0. In the oppo�
site case, we conclude that the corresponding ele�
ments are not coupled and check the significance level
for other couplings, successively excluding one of the
remaining couplings of the ith element. The procedure
is repeated until all couplings become significant. This
approach makes it possible to reconstruct the coupling
architecture, parameters of all elements, and their
nonlinear functions.

If the number of couplings between ensemble ele�
ments is known to be small, the method of successive
trial addition of the coefficients ki,j to model (1) is pre�
ferred for reconstructing the coupling architecture and
values. First, we find the minimum Li,1 of function (3)
on the assumption that all ki,j are absent in Eq. (1) (i.e.,
there are no couplings). We then successively (one by
one) introduce ki,j into (1) to find the minimum Li,j,2 of
function (3). Having enumerated all j ≠ i, we find Li,2 =

. If L > L1 – p (L = Li,1/Li,2) and F
v, w is plotted

at v = S/2 – 1 and w = S/2 – 2, the coupling intro�
duced is nonzero at significance level p. This proce�
dure is repeated until another coupling added to the
model turns out to be insignificant.

As an example, we will consider the reconstruction
of the coupling architecture in an ensemble of coupled
Mackey–Glass systems described by Eq. (1) with the
function

(5)

and εi = 1/bi. These systems are affected by indepen�
dent normal noise ξi(t) with a zero mean and disper�

sion . The parameters of the elements were speci�
fied randomly: integer τi ∈ [300, 400], εi ∈ [8, 12], ai ∈

[0.2, 0.25], ki,j ∈ [0.08, 0.12], and  = 10–4. All ele�
ments oscillate chaotically. The time series of each ele�
ment contains 10 000 points with a sample step of 1.
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Figure 1 shows the architecture of randomly chosen
couplings in an ensemble of M = 10 elements.

The results of reconstruction of one element with
the parameters τ5 = 348, ε5 = 9.5, k5, 1 = 0.112, k5, 3 =
0.085, k5,6 = 0.116, k5,7 = 0.090, and k5,j = 0 (j = 2, 4,
5, 8, 9, and 10) are shown in Fig. 2. Having calculated
number N5 of times when  and  simulta�
neously turn to zero for different τ, enumerated with a
step of 1, we plot the dependence N5(τ) (Fig. 2a). To
estimate the time derivative from time series, we used
a local parabolic approximation. The minimum N5(τ)
is observed at the true delay time τ = τ5 = 348.

Figure 2b shows the function f5 (in gray) obtained
after reconstructing Eq. (1) on the assumption that all
ensemble elements are uncoupled and the function f5
(in black) reconstructed using the method of succes�
sive trial addition of the coupling coefficients to the
model at p = 0.05. Taking into account the coupling
architecture significantly improves the quality of
reconstruction of the nonlinear function and the accu�
racy of estimating the model parameters. The errors in
reconstructing the coupling architecture are mainly
caused by the presence of noise.

The results of reconstructing the coupling architec�
ture in the entire ensemble, obtained using the method
of adding couplings, are shown in Fig. 3. A square with
the coordinates (j,i) illustrates the influence of the jth
element on the ith element (except for the squares in
the diagonal, which carry no information). At the sig�
nificance level p = 0.05, we found 39 of the 40 existing
couplings (Fig. 1). Only one coupling was missed, and

x· 5 t( ) x· 5 t τ–( )

spurious couplings were absent. Note that, when
reconstructing the coupling architecture based on the
same time series using the method of excluding cou�
plings, we obtained many spurious couplings at the
same p. The method of excluding couplings is more
efficient for reconstructing ensembles where the num�
ber of existing couplings is many times larger than the
number of absent couplings. On the contrary, the
method of adding couplings is most efficient when the
number of couplings in an ensemble is small, even in
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Fig. 1. Coupling architecture in an ensemble of ten ele�
ments. Forty of ninety possible couplings are present. Bidi�
rectional and unidirectional couplings are shown in black
and gray, respectively.
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Fig. 2. (a) Number N5 of pairs of extrema in the time series
of the variable x5(t) (spaced by τ) normalized to the total
number of extrema in the series: N5min(τ) = N5(348).
(b) Nonlinear function f5 reconstructed in the (y5, z5)

plane with y5 = x5(t – ) and z5 = (t) + x5(t) –

(xj(t) – x5(t)) at the following parameters

obtained during reconstruction: (gray)  = 348,  = 8.4,

and  = 0 (j = 1, …, 10; j ≠ 5) and (black)  = 348,

= 9.6,  = 0.111,  = 0.085,  = 0.105,

= 0.080, and  = 0 (j = 2, 4, 5, 8, 9, 10).
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the case of large ensembles (M = 50). The case under
consideration, in which the numbers of existing and
absent couplings are comparable, is the most complex
for reconstruction. In these situations, the method of
adding couplings is more efficient.
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Fig. 3. Diagram of the results of reconstructing the cou�
pling architecture in an ensemble of ten Mackey–Glass
systems obtained at the significance level p = 0.05 using the
method of successive trial addition of coupling coefficients
to the model. Correctly reconstructed couplings, correctly
found absent couplings, and missed couplings are shown in
black, white, and gray, respectively.


