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Abstract

To study the dynamical mechanism which generates Parkinsonian resting tremor, we apply
coupling directionality analysis to local field potentials (LFP) and accelerometer signals
recorded in an ensemble of 48 tremor epochs in four Parkinsonian patients with depth
electrodes implanted in the ventro-intermediate nucleus of the thalamus (VIM) or the
subthalmic nucleus (STN). Apart from the traditional linear Granger causality method we use
two nonlinear techniques: phase dynamics modelling and nonlinear Granger causality. We
detect a bidirectional coupling between the subcortical (VIM or STN) oscillation and the
tremor, in the theta range (around 5 Hz) as well as broadband (>2 Hz). In particular, we show
that the theta band LFP oscillations definitely play an efferent role in tremor generation, while
beta band LFP oscillations might additionally contribute. The brain— tremor driving is a
complex, nonlinear mechanism, which is reliably detected with the two nonlinear techniques
only. In contrast, the tremor— brain driving is detected with any of the techniques including
the linear one, though the latter is less sensitive. The phase dynamics modelling (applied to
theta band oscillations) consistently reveals a long delay in the order of 1-2 mean tremor
periods for the brain— tremor driving and a small delay, compatible with the neural
transmission time, for the proprioceptive feedback. Granger causality estimation (applied to
broadband signals) does not provide reliable estimates of the delay times, but is even more
sensitive to detect the brain— tremor influence than the phase dynamics modelling.

1. Introduction

Parkinson’s disease (PD) in humans is a movement disorder
which covers a broad spectrum of symptoms, ranging from
predominant resting tremor (t-subtype) to pronounced akinesia
(inability to initiate and perform movements) and rigidity (AR-
subtype) [1]. The pathophysiology of Parkinsonian resting
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tremor still remains rather unclear [2-8]. The frequency of
classical resting tremor lies between 4 and 7 Hz [9, 10]; only
in early stages it may be as high as up to 9Hz [11].

Resting tremor is centrally generated, whereas reflexes
play only a marginal role for the generation of Parkinsonian
resting tremor (for review, see [5]). For instance, removal of
the dorsal roots in a PD patient did not abolish tremor and
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only led to a reduction of the tremor amplitude and a slight
change of the tremor frequency [12]. In contrast, lesions
within the motor cortex, the internal capsule [13, 14] or within
the thalamus or the zona incerta [14-16] may stop resting
tremor. In a given patient the frequencies of tremor are often
remarkably similar in different muscles [17]. In fact, tremor
activity in muscles of the same part of the body (e.g. arm,
leg or head) is largely coherent, whereas tremor in muscles
from different extremities and, in particular, different sides
is almost never coherent [18, 19]. It has been concluded that
different central oscillators generate resting tremor in different
extremities, accordingly [19]. It has been proposed that these
independent central oscillators are most likely located in the
basal ganglia loop [20].

Deep brain stimulation procedures enable intraoperative
micro-/macrorecordings and postoperative macrorecordings
in externalized patients (i.e. patients with implanted depth
electrodes that are connected to external measurement devices)
(for review see [5, 7]). Local field potentials (LFPs) can be
recorded via macro- as well as microrecordings [7]. LFP
recordings assess neuronal activity at a collective level [7]
and, hence, provide relevant information for the analysis of
synchronization processes. Pathological basal ganglia LFP
activity is mainly subdivided into two major bands, <8 Hz and
8-30Hz, where the 8-30 Hz band has further been subdivided
into a 8-13Hz and a 14-30Hz (‘beta’) band [7]. Beta band
activity in subthalamic nucleus (STN) and globus pallidus
interni (GPi) is a prominent characteristic of basal ganglia
LFP and inversely correlates with antiparkinsonian medication
[21-24]. A levodopa induced decrease of beta band LFP
oscillations positively correlates with an improvement of
akinesia and rigidity, but not with a decrease of tremor
[25]. In contrast, theta oscillations (in the tremor frequency
band 3-8Hz) are a less distinct feature of basal ganglia
LFP [7], although tremor cell activity can be recorded
with microelectrodes in PD patients from thalamus [26-29],
pallidum [30, 31] and STN [32-36]. The discrepancy
between LFP oscillations in the different frequency bands is
reflected by the relationship between single unit discharges
and their spike train background oscillations (representing
the synchronized neuronal activity in the local vicinity of
the neuron) [37]. Neurons in a high-frequency band (8—
20Hz) oscillated during longer periods and coherently with
their background activity. In contrast, oscillatory neuronal
activity in the tremor frequency band (3-7Hz) occurred
episodically, and only half of the single unit oscillations in the
tremor frequency band were coherent with their background
activity. By the same token, neurons firing at the tremor
frequency have variable mutual phase relationships [38, 39].
LFP oscillations are not strictly correlated with Parkinsonian
tremor [8]. However, significant tremor-associated coherence
at single and/or double tremor frequencies between tremor
EMGs and STN LFPs has been detected in PD patients
[40, 41]. In fact, up to now there is no convincing evidence
to support the hypothesis that the tremor is driven by LFP
oscillations in the basal ganglia [6, 8].

To uncover the causal interdependence between LFP
oscillations and tremor, it is not sufficient to study

temporal correlation and/or coherence. Rather, the
directionality of coupling has to be detected. A number of
sophisticated, especially nonlinear techniques for the detection
of directionality of couplings [42-59] have been developed
and applied to different scientific fields, including geophysics
[60-62], cardiology [63-66, 60] and neurophysiology [67,
68, 59, 50, 56]. We here study the causal interrelationship
between LFP oscillations in the tremor frequency band in
STN or VIM and Parkinsonian resting tremor. To this end,
we apply a phase dynamics modelling technique [52, 53]
as well as linear and nonlinear Granger causality analysis
[57, 58, 69] to LFP and accelerometer signals in four
Parkinsonian patients with resting tremor. We use different
methods for the directionality analysis, since highly regular
tremor epochs (with stable tremor frequency) alternate with
less regular epochs (with variable frequency). According to
theoretical studies, for the highly regular epochs the phase
dynamics approach should be particularly appropriate [70],
whereas for the less regular epochs Granger causality may be
superior [71].

To the best of our knowledge, this is the first case where
the two nonlinear techniques (phase dynamics modelling and
nonlinear Granger causality) are applied to biomedical data
jointly. In a short communication [72] we have presented a
preliminary version of our analysis, with a smaller amount
of tremor epochs, with only three patients and using only the
phase modelling technique.

2. Materials and methods

2.1. Data description

We simultaneously recorded the LFP of the STN (patients
1, 3 and 4) or the VIM (patient 2) of the thalamus and
the accelerometer measuring the hand tremor from four
PD patients with predominant resting tremor (figure 1).
Recordings were performed during or after implantation of
the deep brain stimulation (DBS) electrode.

Patient 1: in this patient the tremor of the left arm was more
pronounced than on the right side. Intraoperative recording
from the right STN was performed with the ISIS MER system
(Inomed, Teningen, Germany). Patient 2: unilateral tremor
of the right arm. Intraoperative recording from the left VIM
with the ISIS MER system. The latter is a ‘Ben’s gun’ multi-
electrode for acute basal ganglia recordings during stereotaxic
operations [73], i.e. an array consisting of four outer electrodes
separated by 2 mm from a central one. In patients 1 and 2
recordings were performed via the central electrode against
the remote reference of the ISIS MER system. In patients 1
and 2 the results of the coupling directionality analysis were
quite similar for the outer electrodes. Accordingly, we here
present only the results for the central electrode.

Patient 3: bilateral tremor of both arms. Postoperative
recording was performed from externalized DBS lead 3387
(Medtronic, Minneapolis) in the left STN. Patient 4:
bilateral tremor of both arms. Postoperative recording from
externalized DBS lead 3387 (Medtronic, Minneapolis) in left
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Figure 1. A spontaneous epoch of Parkinsonian resting tremor in patient 1. (a) Accelerometer signal, at the beginning of a 36 s epoch.

(b) Simultaneously recorded LFP signal. (c), (d) Power spectra of accelerometer and LFP signals. (e), (f) Magnified segments of original

(grey lines) and band-pass filtered (blue lines, frequency band 3—7 Hz) signals. (g) CCF between accelerometer and LFP signals with 95%
confidence bands estimated with Bartlett’s formula. (h) Phase synchronization index for the phases defined in the frequency band 3—7 Hz.

STN. In patients 3 and 4 the LFP was measured between tip
macro-contact (contact 0, located in the target) and uppermost
contact (contact 3, used as reference). In patients 3 and 4 we
obtained very similar results for the coupling directionality for
the two other contact pairs 1-3 and 2-3. Hence, in this paper,
we only present the results for the contact pair 0-3.

Proper electrode placement was confirmed by effective
high-frequency macro-stimulations, intraoperative Xx-ray
controls [74], postoperative CT scans and intraoperative
micro-recordings (in patients 1 and 2). Patients 1, 3 and 4
had a bilateral tremor, and patient 2 a unilateral tremor. The
study was approved by the local ethical committee. Patients
gave their written consent. In patients 1 and 2 intraoperative
recordings were performed after overnight withdrawal of
antiparkinsonian medication (OFF medication). In contrast,
in patients 3 and 4 recordings were performed on the third
postoperative day ON medication, respectively.

Accelerometer and LFP signals are denoted further as
x1(t) and x,(¢), t = nAt,n = 1,2, ..., and the sampling
interval is At = 5 ms.

2.2. Coupling directionality estimation with Granger
causality

A traditional tool to detect the presence of coupling between
two processes is the estimation of the cross-correlation
function (CCF). However, it is not straightforward to extract
the ‘directionality’ characteristics from it. To get the estimates
of the coupling strengths in different directions, we used the
technique based on the construction of univariate and bivariate
predictors [57, 58, 69]. If the accuracy of prediction of the x;-
dynamics can be improved by additionally taking into account
the x;-dynamics (k # j), as opposed to a univariate model,
the presence of the influence £k — j can be inferred.

The idea has been introduced in [69] in terms of linear
models and recently it has started to be used in a nonlinear
setting [57, 58]. We implemented it as follows. First, we
normalized the observed time series to zero mean and unit
variance for convenience. Then, we constructed univariate
autoregressive models in the form:

x1(ty) = fix1@Ga=1)s - - X1 (g, a1) +€1(t,),
x2(ty) = fo(x2(ty=1), ..., X2(tu—a,), a2) + &2(1,),

ey
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where f; are algebraic polynomials of some orders K;
(j = 1,2), a; are vectors of their coefficients to be
estimated from data, ¢; are delta-correlated Gaussian noises
and d; are the dimensions (orders) of the models. For
specified values of d; and K;, the coefficient estimates
a; were found via the least-squares routine (LSR), i.e. by
minimization of the mean-squared prediction errors. The
achieved minimal value of the mean-squared prediction error
for the signal x; is given by ajz = W quv:d/ﬂ(xj (t,) —
Fixjtn=1), oy xj(tn-a;)s &j))2 where P; is the number of
estimated coefficients in the jth equation. The quantity sz
represents an unbiased estimator of the variance of the noise
¢j. Next, we constructed bivariate models in the form:

x1(t) = g1(x1 1)y - - - X1 (fp—ay)>

Xo(taot — A1), oo X2 (t—ge, — A, b +101(8),
xo(ty) = g2(2(tu=1), ..., X2(tn—a,),

X1t — A2)s oo X1 (ti—de, — D2), b2) +102(t),

@)

where g; are algebraic polynomials of the orders K, dyqq,j are
the numbers of the added values from the other signal (i.e. the
characteristics of the ‘coupling inertia’ or ‘response time’),
A; are trial time delays and n; are Delta-correlated Gaussian
noises. Analogously, for specified values of dyq,; and Aj,

minimal mean squared prediction errors are given by o i =

1 N
N-—max{d;,dya, j+Aj/At}—Pi Zn:max{d, Jdadd, j+A [ At}+1 (xj (tn)

8i(xj(tn=1), ooy Xj(tnea,), X (tnm1 — D)y ooy Xk (nmdyy; —
Aj), b j))z, where Py_, ; is the number of model coefficients
in the jth equation.

Prediction improvement (PI) of the x ;-dynamics achieved
by taking into account the x; dynamics was quantified
as Ply.; = o} —o; ;. Traditionally, such coupling
characteristics are estimated for linear models (K; = 1) with
sufficiently high d; and duqq ;, €.g. such that d; data points
cover one or several oscillation periods [69, 75, 76]. To
take into account a possible nonlinearity in the dynamics and
coupling, one has to confine oneself to relatively low values
of dj, dyq,j and K;. We varied d;, d,qq,j for K; = 1 within a
wide range from 1 to 100 and for K; > 1 within a narrower
range from 1 to 10, having on average about 50 data points per
basic tremor oscillation period. The value of A; is changed
within a range from 0 to 1000 ms and the point of maximum
(i.e. such A% that P Iy, j(A%) = maxoga,<is Pl (A))) is
taken as an estimate of the time delay in the k — j influence.

To avoid an extensive in-sample optimization, we chose
reasonable values of d; and d,qq,j for K; = 1by analyzing four
randomly selected spontaneous tremor epochs from different
patients. For this, the value of d; at fixed K; was selected
approximately at the saturation point of the curves oj.z(d_,-).
We tried different values of K; and selected that one which
provided the greatest prediction improvement. It was achieved
at K; = 3. Different small values of dyqq, ; led to similar results
of the coupling estimation. In particular, an appropriate choice
of parameters seems to be d; = 3 and d,qq,; = 1. Thus, all
the results of nonlinear Granger causality are presented below
only for d; = 3, dyq,; = 1 and K; = 3. Typical results for

K; = 1 with the corresponding reasonable values of d; = 50
and dyqq,; = 10 are shown for comparison.

A pointwise statistical significance level for the
conclusion ‘Pl ;(A;) > 0 at a specific A; can be
obtained analytically via the so-called Granger and Sargent
test (F-test). However, we selected a maximal PI;_,;
from the set Pl ;(A;) for different A;. Thus, it was
difficult to assess analytically the total significance level for
the conclusion ‘the influence k — j is present’ due to
the necessity of a multiple test correction. Therefore, we
assessed the statistical significance by surrogate data tests. To
this end, we compared the value of maxo< a<ts Pl (A
for the observed data with the 0.95-quantile PI, ; of the
distribution of such a quantity obtained from an ensemble
of AAFT (amplitude adjusted Fourier transform) surrogates
[77]. These surrogates correspond to the null hypothesis of
uncoupled linear autoregressive processes passed through a
static monotonic transformation. Thus, for each tremor epoch
we can reject the null hypothesis at the total significance level
of 0.05.

We applied the linear and nonlinear Granger causality
analysis to broadband LFP signals and broadband
accelerometer signals. Prior to the Granger analysis the only
preprocessing was to remove low-frequency trends (below
2 Hz) and power line artefacts in LFP as well as accelerometer
signals with Fourier transform-based rectangular filters. LFP
oscillations at frequencies below 2 Hz might be due to brain
pulsations (i.e. mechanical brain oscillations that are caused
by blood pulsations and are, hence, synchronized to the heart
beat) which may induce modulations of the electrical potentials
at the electrode—brain interface [78].

2.3. Coupling directionality estimation with phase dynamics
modelling

CCF is applied to the entire signals (comprising amplitudes
and phases). In contrast, to detect only the phase
interdependence between the signals, one uses the time-shifted
phase synchronization index [79]: p(A) = |{(exp(j(¢:(¢) —
¢ (t+A))))|, where angle brackets denote temporal averaging
(a similar index was used to study phase synchronization
between Parkinsonian tremor of both hands [80]). To calculate
it, we performed a band-pass filtering of x; (¢) and x;(¢) around
the tremor frequency (e.g. 3—7 Hz in figure 1(e), (f)) with a
rectangular filter and applied the Hilbert transform [81] to
extract the phases ¢,(¢r) and ¢,(¢r). The computed phase
values over the intervals of ten basic oscillation periods at
each edge of a tremor epoch were ignored in the further
analysis as recommended in [82] to avoid edge effects. Our
results are stable against considerable variations of the band
edges and hardly change if the lower cut-off frequency lies
between 2 Hz (to filter out low-frequency components of the
LFP) and fr — 1 Hz, where fr is the tremor frequency. The
higher cut-off frequency should be between fr + 1 Hz and
2fr — 1 Hz.

The directional coupling characteristics were obtained
with the phase dynamics modelling technique which resembles
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the Granger causality applied to the phases [52]. As a model
we use coupled phase oscillators:

d1t+71) — 1) = Filp1(8), p2(t — Ay, a1] + &1(2),
Dt + 1) — $a(t) = Fa[da(1), d1(t — A2), ax] + &2(1),

where 7 is a fixed time interval equal to the basic period
of oscillations, ¢;(t) are zero-mean noises, F'; trigonometric
polynomials of the third order [52, 53], a; are vectors of their
coefficients and A ; are trial time delays [83]. At each A the
estimates of a; are obtained via the least-squares routine, i.e.
by searching for the minimal mean squared error oj.z(A i) =
ming, (6, + T) — ¢;(1) — Filg; (), ¢t — A)). ;1)
Thereby, we get the estimate @;(A ;), i.e. the model function
Fi(¢;, ¢r, a;) for each A;. Coupling strength and time delay
estimates are found from the dependence &; (A ;) according to
the following idea.

If the ‘true’ equations including the ‘true’ coefficients
ajue Were known a priori, then the ‘strengths’ ci_,;

of the influences k — j could be defined as ¢} j

o ST ST OF (). b ajme) /000)? dpy dgpy [52, 53]. To
assess the coupling strength, we compared ¢;_, ; to the mean
phase increment ¢; (t + T) — ¢; () ~ 27 (t ~ a mean period).
For weak coupling (c;—.; <« 2m) the contribution of the
coupling terms to the phase increment is much smaller than
the contribution of the basic frequency term.

The estimators y;_, ; for c,f_> I expressed via the estimates
a; [53], are provided with the 95% confidence bands which
read (yx—;—1.60y,_ ., vk~ ;+1.80y_,) where the standard
deviations oy, are calculated from the same time series.
Since y;_.; are unbiased estimates of ¢} ; under mild

3

conditions, they can be negative although 7 ; = 0. Only
positive values of y;_, ; can indicate the presence of coupling.
The value of 1.60y,_; is a 0.975-quantile for the distribution
of the estimator y;_.;. The pointwise significance level
for the conclusion yx_,;(A;) > 0 at a certain specific A;
is equal to 0.025. When the range of trial time delays
A; covers approximately five basic periods, considerations
like those given in [61] and numerical tests show that the
presence of the influence k — j can be inferred at a total
significance level 0.05 if the following conditions are fulfilled:
(i) vk—j(A;) — 1.60y,_,(A;) > 0 for a range of trial time
delays A; covering at least half a basic period, (ii) the phase
synchronization index p for the corresponding time delays has
to be below approximately 0.5 and (iii) the time series must
not be shorter than 30-50 periods [84]. More precisely, in
this case we reject the null hypothesis of uncoupled phase
oscillators with Gaussian white noises «;.

In addition, the location of the maximum of y;_, ;(A;)
provides an estimate of the time delay. A small 7t in
equation (3) (e.g. T = Ar) would be good for an accurate time
delay estimation [83]. But the analytic confidence bands for
Vk—j [53] are reliable only if the low-order polynomials used
capture the phase dynamics. This may be violated for small
T (i.e. ‘fast’ phase dynamics) and lead to a spurious coupling
detection. Here, we preferred to ensure higher reliability of
the coupling detection (tr & a mean period) at the cost of
possibly lower accuracy in the A; estimation. A; can also
be estimated by minimizing the model error akz_) j(A ;) [83].

Yi—j is proportional to a weighted sum of squared coefficients
aj(Aj). An increase in the values of the coefficients &;
minimizes a]? and maximizes y;_. ;. In our data maxima of
Yk— (A ;) and minima of ojz(A ;) nearly coincided.

A classical field of application of the phase dynamics
modelling is the analysis of pairs of oscillatory signals
generated by two self-sustained oscillators (see e.g.
[52, 53, 83]). However, also in the case of noise-induced
oscillations the phase dynamics modelling provides reliable
results [72]. Due to its dynamical properties, the subcortical
(and even cortical) oscillation in Parkinsonian patients is often
considered as a self-sustained oscillator (see e.g. [85, 86]).
However, mediated by its central pattern generators the spinal
cord is able to produce self-sustained rhythmic neural and
muscular activity [87]. Accordingly, in a first approximation
even the peripheral tremor might be considered as a self-
sustained oscillator.

3. Results

3.1. Single epoch analysis

3.1.1. Spectral analysis. We simultaneously measured the
LFP of the STN (patients 1, 3 and 4) or the VIM (patient
2) and the accelerometer signal of the hand tremor from four
patients with Parkinsonian resting tremor. Patients 1 and 2
were recorded intraoperatively after overnight withdrawal of
antiparkinsonian medication, whereas patients 3 and 4 were
externalized and measured on the third postoperative day in an
ON medication state (see section 2).

During epochs of high-amplitude resting tremor,
accelerometer signals displayed a sharp peak in the power
spectrum (figure 1(c)) which was typically associated with
a corresponding spectral peak in the LFP recorded from the
depth electrode contralateral to (i.e. at the opposite side of)
the tremor (figure 1(d)) (see [10, 9, 6, 8]). Parkinsonian
resting tremor is highly regular or ‘phase coherent’, as
verified by a determination of phase diffusion intensity of the
accelerometer signal. To obtain a rough estimate of the phase
diffusion intensity, we determined the coefficient of variation
of the instantaneous period of the accelerometer signal band-
pass filtered around the tremor frequency (e.g. from 3 to
7Hz as shown in figure 1(c)): k = (T;)~'V((T; — (T;))?),
where angular brackets denote averaging over time and T7;
are the intervals between successive maxima of the signal.
In the ensemble of 48 tremor epochs considered in this
study, we obtained k typically in the range of 0.01-0.4,
predominantly 0.05-0.1. For the highly regular tremor epochs
(the smallest values of k) a very appropriate technique for the
directionality analysis is the phase dynamics approach [70],
whereas for less regular epochs the Granger causality may be
superior [71].

3.1.2.  Phase dynamics modelling. The results for the
coupling between the LFP and the tremor of the contralateral
hand during a single typical tremor epoch from patient 1 are
shown in figure 2. We revealed a significant interdependence
between the signals even with the cross-correlation function
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(figure 1(g)). The mean phase coherence p = 0.48 at A =
385 ms (figure 1(h)) which is not too high so that the phase
dynamics modelling is applicable. LFP and accelerometer
signals were both band-pass filtered around the tremor
frequency prior to performing the phase dynamics modelling
analysis (see also section 4). The phase dynamics modelling
reveals a significant influence in both directions (figure 2). The
contralateral tremor—> brain influence is very pronounced and
reaches its peak value at zero trial delay: y;_,(0) = 0.26. As
we conclude below, the time delay for this direction is at most
several dozens of milliseconds. The brain— tremor influence
is also highly significant: y,_,;(335) = 0.1. For this direction,
the time delay A; = 335 ms is pronounced and considerably
different from zero.

The analytical pointwise 0.975-quantiles are indicated
by the red lines in figure 2. The peak values of y;_.; in
figure 2 obtained from the real data are much greater.
According to the above-mentioned analytical test, y;_,; are
significant at the total significance level of p < 0.05.

3.1.3. Granger causality. Granger causality analysis was
applied to broadband LFP and accelerometer signals (see also
section 4). Granger causality estimates for the same epoch
of spontaneous tremor are presented in figure 3. Nonlinear
Granger causality estimation (figure 3(a), (b)) gives results

similar to the phase dynamics analysis in the sense that it
also detects a bidirectional coupling. In contrast, linear
Granger causality reveals only the ‘tremor — brain’ influence
(figure 3(c), (d)). Such a combination of results is typical as
shown below for many spontaneous tremor epochs. However,
the peak values of P lpminstremor in figure 3(a), (b) are
observed at values of the trial time delay which are different
from the peaks of Vprain—stremor- Moreover, the time delay A
corresponding to the peak values of P Ipyin— tremor CONsiderably
varies across different tremor epochs in contrast to a peak
time delay for Yprain—swemor Which is comparatively stable (see
below).

3.2. Ensemble of tremor epochs

In all patients epochs with tremor occurred intermittently. To
reveal reliable coupling estimates with the phase dynamics
modelling, we had to select tremor epochs of sufficient length.
However, due to the nonstationarity of the data, the time series
should not be too long. Tremor epochs of a length not shorter
than 70 basic periods turned out to be the optimal trade-off.
In contrast, the estimation results in shorter epochs strongly
fluctuate, so that the shape of the curves y;_, (A ;) may vary
considerably. This can be interpreted as the effect of noise,
which is reduced when longer epochs are used.
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Figure 4. Coupling characteristics obtained from the phase dynamics modelling and averaged over many epochs for each patient. Error bars
indicate 95% confidence intervals obtained via averaging of the analytical confidence intervals. (a), (b) Patient 1 (basic tremor frequency is
5 Hz, filter frequency band used to calculate the phases is 3—7 Hz, number of epochs is 12, duration of epochs ranges from 16.5 s to 83.5 s).
(c), (d) Patient 2 (4 Hz, 2-6 Hz, 14, 17.5-45.0 5). (e), (f) Patient 3 (5 Hz, 3-7 Hz, 8, 15.0-55.0 s). (g), (h) Patient 4 (5 Hz, 3-6 Hz, 14,

20.0-60.0 s).

3.2.1. Phase dynamics modelling. Figure 1 shows one of the
long epochs, consisting of 180 periods. That interval exhibits
a typical directionality pattern (figure 2) reproduced for a high
percentage of epochs. We observed a statistically significant
brain— tremor coupling in 65% of all epochs (in 8 out of 12
epochs in patient 1, in 10 out of 14 epochs in patient 2, in
6 out of 8 epochs in patient 3 and in 7 out of 14 epochs in
patient 4). Conversely, in 35% of all epochs, a significant
brain— tremor influence was not detected. Furthermore, we
revealed a statistically significant tremor— brain coupling in
54% of all epochs (in 8 out of 12 epochs in patient 1, in 8 out of
14 epochs in patient 2, in 4 out of 8 epochs in patient 3 and in
6 out of 14 epochs in patient 4). For every patient we averaged
the directionality results across all epochs, respectively
(figure 4). In this way for all four patients we obtained
consistent results, confirming the coupling pattern from
figure 2. We obtained a bi-directional coupling at time delays
close to 0 for the contralateral tremor— brain direction and a
delay of about 1-2 mean periods of the tremor (200—400 ms)

for the brain— contralateral tremor direction with average
values y»_,1 = 0.03-0.05 and y;_,, = 0.20-0.25.

Figure 5 illustrates the combined results of the statistical
significance tests for all epochs analyzed. For each epoch we
show the value of yx_, ;, maximized over the range of trial
time delays (0-500 ms), divided by the respective pointwise
0.975-quantile y;", ; (see figure 2 for an illustration). If
the ratio exceeds unity, then the presence of the respective
driving is inferred at the total significance level of p <
0.05 (it appears that the other requirements mentioned in
section 2.3 are fulfilled). Figure 5 shows that significant
‘brain — tremor’ influence is detected in approximately 65%
of epochs. Despite the strength of the opposite influence being
greater, the tremor— brain influence itself is revealed in only
50% of epochs. This is because the phase dynamics of the
brain signals is much more ‘noisy’ and, hence, prevents the
confident unmasking of the ‘tremor — brain’ impact. Yet,
the percentage of epochs exhibiting statistically significant
couplings in both directions is quite high (much greater
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Figure 6. Granger causality estimation for an ensemble of tremor epochs of the four patients. The ratio of maximal PI to the AAFT

surrogates based on 0.95-quantile PI;"

. is shown versus the number of the epoch. Different symbols correspond to the four different

patients. The dashed lines indicate the unity levels. Ratios higher than unity correspond to a coupling detection at a total significance level
of p < 0.05. Nonlinear Granger causality [(a), (b)]: d; = 3, daq,j = 1, K; = 3. Linear Granger causality [(c), (d)]: d; = 50, daqg,; = 10,
K; = 1. (a), (c) Estimated brain— tremor influence. (b), (d) Estimated tremor— brain influence.

than the 5% of random erroneous conclusions expected for
uncoupled processes).

3.2.2. Granger causality. Granger causality estimation was
performed for all of the above-mentioned tremor epochs.
Remarkably, significant bidirectional coupling (e.g. figure 3)
was detected even more often with the nonlinear Granger
causality than with the phase dynamics analysis. In figure 6 we
plot PIs maximized over the range of trial delays divided by the
pointwise 0.95-quantile P/}’ ; obtained from an ensemble of
100 AAFT-surrogate time series. If the ratio is greater than 1,
we infer the presence of coupling at the pointwise significance
level p < 0.05. Nonlinear Granger causality estimations
allow us to detect ‘brain — tremor’ driving in 85% of epochs
and the opposite coupling in 96% of epochs. In contrast, linear
Granger causality can detect coupling much less reliably: 26%
for the ‘brain — tremor’ direction and 47% for the ‘tremor —
brain’ direction. Thus, the nonlinear techniques are much
more sensitive than the linear one and both of them provide
consistent results about the presence of bidirectional coupling.

However, in contrast to the phase dynamics modelling,
the plots of PIs versus trial time delay exhibit peaks at
different locations for different tremor epochs. Therefore,
the averaged plots of PIs are not informative since they do
not exhibit clear peaks (not shown). Thus, no ‘stable’ time

delay estimate can be claimed with confidence. This result
can be interpreted taking into account that the phase dynamics
modelling concentrates on the specific frequency band around
the tremor frequency where one could expect a unique time
delay. The Granger causality estimation is applied to the
original signals with only the slow component (frequencies
below 2 Hz) removed. Thus, Granger causality analysis relates
to a wide range of frequencies. Since one can naturally expect
different time delays for different frequency bands, a clear
time delay cannot be observed from such an integral analysis.
Still, some signs of the time delays consistent with the phase
dynamics modelling results can be seen in the histograms of
figure 7. These histograms were constructed by selecting for
each epoch the five largest maxima on the plot ‘PI versus
trial time delay’ exceeding the total 0.95-quantile P/, j(eg
figure 3) and considering their locations as possible time delay
estimates. Thus, in total we obtained about 200 values of
the time delay estimate for each of the two directions. The
resulting histograms shown in figure 7 allow us to detect
accumulation points of the time delays at about 0 and at about
300 ms time delays in the ‘brain — tremor’ direction and at
50 ms time delay in the ‘tremor — brain’ direction.

3.2.3. Spectral characteristics. A central aspect of our study
is to clarify the efferent function of the LFP oscillations. The
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Figure 7. Histograms of the time delay estimates obtained with the nonlinear Granger causality estimation (d; = 3, dyaq,; = 1, K; = 3) of

all 48 tremor epochs of the four patients. (a) Brain— tremor influence.

Table 1. Spectral characteristics of the LFP recordings for the
tremor epochs where the brain— tremor influence is detected with
both the phase dynamics modelling and the nonlinear Granger
causality analysis. (P,) denotes the mean spectral power in theta
band (3-7.5 Hz) of a single tremor epoch; (P,) and (Pg) denote the
corresponding quantities in the alpha band (8—13 Hz) and in the beta
band (14-30 Hz). We present the statistical characteristics of the
power ratios for the ensembles of epochs by providing mean value
=+ standard deviation; minimal value; maximal value.

(Po)/{Pa) (Po)/{Pp)

31+12;1.9;5.0 6.1 =£3.1;3.9; 12.1

Patient no

1 (7 epochs)

2 (8 epochs) 4.54+2.2;2.3;9.3 9.34+3.9;39;169
3 (4epochs) 8.0+5.7;3.7;16.3  29.6 +20.7; 8.0; 56.5
4 (7Tepochs) 59+54;3.1;18.1 23.24+31.2;7.0;91.2

phase modelling analysis revealed an efferent contribution of
the theta band oscillations in tremor generation. On the other
hand, the nonlinear Granger causality analysis showed the
efferent influence of the broadband LFP at even higher levels
of sensitivity. Hence, LFP rhythms other than theta might play
a tremor generating role, too.

To assess whether oscillations at higher frequencies
than theta might contribute to tremor generation, we
determined the spectral LFP characteristics of the tremor
epochs where the brain—tremor influence was detected
with both the phase dynamics modelling and the nonlinear
Granger causality analysis (table 1) and compared it with
the spectral characteristics of the tremor epochs where the
brain— tremor influence was detected only with the nonlinear
Granger causality, but not with the phase dynamics modelling
(table 2).

Apart from theta band (3-7.5 Hz) activity we observed
relevant frequency components in the alpha band (8-13 Hz)
and beta band (14-30 Hz), but no relevant peaks in the gamma
band (> 60Hz). Accordingly, in the epochs specified above
we analyzed the mean spectral power in the theta band (Py),
the alpha band (P,) and the beta band (Pg). We computed
mean, standard deviation, minimal and maximal value of the
ratios (Py)/(P,) and (Py)/{Ppg) (tables 1 and 2).

The overall leading frequency component was in the theta
band (tables 1 and 2). However, in all patients we found

(b) Tremor— brain influence.

Table 2. Spectral characteristics of the LFP recordings for the
tremor epochs where the brain— tremor influence is detected with
the nonlinear Granger causality, but not with the phase dynamics
modelling. Same format and notation as in table 1.

(Po)/(Pa) (Po)/(Pg)

32+£0.5;25;3.7 7.24+3.5;3.6;11.9
33£27;14;64 6.0+£47;3.1;11.4
74+£32;4.0;11.8 21.1+£9.2;9.0;28.7
46+29;18;10.7 10.5=+8.4;29;284

Patient no

1 (4 epochs)
2 (3 epochs)
3 (4 epochs)
4 (7 epochs)

additional activity in the alpha and beta bands (tables 1 and 2).
Beta band activity was stronger, i.e. (Py)/(Pg) was smaller,
in patients 1 and 2, who were OFF medication, as opposed to
patients 3 and 4, who were ON medication (tables 1 and 2).

In the context of tremor generation it is interesting that the
LFP tends to have a stronger beta band activity in epochs where
the LFP— tremor influence is detected with nonlinear Granger
causality analysis only (table 2). However, the limited number
of epochs does not allow for a statistically solid judgement.
Nevertheless, this finding indicates that—in addition to theta
band activity—beta band activity might be involved in tremor
generation.

4. Discussion

Our investigation of the dynamical generation of Parkinsonian
resting tremor in an ensemble of 48 tremor epochs in four
PD patients revealed a bidirectional coupling between LFP
oscillations in the STN (in three patients) or the VIM (one
patient) and the tremor. The brain—tremor driving was
reliably detected only with the nonlinear techniques, the
phase dynamics modelling and the nonlinear Granger causality
analysis. Both nonlinear techniques revealed similar results,
but still there were differences. On the one hand, the nonlinear
Granger causality estimation (with an appropriately chosen
model structure) enables us to reveal this efferent driving for
almost all tremor epochs of sufficient length, while the phase
dynamics modelling reveals this driving in 65% of epochs.
On the other hand, the phase dynamics modelling consistently
reveals a delay time of 1-2 mean tremor periods (200-400 ms),



J. Neural Eng. 7 (2010) 016009

P Tass et al

while the Granger causality does not detect the delay time
reliably. However, slight signs of the time delay presence
can be detected by the Granger causality estimates as well
(figure 7).

4.1. Data analysis

A numerical analysis of model systems showed that the time
resolution of the phase modelling technique is limited [72].
Worst case errors of the time delay estimates may be as
high as half a basic period of the oscillation. This has
to be taken into account for the interpretation of the time
delay estimates revealed with the phase modelling technique
(figure 4). Though limited in precision, our delay estimates
show that the delay for the brain—tremor driving is
considerably greater than that for the reverse direction. In
addition, the delay estimate for the tremor— brain driving
is close to zero, i.e. small compared to its worst case error.
The median nerve sensory evoked potential intraoperatively
recorded from DBS leads in VIM or STN in PD patients
had a peak latency at 17.3 ms and 18.7 ms, respectively [88].
Hence, the neural transmission time (approx. 10-20ms) is
the candidate most likely to be the physiological correlate
of the small delay estimate for the tremor— brain influence.
By contrast, the long brain—tremor delay indicates a more
complex mechanism compared to a simple efferent neural
transmission. Accordingly, in a way our results provide a
new variant of the old servo loop oscillation concept, where
feedback and feedforward information are acting through
direct transmission lines [§9]. Rather, our findings suggest that
the synchronized subcortical oscillations feed into a multistage
re-entrant network, most likely comprising cortico-subcortical
and spinal reflex loops (see e.g. [90, 91]).

The phase modelling analysis and the (linear and
nonlinear) Granger analysis performed in this study differ in
two respects.

e Amplitude dynamics versus phase dynamics: both
linear and nonlinear Granger causality analysis take
into account amplitudes and phases of the signals,
whereas the phase modelling technique selectively studies
the phase dynamics only (i.e. without consideration
of the amplitude dynamics). The motivation to
study the phase dynamics selectively comes from the
observation that the coordination of phases and, in
particular, phase synchronization has been shown to
be a fundamental mechanism for motor control under
healthy conditions in both animals and humans [92—
94, 86]. Furthermore, a magnetoencephalography study
revealed phase synchronization between brain activity and
muscular activity [85].

Narrow-band versus broad-band signals: the phase
modelling technique requires that the phases of the
signals under study are determined in a well-defined way.
Consequently, one has to perform a band-pass filtering
in order to extract the signal belonging to a prominent
peak in the frequency spectrum (for review see [82]). In
contrast, we here apply the (linear and nonlinear) Granger
causality analysis to broadband signals. To this end, in
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both LFP and accelerometer signals we only removed low-
frequency trends (below 2 Hz) and power line artefacts.
The motivation to go for a broadband analysis is twofold.
(i) In PD patients coherence between single units and
tremor has predominantly been found in the tremor
frequency range, but, nevertheless, also at frequencies
in the beta band (see below) [35]. In fact, it is not yet
resolved to what extent beta band activity contributes to
tremor (see, e.g., [39, 22, 95, 96]). As demonstrated in
PD patients, different LFP frequency bands from STN
may have different bidirectional interaction with mesial
and lateral cortical areas (see below) [91]. However,
this does not imply that the different frequency bands,
especially theta and beta bands, are completely separate
from a dynamical point of view and fulfill a superposition
assumption. We wanted to avoid such a superposition
assumption since it is not proven. Moreover, from the
standpoint of oscillator theory, in complex systems such a
superposition assumption can certainly not be considered
as generic. (ii) Applying the Granger causality analysis to
band-pass filtered signals is per se not trivial. For instance,
after band-pass filtering, a signal x; may get rather
smooth and, hence, allow for a precise one-step-ahead
prediction that may hardly be topped by additionally
taking into account signal x; (kK # j). Accordingly,
the band-pass filtering may result in an artificially high
univariate prediction baseline which may hinder reliable
and sensitive detection of directional coupling.

The sensitivity of the broadband Granger analysis is
better than that of the theta band phase modelling technique.
Accordingly, to assess the possible impact of frequency bands
other than theta, we analyzed the spectral composition of
the LFPs. Apart from theta band activity we also found
relevant alpha and beta band components (tables 1 and 2).
In contrast, in the selected resting epochs (without active and
passive movements) we did not find any relevant peaks in
the gamma frequency band (>60Hz). This is accordance
with the notion that gamma band activity is considered to be
prokinetic in nature [6] and emerges, e.g., before voluntary
movements [97]. Interestingly, there is a tendency for tremor
epochs for which the LFP— tremor driving is detected with
the nonlinear Granger analysis only (and not with the phase
modelling technique) to display stronger beta band activity
(tables 1 and 2). However, due to the limited number of epochs
a statistically solid judgment cannot be derived. Nevertheless,
this finding indicates that—apart from theta band activity—
beta band activity might additionally be involved in tremor
generation. Such an efferent role of beta oscillations is
also compatible with (but not proven by) observations in
PD patients showing that 52.4% of the STN single units are
coherent with tremor in the theta band, whereas 6.9% of the
STN single units are coherent with tremor in the beta band (15—
30Hz) [35]. Accordingly, beta band LFP oscillations might
contribute to tremor generation, without playing a dominant
role. Such a notion is compatible with the observation that a
levodopa-induced decrease of beta band LFP activity causes
an improvement of akinesia and rigidity, but not a decrease of
tremor [25].
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The phase modelling technique applied to narrow-band
(theta) oscillations reveals consistent estimates of the delay
times (figure 4). In contrast, the delay estimation with the
nonlinear Granger causality analysis applied to broadband
signals is not reliable (figure 7). We may speculate on two
possible reasons behind the poor delay estimation obtained
with the nonlinear Granger analysis. On the one hand, this may
be due to features inherent to the method. On the other hand,
this may reflect the complex pathophysiology, in that neuronal
activity in different frequency bands may differentially feed
into different loops with different delays (see e.g. [90, 91]),
which might hamper a precise delay estimation.

LFP signals recorded from STN in PD patients led EEG
signals recorded from sensors over the mesial and lateral cortex
[91]. The pattern of the bidirectional interactions between the
mesial cortex and STN on the one hand and the lateral cortex
and STN on the other hand does not significantly differ in
drug ON versus drug OFF states in both the sub-beta band
(3-13Hz) and beta band (14-35Hz). Only in the gamma
band (65-90Hz) the bidirectional cortex/STN interactions
increased in the drug ON condition. Concerning medication
ON/OFF-induced changes, it should be noted that in our study
in patients 1 and 2 intraoperative recordings were performed
OFF medication, whereas in patients 3 and 4 recordings were
performed on the third postoperative day ON medication. In
accordance with previous studies [25], the beta band activity
in the patients OFF medication was stronger (relative to the
theta band activity) than that in the ON medication state. The
target in patient 2 was the VIM, whereas in patients 1, 3 and
4 leads were implanted in the STN. Accordingly, our findings
indicate that the bidirectional driving between STN and tremor
is present both ON and OFF drugs.

The tremor— brain influence could be detected with any
of the techniques used in this study, even with the linear
Granger analysis. Remarkably, the brain—tremor driving
can only be reliably detected with the nonlinear data analysis
methods, the phase modelling technique and the nonlinear
Granger analysis. In accordance with our results a study on
the relationship between tremor and electroencephalographic
(EEG) recordings with partial directed coherence (a linear
data analysis technique) revealed only a proprioceptive impact
of the electromyographic (EMG) signal on the EEG signals
(channels C4 and PZA, both displaying strong correlation
with the EMG at the tremor frequency), but no brain— tremor
driving [75].

In a numerical study on coupled neuron models the
phase modelling approach has been compared to the partial
directed coherence [71]. As yet, the only comparative study
on biomedical signals is an investigation of epileptic EEG
recordings performed with the phase dynamics modelling
technique and the state space nearest-neighbour characteristics
[49].

4.2. Pathophysiology

In PD patients with resting tremor Wang and co-workers
studied the causal interdependence between EMG signals and
corresponding LFP signals recorded through depth electrodes
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implanted in the STN [98]. The directionality analysis
was performed with linear adaptive Granger autoregressive
modelling, however, without testing for statistical significance.
During persistent tremor they revealed a strong proprioceptive
(tremor—brain) influence, whereas during episodes of
transient tremor the interrelationship was bidirectional or
alternatively varied [98]. The validity of this study is
limited since no confidence intervals or significance levels
were computed and, hence, the statistical relevance of the
computed values remains an open issue. Furthermore, related
to this aspect, it remains unclear how to distinguish between
fluctuations of estimates and a reliable detection of coupling
characteristics when performing the analysis in a running
window of only 3 s length.

In one PD patient Florin and co-workers [99] applied
linear Granger causality to the tremor EMG and the LFP
recorded with a macroelectrode placed in the STN. They
reported that for three pathways the LFP was purely efferent,
and for one pathway there was a bidirectional relationship
between LFP and tremor. It is difficult to appreciate these
findings appropriately since details and parameters of the
analysis were not reported.

A number of studies have been devoted to tremor-related
single unit activity in human PD patients. Single unit
activity in the ventrolateral thalamus has been intensively
studied during stereotactic surgery [26-29, 100-104]. The
nucleus ventralis caudalis (Vc) mainly contains sensory cells
(responding to sensory stimulation). The motor thalamus,
located anterior to the V¢, contains the ventral intermediate
nucleus (VIM) and the ventral oral posterior nucleus (VOP).
The pallido-thalamic fibres terminate in the VOP, whereas
the cerebello-thalamic fibres terminate in the VIM [105, 106].
VIM and VOP contain voluntary cells (active during voluntary
movements only) and combined cells (active during movement
and responding to somatosensory stimulation). Tremor cells
have been found among the three cell types [28, 29]. 50%
of the combined cells, 22% of the voluntary cells and 53%
of the sensory cells were tremor cells [103]. Combined and
voluntary cells typically have a phase advance relative to the
peripheral tremor burst, whereas the sensory cells typically
exhibit a phase lag [28, 29]. Accordingly, it has been suggested
that the combined and voluntary cells cause the tremor
[28, 29]. However, in general one has to be highly cautious
when identifying phase lags with causal relationships.

The results of a detailed analysis of the inter-spike
intervals within the tremor-related thalamic bursts were not
consistent with two specific tremor generation hypotheses
[104]. (i) The thalamus-GPi-pacemaker hypothesis [107]
posits a central generator consisting of overactive
neurons in the internal segment of the globus pallidus
inhibiting/hyperpolarizing the thalamic neurons [107], (ii) the
oscillation of an unstable long loop reflex arc transmitting
activity from muscle stretch receptors to thalamus, motor
cortex, and back to the muscles [108, 109].

Microrecordings have revealed tremor-related 3-7 Hz
bursting of oscillatory single-cell activity in STN of human
PD patients [33, 32, 110, 111]. In a study devoted to the
spectral coherence between spike activity of STN neurons and
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tremor activity, significant coherence was found in 52.4% of
the neurons at the tremor frequency and in 6.9% of the neurons
in the beta band [35]. The tremor-coherent STN spiking
activity was extensively found all over the STN, preferentially
in its dorsal parts (70.8—-88.9%) as opposed to its ventral parts
(25.0-48.0%) [35]. These microrecording studies demonstrate
that the tremor rhythm can be found in the STN. However,
based on these findings it cannot be judged whether the tremor
rhythm in the STN is afferent, i.e. driven by a proprioceptive
feedback through the indirect pathway via the basal ganglia
or through a direct projection from the cortex, or whether the
tremor rhythm in the STN is efferent, i.e. generated within the
basal ganglia and driving the tremor (for review see [5]).

There are two hypotheses on mechanisms underlying
Parkinsonian symptoms involving abnormal synchronized
STN activity.

e The STN-GPe-pacemaker hypothesis [112]: in an in vitro
model comprising cortex, striatum, STN and external
pallidum (GPe), it has been shown that STN and GPe
may constitute a pacemaker at frequencies between 0.4 Hz
and 1.8 Hz [112]. To what extent this animal in vitro
model applies to human PD remains unclear. On the one
hand, the frequencies are below the typical frequencies
encountered in PD, which might be due to the fact
that the in vitro model is a reduced model compared
to the situation in an entire brain, which additionally
contains loops and projection systems (e.g., cortico-
STN and cerebello-thalamo-cortical projections) that may
modulate the frequency of basal ganglia rhythms. On
the other hand, oscillatory single unit activity has only
infrequently been found in the GPe of human PD patients
[113].

The loss of segregation hypothesis [114, 115, 20, 116,
8] is based on the in vivo MPTP primate model of PD
[8, 20, 115]. In the MPTP monkey it has been shown
that neurons in different regions of the basal ganglia fire
coherently, whereas in the healthy monkey they fire in
an uncorrelated manner [8, 115]. Neuronal oscillatory
activity is synchronized not only within single basal
ganglia nuclei, but also between different nuclei [21, 95].
Not a focal generator, but the whole basal ganglia network
generates neural oscillations and synchronization [8]. The
parallel basal ganglia loops lose their ability to separately
process information and join into a widely distributed
coherent action. However, as yet only akinesia and
rigidity have been tightly attributed to the synchronous
LFP oscillations in the basal ganglia network [7, 8]. Since
Parkinsonian tremor is not strictly correlated with the LFP
oscillations, it has been proposed that the tremor is not
(directly) generated by the synchronized basal ganglia
oscillations, but might, e.g., emerge as a downstream
compensatory mechanism [8].

Our results show that there is a bidirectional coupling
between the tremor and LFP oscillations (in the tremor
frequency range as well as broadband) in both STN and
VIM. Concerning tremor generation, the theta band LFP
oscillations definitely play an efferent role, while the beta band
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LFP oscillations might additionally contribute. Our findings
support the loss of segregation hypothesis. In fact, in some
sense our results round the loss of generation hypothesis out by
demonstrating that not only akinesia and rigidity [7, 8], but also
tremor is generated by basal ganglia and thalamic oscillations.
For this study we have used different data analysis methods that
are in several respects complementary. Their results confirm
each other to a significant extent.

LFP oscillations measured by depth electrodes are
generated by the synchronized current changes in a large
number of neurons (for review see [7]). Our results
show that the LFP oscillations in STN and VIM drive
the tremor. Accordingly, this supports an approach which
aims at specifically counteracting tremor by desynchronizing
the abnormally synchronized subcortical populations of
oscillatory neurons [117], e.g. with coordinated reset
stimulation [118]. The classical targets STN and VIM may
serve as candidate target areas for desynchronizing deep brain
stimulation. By contrast, up to now permanent deep brain
stimulation at frequencies greater than 100Hz is applied
to suppress Parkinsonian symptoms [119]. This type of
stimulation strongly alters the affected neuronal population,
e.g. by completely blocking the neuronal firing [120, 121].

5. Conclusions

We reveal a bidirectional interaction between the tremor
and the LFP oscillations in VIM or STN in the tremor
frequency range as well as in a broad frequency band (> 2 Hz).
Intriguingly, the tremor is significantly influenced by LFP
oscillations in STN and VIM. This efferent (brain— tremor)
influence is a complex, nonlinear mechanism, which can only
be reliably detected with the two nonlinear techniques. By
contrast, the afferent (tremor— brain) driving is detected with
any of the techniques including the linear Granger analysis.
However, the latter is by far the least sensitive method. With
the phase dynamics modelling (applied to the tremor frequency
band), we consistently reveal a long delay in the order of 1—
2 mean tremor periods for the efferent driving and a small
delay that is compatible with the neural transmission time, for
the afferent (proprioceptive) feedback. In contrast, Granger
causality analysis (applied to broadband signals) does not lead
to reliable estimates of the delay times. Rather it only provides
statistical approximations (by detecting accumulation points
of delay estimates in an ensemble of tremor epochs), which
correspond to the values obtained by the phase modelling
approach. However, nonlinear Granger causality is even more
sensitive for the detection of the efferent influence than the
phase dynamics modelling. A detailed comparison between
the theta band phase modelling analysis, the broadband
nonlinear Granger causality analysis, and a spectral analysis
shows that definitely the theta band LFP oscillations and
possibly also the beta band LFP oscillations exert an efferent
drive on the tremor.
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