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Detection of couplings in ensembles of stochastic oscillators
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The problem of detection and quantitative characterization of directional couplings in an ensemble of noisy

oscillators from a time series is addressed. We suggest estimators for the strengths of couplings which are
based on modeling the observed oscillations with a set of stochastic phase oscillators and easily interpreted
from a physical viewpoint. Moreover, we present an analytic formula for a statistical significance level allow-
ing to reveal an architecture of couplings reliably from a relatively short time series. The technique applies to
weakly coupled nonsynchronized oscillators. It is introduced for oscillators with close basic frequencies but
can be readily generalized to the case of arbitrary frequencies. Efficiency of the technique is demonstrated in

numerical experiments.
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I. INTRODUCTION

Couplings between elements determine to a significant
extent the entire dynamics in ensembles of oscillatory sys-
tems. Multiple works are devoted to spatial and temporal
patterns arising under various coupling architectures and
strengths, in particular, to different kinds of synchronization
[1-6]. In analysis of experimental data an inverse problem is
ubiquitous: to restore couplings from a time series. Apart
from diagnostics of synchronization [7-14], much attention
is paid during the last decade to the detection of directional
couplings or causal influences [15-19] and to the distinction
between “direct” and “mediated” couplings [20]. The latter
problems are important in different fields of natural science
including neurophysiology [21-28], climatology [29-31],
electrochemistry [32,33], etc.

To reveal causal influences between two processes, one
uses such concepts and approaches as Granger causality
[19,34], information-theoretic characteristics [35-38], state
space analysis [39-41], double-wavelet analysis [42,43], and
phase dynamics modeling [15,16,18]. The latter approach re-
lies on ideas from the nonlinear theory of oscillations and
appears the most sensitive one for nonlinear systems with a
relatively stable oscillation period [44,45]. Estimators of
couplings in ensembles of oscillators based on phase dynam-
ics modeling have been suggested in [33,46] where the prob-
lems are formulated and solved for deterministic processes.
In Ref. [46] one requires close individual frequencies of 0s-
cillators and possibility to manipulate them. Coupling
strengths are determined from a set of time series corre-
sponding to different strictly synchronous regimes. In Ref.
[33] estimators are calculated from a single time series but a
coupling architecture must be simple and a priori known
(e.g., all-to-all) while generalizations are practically difficult
since the number of estimated quantities should remain
small.

In this paper, we suggest a technique to determine an
architecture and strengths of couplings which is also based
on phase dynamics modeling but applies to more general
situations:

(i) Oscillators may be stochastic in contrast to [33,46] that
is often crucial for practical applications. The generalization
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is achieved via incorporation of noise terms into model equa-
tions and their proper consideration in derivation of coupling
estimators.

(i) Couplings are estimated from a single time series of a
moderate length that is important in a usual case of data
deficit or nonstationarity.

(iii) Coupling estimators are supplied with an analytic sig-
nificance level. It allows reliable conclusions about coupling
presence without time-consuming surrogate data analysis
and makes processing of large amounts of data much easier.
The latter is highly required in biomedical applications.

(iv) The estimators assess direct influences, i.e., not me-
diated by other observables. Thereby, one reveals a coupling
architecture from data.

(v) Closeness of individual frequencies is not compulsory
even though it simplifies the problem.

(vi) Numerical values of coupling estimators are readily
interpreted from a physical viewpoint.

Below, we discuss theoretical coupling characteristics in
Sec. II and their estimators in Sec. III. Performance of the
technique is illustrated with numerical simulations in Sec. I'V.
Summary is given in Sec. V.

II. CHARACTERISTICS OF COUPLING

A general idea of the approach is that “coupling strength”
shows how strongly future evolution of an oscillator phase
depends on the current values of the other oscillator phases.
It continues the line of research [15,18]. The formalism is
described below.

Dynamics of an ensemble of weakly coupled (determinis-
tic) limit-cycle oscillators with close natural frequencies can
be accurately described with a set of ordinary differential
equations involving only resonant interaction terms [47],

M
do .
k=wk+ 2 Ky sin(d;— ¢y), (1)
dt J=1G#0)
where k=1,...,M, ¢, are phases of the oscillators, w, are

their individual frequencies, and K ; characterize coupling
strengths. Weak coupling condition implies |K; ;| < wy for all
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k. Since natural frequencies are close, a characteristic oscil-
lation period for all the oscillators can be defined as T
=21/ &, where @=(1/M)Z}L, w.

If individual dynamics of each oscillator are not ad-
equately represented by a limit cycle, e.g., its phase can be
considerably affected by an external noise or a time-varying
amplitude, Eq. (1) is no longer an appropriate model. How-
ever, if the disturbances mentioned are weak enough, then
model (1) can be slightly generalized through incorporation
of noise terms necessary to describe the deviations of the
phase evolution from deterministic dynamics (1) (see, e.g.,
[48]). Thereby, one comes to the description of an ensemble
dynamics with a set of stochastic differential equations,

dé -

k .

Tt > Ky sin(¢;— ¢p) + §(1), (2)
dt J=1G#k)

where k=1,...,M and &, are independent noise sources

whose intensity is small as compared to the contribution of
the other terms at time scales of interest. Thus, one typically
studies phase variations over time scales of 7 and longer
rather than very fast fluctuations. Under such consideration,
if autocorrelations of &, decay down to zero for time lags
much less than 7, then & can be adequately described as
Gaussian white noises with autocorrelation functions (ACFs)
<§k(t)§k(t’)>:o§ &(t—1t"), where angular brackets denote ex-
pectation and o%k characterizes noise intensity.

Under the conditions of weak noises and couplings, one
can readily integrate Eq. (2) over a finite time interval (z,7
+7) and get difference model equations,

A (1) = Fil( (1), ..., du(1) + £,(0), (3)

where k=1,...,M, Ady(t) = @1+ 7)— (1), 7is a fixed time
interval much greater than autocorrelation times of all & and
not much greater than 7, e.g., 7=T, g, (t)= [}77&(t')dt’ are
independent Gaussian zero-mean noises with variances

and ACFs linearly decaying from ofk to O over an interval of

time lags (0,7) and equal to zero for greater lags [18], and
functions F read

M
Fidr,....dm) = o+ 2 (ay;cos(d;— )

J=10#k)
+ By sin(¢; — ¢y)). (4)

The functions F, are obtained via integration of all the terms
in the right-hand side of Eq. (2) except for &. At first ap-
proximation, one can integrate them even analytically since
under the above weakness conditions one can take ¢ (¢')
=~ (1) +wy(t' —t) for t<t'<t+7 under the integral sign.
Equation (3) with function (4) constitutes a basic phase dy-
namics model serving us further to define coupling strengths.

The left-hand side of Eq. (3) is a phase increment A g, for
the kth oscillator over an interval 7. One can use any value of
7 from the range described above since it is a free parameter
of the technique [49]. Further, we always set 7=T as in
[15,18] for definiteness (see also Sec. III). Then, (Ady)
=a;o=~2m and A, fluctuates about this mean value due to
noise g, and influences from other oscillators. For weak cou-
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plings, probability distribution of a wrapped phase vector
(¢y,...,¢y) in an M-dimensional cube [0,27]" is close to
the uniform one. Hence, function terms in the right-hand side
of Eq. (4) are mutually orthogonal: {cos(¢,— ¢;)cos(e,
—))=0, m# n, etc. Therefore, the variance of A, reads

M
02A¢k=0§k+ > Ciks (5)

j=1,j#k
where k=1,...,M, and
Cjisk= %[a;f,,- + /8%1] (6)

We call the quantity c;_; strength of the influence j—k, i.e.,
from the jth oscillator to the kth one.

Thus, according to Egs. (5) and (6) variations in a phase
increment A¢, (in essence, intensity of frequency modula-
tion) are represented as a sum of M independent factors: its
own noise and other oscillators of an ensemble. It gives a
clear physical (or, at least, “dynamical”) sense to the intro-
duced quantitative characteristics of coupling. We note that
¢; . is similar to the quantity ((JF;/d¢;)*) used in [15,18]
for the case of two oscillators. However, both quantities dif-
fer if higher-order terms are incorporated into Eq. (4) as
described in Sec. IIT when ((JF;/ &(l)j)z) does not allow such

a clear interpretation as ¢; .

III. ESTIMATION FROM A TIME SERIES

In practice, one has only time series {x,(¢),t=nAt,n
=1,2,...,N'}, k=1,...,M, where x, are observables and Ar
is a sampling interval, rather than Egs. (3) and (4). According
to the suggested approach, one assumes that phase dynamics
of an investigated ensemble of M oscillators is adequately
described with a set of stochastic difference equations [Eq.
(3)] with function (4). Since coefficients in Eq. (4) are un-
known and direct use of formula (6) is impossible, one
should compute the phases {¢;(f),t=nAt,n=1,2, ... ,N} and
estimate coupling strengths c;_;.

Here, we do not go into detail of phase computation. This
is a separate problem which is often not easy and considered
in multiple works. We assume that phases of the oscillators
are well defined and can be readily computed with estab-
lished techniques (e.g., [50,51]). To estimate coupling
strengths, one can first estimate coefficients a;;, Bi; by
minimizing a mean squared prediction error,

N-17/At

2 {Agi(nAr) — Fi[ p(nAr), a1}
S(ay) = =

s 7
N — 7/At M

where ¢={¢;} is a vector of phases and a,={e ;,B;} is a
vector of the kth polynomial coefficients. Thus, their estima-
tors & ;. By are found as 4;=arg min, S(a;). It would be
natural to take ¢;_ ;= %[di./‘""é/%».i] as an estimator of ¢;_. If a

time series is very long then & ;, 3, ; almost coincide with
the “true” values A ,Bk,j and, hence, éj%k=cjﬂk. However,
in practice a time series is often of a moderate length. There-

fore, & ;, By ; are not equal to ay ;, By ; and one must indicate
expected errors.

046204-2



DETECTION OF COUPLINGS IN ENSEMBLES OF...

A central question is: Under what conditions can one infer
the presence of an influence j—k, i.e., state that c; k>0"
Such an inference cannot be made from the 1nequa11ty cJHk
>0 which holds true almost always even for ¢;_;=0 since

Cj_x is a sum of squares of two estimators Wthh are almost
always nonzero at least due to random fluctuations.

To find a distribution law of ¢;_; and a significance level
for the conclusion ¢;_;, >0, we note that under the null hy-

pothesis ¢;_;,=0 the quantities &, ﬁk’j are independent and
identically distributed according to Gaussian law with zero
mean and some variance o%k . Hence, a quantity XZ_,k

=2¢ _,k/a'2 is distributed accordlng to )(2 law. Its distribu-

tion functlon ®,(x) is tabulated (see, e.g., [52]). Let us de-
note )(2’ (1-p) Such a number that <I>2(X2’(1_p)) I-p. If Xf_%
>X§,(1_p)’ the null hypothesis is rejected at a significance
level p, i.e., with error probability not greater than p. In
particular, p=0.05 is often used in practice to provide
sufficiently high reliability. The value of o’é ~is a priori

. . . A J . .
unknown but one can substitute its estimate 7 derived in
“J

[18]:

&%, =262IN{1 + 2>

= I/(7/An)]cos[ (dy o+ &; )

X1/(1/A1)Jexp[— (62 + &ﬁj)z/(zrxm)]},

where 6§k—min S(ay). Thus, a significance level at which

one detects the influence j—k is assessed as p;
=d; 1(26' _,](/0'2 )

To derive the formula for (r , one relies on whiteness of

&, or, equivalently, Gaussianity of g, and linear decay of their
ACFs over an interval (0,7) [18]. This is the only point
where the assumed properties of the noises come into play
but it is important since otherwise one could not assess ex-
pected estimation errors. However, Gaussianity of g is not
compulsory and even the required ACF behavior can be
moderately violated as shown in [53] that exhibits certain
robustness of the technique.

In practice, it may be useful to compare the strengths of
the influences j— k for different j and k to each other. How-
ever, the estimator ¢;_, is biased; its bias can be derived
similarly to [18] and equals to cr% The biases in ¢;_,;, may
differ strongly for different pairs (] k) that mislead if one
compares the values of ¢;_; to each other. Hence, an unbi-
ased estimator is desurable which is given analogously to

[18] by
Cjﬂk - [akj + ﬂk/ dk,j]' (8)

Despite our formulas strictly apply asymptotically, they
work well for time series of a moderate length as illustrated
in Sec. IV. However, some empirical criteria of applicability
related to the conditions of well-defined phases and weak
couplings and noises should be checked to assure reliability
of the estimation results:

(i) Condition of well-defined phases can be formulated
theoretically as narrow-band power spectra of the signals x;
or as weak variation in A¢,, i.e., 0, <y for all k. In our
experience, it is practically sufficient to require &Sk
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<0.2¢; for all k that is fulfilled in all the examples below.
(ii) Condition of weak coupling theoretically reads

more important to check a result of such weakness, i.e., to
check whether weak interdependence between simultaneous
values of ¢; and ¢, holds true to assure approximately uni-
form distribution of the vector ¢ in an M-dimensional cube.
More precisely, it is sufficient to meet the less strict condi-
tion of mutually orthogonal function terms in the right-hand
side of Eq. (4). Theoretically, the orthogonality holds true if
the phase synchronization index p;,=[(exp{i[ ¢;(1)
- ()]})|=0 for all j,k where angular brackets denote
expectation. In practice, we check whether the condition is
appr0x1mately fulfilled by estimating p;, as pj P
=[(1/N)=N lexp{l[(ﬁ,(nAt) d(nAD Y [7] and requiring
pjx<p. for all j,k. If p; > p., then a time series is not used
for coupling estimation. The threshold p, is found below in
numerical experiments with different oscillators and p,
=0.45 appears to suffice in all cases.

We note that if couplings between oscillators are very
strong, the value of p;, is very high for almost any time
realization. In such a case, the condition p; ;< p. is almost
never fulfilled that leads to a very low rate of correct posi-
tives. Hence, despite the technique gives no false positives, it
gets practically useless since it is no longer sensitive to the
presence of couplings. However, revealing directionality of
strong coupling is known to be a principally difficult prob-
lem (e.g. [44]).

(iii) Condition of the ACF decay over an interval of time
lags (0, 7) for the noises g, can be checked by estimation of
those ACFs from the residual errors of the fitted model (3).
One can try to increase the interval 7 until the ACF decay
condition is fulfilled. Typically, 7=T is a good choice which
is used in all examples below, but in general it does not
automatically assure fulfilling of this condition. Still, the
coupling estimators may appear applicable even if the con-
dition is moderately violated [53].

(iv) Another is the condition of a sufficient length of a
time series. The number of coefficients in each function (4)
should be much less than a number of nonoverlapping inter-
vals of the duration 7in a time series: 2M —1 <NA¢/ 7. Since
a usual choice is 7=T7 and, moreover, consideration of
smaller 7 is not reasonable (it would mean description of fast
phase fluctuations which depend on concrete technical way
of the phase determination while variations in the value of
the oscillation period are usually much better defined), it is
convenient to formulate the requirement in terms of a mean
oscillation period 7:2M—1<NAt/T. Minimal time series
lengths for different M are reported below as a result of
numerical simulations.

(v) Condition of close basic frequencies w; can be
checked directly from the estimation results as |dy o— d; |
<@ for all j,k. However, the technique appears apphcable
even if this condition is strongly violated. In case of essen-
tially different frequencies the technique may appear insen-
sitive if existing couplings require a description with higher-
order terms in Eq. (4), but it does not lead to spurious
coupling detection. A similar situation takes place if nonreso-
nant interaction terms to be described with higher-order
terms in Eq. (4) are considerable.
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However, it is straightforward to make the technique more
sensitive in cases of different frequencies w; or nonresonant
interaction terms. One has just to incorporate higher-order
terms cos(m¢;—ney) and sin(m¢;—ney) with m>1 and/or
n>1 into Eq. (4) that would correspond to more general
coupling functions in Eq. (2). Then, there would be L terms
under the summation sign in Eq. (4) instead of the two terms.
Coupling strengths would be defined as in Eq. (6) but via L
coefficients. Coupling estimators would be distributed ac-
cording to ,\/% law rather than X% law. Individual nonlineari-
ties could be accounted for by the terms cos(mdy) and
sin(mgy) with m>0 or even eliminated by converting to
invariant phases [54]. The weak coupling condition would
imply low values of the generalized index |(exp{l[m¢j(t)
—ngy(t)]})| for all the orders (m,n) used in Eq. (4) that is
closer to a strict requirement of the uniformity of the phase
vector distribution over the M-dimensional cube.

Below, we use only the first-order terms in Eq. (4) for the
sake of brevity. A generalized technique is considered in de-
tail elsewhere.

Thus, the theoretical assumptions underlying our coupling
estimators are not very restricting. Moreover, with the above
empirical criteria, the approach appears suitable for moderate
violation of the theoretical conditions, in particular, for mod-
erately strong couplings and relatively short time series as
illustrated below.

IV. NUMERICAL SIMULATIONS

We consider several exemplary systems at various cou-
pling strengths and architectures, time series lengths N, and
ensemble sizes M. In all the examples w=1. For the experi-
ments with phase oscillators (Secs. IV A and IV B) sampling
interval is Az=0.6, i.e., approximately 10 data points per a
mean oscillation period T=21. For the other examples (Sec.
IV C) where one needs to compute phases from observed
signals, sampling interval should be small enough to avoid
distortions. At least 20 data points per a basic period are
recommended in [51]; therefore, we use Ar=0.3 for those
examples. As discussed above, we set 7=T, i.e., 7=10A¢ or
7=20At, respectively. Under fixed number of oscillation pe-
riods in a time series, the estimation results almost do not
depend on the sampling interval Az, which can be understood
as follows. Decrease in At and, hence, increase in N add new
data points ¢ (t') “between” existing data points ().
Those new data points carry information about fast fluctua-
tions of phases over time intervals of the order of At. Since
we are interested in the analysis at time scales 7=7, such
detailed information is just averaged out when phase incre-
ments Ag,(¢) in Eq. (3) are computed. Hence, only the num-
ber of oscillations periods in a time series iS important.
Therefore, we present all the results for the above fixed val-
ues of Ar.

We use the Euler technique to integrate stochastic differ-
ential equations and the fourth-order Runge-Kutta technique
for ordinary differential equations. Integration step is 0.001.
For each exemplary system and each set of its parameters,
we generate a large collection of its time realizations to as-
sess statistically the performance of the suggested technique.
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FIG. 1. Considered coupling architectures in a small ensemble
of phase oscillators [Eq. (2)].

The number of time series in such a collection is denoted N,.
We use N,=1000 in Sec. IV A and N,=100 in Secs. IV B and
IV C. From each time series in a collection, we estimate
couplings for each pair of oscillators j,k and either infer the
presence of the influence j— k (a positive conclusion) or not
(a negative one) at a given significance level p. Positives are
correct if the influence j— k indeed exists and false other-
wise. The rate of positives is denoted v;_ [55].

In all tests, we check two points. Flrst the suggested es-
timators are regarded applicable if the rate of false positives
v;_ does not exceed p up to acceptable fluctuations due to
finiteness of N, [55] for all j,k such that ¢;_,=0. Most often,
we use p=0.05. Second, it is desirable for the technique to be
sensitive, i.e., to give a considerable rate of correct positives.

A. Three phase oscillators

The first example corresponds to the simplest case (a
small ensemble of phase oscillators) and demonstrates appli-
cability of the suggested estimators for time series of a mod-
erate length. A system under investigation is set (2) with
M=3, o;=1.1, 0,=1.0, w3=0.9, and 0'2 =0.04 for all k.

Throughout this section, a time series length is fixed to be
N=1000, i.e., 100 oscillation periods in a time series. The
coefficients K;_,, determine a coupling architecture in an en-
semble. We have considered four versions:

(1) uncoupled oscillators, all K;_,=0 [Fig. 1(a)];

(2) only K5_,,=0.05, others are zero [Fig. 1(b)];

(3) K5_,;=0.05 and K,_,,=0.025 [Fig. 1(c)]; and

(4) “ring” coupling, K5_,;=0.05, K;_,=0.025, and K,_5
=0.075 [Fig. 1(d)].

For uncoupled oscillators [Fig. 1(a)], all positives are
false so that all rates v;_,; should not exceed a given signifi-
cance level p. In Fig. 2(a) the plots v;_,(p) for two pairs j,k
are shown. The condition v;_(p) =p is fulfilled so that the
suggested technique performs properly for any p. When cou-
plings are introduced according to any of the architectures
shown in Figs. 1(b)-1(d), false positive rates approximately
equal to p [Figs. 2(b)-2(d)] within an acceptable range of
fluctuations [55]. Further, a correct detection rate in case of
Fig. 1(b) is high: v;_,;=0.9 at p=0.05 [Fig. 2(b)]. It de-
creases with decreasing p which is a payment for a smaller
probability of false positives. However, v;_,; is still high
(about 0.6) even at p=0.001. Other correct detection rates for
the ensembles shown in Figs. 1(c) and 1(d) behave in a simi-
lar way [Figs. 2(c) and 2(d)]. As expected, the detection rate
vi_ rises with K;_;, e.g., v|_»,=0.5, v;_,;=0.9, and v, 3
=1.0 at p=0.05 in Fig. 2(d). Note that in the example of Fig.
1(c) an oscillator 3 drives an oscillator 2 via an oscillator 1,
i.e., through a mediated coupling. However, the influence 3
— 2 is not detected by the suggested estimators. It illustrates
that they assess only direct couplings.
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FIG. 2. Rates of positives for a small ensemble (2) consisting of
three phase oscillators versus a specified significance level p. Panels
(a)—(d) correspond to panels (a)—(d) in Fig. 1. (a) All positives are
false. For the sake of convenience, only two of the six plots are
shown, all the rest are analogous. (b) Only detections of the influ-
ence 3—1 are correct. Their rate is high. (c) Detections of the
influences 3—1 and 1 —2 are correct. (d) Detections of the influ-
ences 3—1, 1 =2, and 2— 3 are correct. In all cases, a false posi-
tive rate fluctuates about the value of p within acceptable limits [55]
that implies a proper performance of the suggested estimators.

False positive rates may exceed a given level p under
increase in coupling coefficients or decrease in noise level
and frequency mismatch. Figure 3(a) illustrates variations in
K;_. for the case of Fig. 1(b): error probability does not
exceed p=0.05 up to K5_,;=0.14 but starts to rise with fur-
ther increase in K3_,;. The rise of the error rate is determined
by a considerable violation of the weak coupling condition.
With a criterion p; ; <p,, the rate of false positives does not
exceed an acceptable value (the dashed line) in the entire
range of K5_,; for p.=0.45. This threshold is close to the
values reported in [56] for the case of two oscillators. With
analogous tests, we have observed that p.=0.45 is sufficient
to control false positive rates in all examples considered be-
low (under an additional requirement of a sufficient time
series length N which is analyzed in Sec. IV B). Sensitivity
of the technique after addition of the criterion p; ,<p, re-
mains high: the rate of correct positives is the same as with-
out the criterion at small K5 ,; [Fig. 3(b)]. The sensitivity
gets worse for big K5 ,; but still equals unity for a wide
range 0.07=K;_,;=0.13.

Coupling strength estimator 6‘3_,1 on average depends on
K;_,1 as a quadratic function in the entire range of reliable
coupling detection [Fig. 3(c)]. It is expected since c¢; . is
proportional to the sum of squared coefficients [Eq. (6)].
Thus, at small 7 Eq. (3) would almost coincide with the Euler

scheme so that one can derive analytically (C;_.,)
=(7/2)K3 . The coefficient in the formula differs from
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FIG. 3. Coupling estimation for the ensemble of three phase
oscillators [Fig. 1(b)] under variation in K5_,,: (a) a total false posi-
tive rate at p=0.05 without control of g;, (thin line) and with p; ,
<0.45 (thick line), an acceptable error level [55] is shown with
dashed line; (b) detection rates for the influence 3—1 at p=0.05
without control of p;, (thin line) and with p;,<<0.45 (thick line);
and (c) mean values of C;_,; (circles) with an approximating qua-
dratic parabola (solid line).

7/2 at greater 7, for instance, (6‘3%1)%12.81(2_,1 in Fig.
3(c) where 7=6. However, quadratic character of the depen-
dence is preserved.

Effects of decrease in the noise level, frequency mis-
match, and a time series length are analyzed in the same way
(not shown). The criterion p;;<p. also helps us to control
false positives with the same p.. Only time series length
variations exhibit a peculiarity: N should not be less than a
certain minimal value for a given ensemble size M. This is
because the above formulas for the estimators, e.g., Eq. (5),
are asymptotic so that they require significant number of
nonoverlapping intervals of the width 7 in a time series.
Minimal values of N versus an ensemble size M are reported
in Sec. IV B.

B. Larger ensembles of phase oscillators

To study an ensemble size effect, we use system (2) with
different M. First, we consider an ensemble of M =10 oscil-
lators with a simple ring architecture [Fig. 4(a)], i.e., K;_;
#0 only for j=k—1, k>1 or j=M, k=1. These coupling
coefficients K, rise with k and there is a certain frequency
mismatch: K]Hk—O 03+0.003k, @;=1.275-0.05k, and k
=1,...,10. Noise intensities are the same o'2 =0.04.

We perform estimation from time series of the length N
=10 000 (1000 basic periods) and other parameters the same
as in Sec. IV A. Estimation results for a single time series are
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FIG. 4. Coupling estimation for an ensemble of 10 phase oscil-
lators with ring couplings [Eq. (2)] from a single time series: (a)
coupling architecture, arrows show existing influences, their thick-
ness indicate the value of a corresponding coefficient K;_;; [(b) and
(c)] diagrams for coupling estimation results show detected existing
couplings (black squares), missed existing couplings (double shad-
ing), false positives (vertical shading), and undetected nonexisting
couplings (white squares) at a given significance level p (see the
text for additional explanations).

shown in Figs. 4(b) and 4(c). The diagrams illustrate cou-
plings which are detected correctly or spuriously. A square
with a horizontal coordinate j and a vertical coordinate k
denotes the influence j—k, except for the squares on the
diagonal which do not carry any information. All ten existing
couplings are detected at the significance level p=0.05
(black squares). Four couplings are detected spuriously (ver-
tically shaded squares). However, this rate of errors lies
within acceptable range at the given p. Indeed, there are 90
possible couplings in the ensemble; 80 of them are absent,
i.e., correspond to zero coefficients K;_,;. At the given sig-
nificance level, one expects 5% of false positives on average,
i.e., four of 80 couplings. Estimation from other time series
gives similar pictures with slightly fluctuating rate of false
positives lying within acceptable limits [55].

To decrease the number of false positives, one should
specify smaller p. As illustrated in Fig. 4(c) for the same
time series, the choice of p=0.0006 provides zero false posi-
tives. It is expected since on average one should get
0.0006 X 80=0.048 false positives at a single diagram, i.e.,
probability of at least one spuriously detected coupling is
less than 0.05. At that, probability to miss existing connec-
tions rises. Indeed, the weakest of the existing influences
10— 1 is not detected at p=0.0006 (a double shaded square).
It can be detected only if the time series length in terms of
the number of basic periods is increased. Such an improve-
ment in sensitivity is discussed in [44]. Estimates of coupling

strengths CA’jﬁk for the same time series depend on & in ap-
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FIG. 5. Coupling estimates é i (circles) for an ensemble of 10
phase oscillators [Fig. 4(a)] versus an oscillator number. An ap-
proximating quadratic parabola is shown with the solid line.

proximately quadratic manner (Fig. 5) since the coupling co-

efficient K;_,; rises linearly with k. The dependence CA‘j_,k(k)
is fluctuating since it represents estimates for a single time
series rather than averaged characteristics as in Fig. 3(c).

Applicability if the technique in the sense of controlled
rate of false positives is maintained for a time series of the
length of 300 basic periods at the expense of the lower sen-
sitivity. Thus, for such a shorter segment of the time series
analyzed above, there are two missed connections at p
=0.05 and four ones at p=0.0006 as compared to Figs. 4(b)
and 4(c).

Performance of the technique is further illustrated for a
more complicated coupling architecture generated randomly
[Fig. 6(a)]. There are 20 nonzero coupling coefficients. Bidi-
rectional coupling (for the pair of oscillators 4 and 6) is
present along with unidirectional ones. All nonzero coupling
coefficients are equal to 0.025. Estimation results for a single
time series of the length N=3000 (300 basic periods) are
shown in Figs. 6(b) and 6(c) analogously to the previous
example. Existing couplings of 18 out of 20 are detected at
p=0.05. Two couplings are detected spuriously that are an
acceptable rate at the given p. Smaller value of p=0.005
provides absence of spurious detections but the number of
missed existing connections rises (six of 20). Again, one
should increase the time series length to detect them. The
results presented in Fig. 6 are typical as observed from the
analysis of an ensemble of time series (not shown in more
detail). As distinct from the previous example, not only the
number of missed connections but also their locations fluc-
tuate from one time series to another one. The reason is that
all couplings are equally strong and which of them are not
detected from a given time series is determined by concrete
realizations of noises &, corresponding to that time series.

We note that for both examples of ensembles consisting of
M =10 oscillators, the suggested estimators appear applicable
only for a time series length at least of 300 basic periods. To
study the requirements on the time series length for different
M in detail, we analyze ensembles [Eq. (2)] of uncoupled
oscillators at different M ranging from 2 to 10. Which con-
crete oscillators are taken as members of an ensemble of size
M <10 is not important since the results appear very similar
for any choice. In particular, in Fig. 7 we report the results
for the following “centered” ensembles: oscillators 5 and 6
for M =2, oscillators 4—6 for M =3, oscillators 4-7 for M
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FIG. 6. Coupling estimation for an ensemble of 10 phase oscillators [Eq. (2)] with “random” couplings from a single time series.
Notations are the same as in Fig. 4: (a) coupling architecture; [(b) and (c)] diagrams for coupling estimation results.

=4, and so on. Since oscillators are uncoupled, all couplings
detected are false positives. A total rate of false positives v,
at p=0.05 is calculated at various time series lengths N for
each M and a minimal length N,;, providing v, <0.05
within acceptable limits [55] is determined. As expected, a
necessary amount of data rises with an ensemble size (Fig.
7). To mention a few typical lengths, 40 basic periods suffice
for M=2 or M =3 while one needs at least 300 basic periods
for 7=M=10.

C. Other stochastic and chaotic oscillators

We test the technique with ensembles of stochastically
perturbed limit-cycle oscillators (van der Pol oscillators), de-
terministically chaotic oscillators (Roessler systems), and a
model of an active spatially distributed nonuniform nonlinear
medium (Ginzburg-Landau equation). In all cases, the phases
are computed via Hilbert transform [50] and ten basic peri-

ods at each edge are then ignored to reduce edge effects [51].
As shown below, the suggested estimators appear applicable
and sensitive.

An ensemble of van der Pol oscillators with ring coupling
architecture [Fig. 4(a)] is given by the equations

%= (02 -k — wpo + Ky —x) + &, (9)

where k=1,...,10, j=k—1 for k>1, j=10 for k=1, w,
=1.275-0.05k, and a§k=0.04. Individual dynamics of each
oscillator for oék:O are represented by periodic self-
sustained oscillations so that the phase dynamics is accu-
rately described by the phase oscillator [Eq. (2)]. The pres-
ence of noises & leads to considerable fluctuations of
amplitudes. Therefore, the phase dynamics of noisy oscilla-
tors are only approximately described with the phase oscil-
lator [Eq. (2)]. Still, the approximation is reasonably good so
that the suggested estimators appear quite efficient.

046204-7



DMITRY A. SMIRNOV AND BORIS P. BEZRUCHKO

300 4 N, AT

200 —

100

M
O 4711 17

2 4 6 8 10

FIG. 7. Coupling estimation for ensembles of phase oscillators
of different size. A minimal time series length providing controlled
rate of false positives is shown versus an ensemble size.

Analysis of 100 time series from an ensemble of un-
coupled oscillators (K;_,=0) gives the rate of false positives
at p=0.05 equal to 0.054 when the value 0.055 is acceptable
[55]. If couplings exist, they are detected correctly stronger
couplings being detected more readily. For instance, in case
of weak uniform coupling strength K; ,,=0.03 (weakness of
such couplings is reflected in that p;,<0.25 for all j,k)
probability to detect each existing connection is equal to
0.55, a typical example is shown in Fig. 8(a).

Equations for an ensemble of Roessler systems with ring
coupling [Fig. 4(a)] read

K== o=+ K i(x = xp),
)}k = WX + O398yk,

2 =2.0+ (x,—4.0)z, (10)

where k=1,...,10, j=k—1 for k>1, j=10 for k=1, and
w,=1.275-0.05k. Individually, such a system demonstrates
spiral chaos for a frequency value of w;=1.0 [57]. Frequency
variations may change the properties of chaotic behavior by
shifting a system to another domain in a parameter space. In
any case, the phase dynamics can be described with Eq. (2)
where irregularity is determined by a chaotic amplitude fluc-
tuations whose statistics differs from white noise properties.

As we checked for other parameter values and/or incor-
poration of Gaussian noise into Eq. (10), ACFs of the residu-
als g; decay fast enough [e.g., down to the level of 0.1-0.2
over an interval (0, 7)]. Thus, applicability of our estimators
is guaranteed and, indeed, they perform properly in such
cases (not shown since the results are quite analogous to the
previous examples). However, in the case of Eq. (10) distri-
bution of the residuals g, is non-Gaussian and, even more
important, ACF decay time exceeds 7. Thus, applicability of
the suggested estimators is not assured and it is interesting to
check whether they are inevitably erroneous.

Analysis of 100 time series from an ensemble of un-
coupled oscillators (K,;_;=0) exhibits the rate of false posi-
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FIG. 8. Coupling estimation for ensembles of different oscilla-
tors from a single time series of the length of 300 basic periods at
p=0.05. Notations are the same as in Fig. 4: (a) van der Pol oscil-
lators with ring couplings (9); (b) Roessler systems with ring cou-
plings [Eq. (10)]; and (c) ten points of a medium [Eq. (11)].

tives at p=0.05 equal to 0.04 when the value 0.055 is accept-
able [55]. If couplings exist, they are again detected
correctly. For instance, in case of weak uniform coupling
strength K;_,=0.01 (all p; are less than 0.1) probability to
detect each existing connection is equal to 0.7, a typical ex-
ample is shown in Fig. 8(b). Thus, the suggested estimators
are again applicable that is an evidence for their robustness,
i.e., formulas derived under the assumption of white noises
&, apply under some variations in the “noise” statistical prop-
erties (see, e.g., [58] for possible theoretical explanations).

Yet, it should be noted that the technique is assured to
work properly only if the conditions listed in Sec. III are
fulfilled. Otherwise, as in case (10), the technique may be
used as a heuristic tool so that its results should be taken
with caution. Thus, at other parameter values where the ap-
plicability condition with respect of g, properties is also vio-
lated, we have observed the rate of false positives signifi-
cantly exceeding the required value of p.

Finally, we consider a more complicated example repre-
senting a model of active nonlinear nonuniform continuous
medium described by a partial differential equation. This is
widespread in different fields of physics, Ginzburg and Lan-
dau equations (see, e.g., [59])
da(x,t) (1-|aPa Fa

T - iw(x)a+ % + 82 + &(x,0),  (11)
where a spatial coordinate 0=x=10, a is a complex ampli-
tude, a frequency depends on a spatial coordinate w(x)=0.8
+0.04x, a diffusion coefficient g determines coupling be-
tween “neighboring points” of a medium, boundary condi-
tions are da/dx=0|,q 10, and &(x,7) are (spatially) indepen-
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dent sources of white noise with intensity oé

A stochastic partial differential equation is a quite com-
plicated object both for numerical solution and theoretical
consideration. Here, we have used a rough approach includ-
ing spatial discretization with a step 0.1, replacement of spa-
tial derivatives by finite differences ’a(x,t)/ox>~[a(x
-0.1,1)-2a(x,t)+a(x+0.1,1)]/0.01, and difference Euler
scheme for temporal integration, i.e., we have solved 100
coupled ordinary first-order differential equations for com-
plex variables a(x,7). At the specified parameter values, the
variables Re[a(x,#)] exhibit self-sustained oscillations at
each point x. “Observed” time series are Re[a(x,)] at points
x=k—-0.5, k=1,...,10. Among those processes, any two
“neighboring” ones are bidirectionally coupled to each other
while the couplings are mediated by multiple intermediate
points of the medium whose oscillations are not observed.
The conditions for applicability of the suggested estimators
seem to be fulfilled.

The rough numerical integration technique does not pre-
tend to give a very strict and accurate description of the
dynamics of system (11). However, even being somewhat
different from Eq. (11), such a numerical scheme also repre-
sents a model of a continuous medium. Hence, for our pur-
poses it is sufficient to be used as a more complicated test
allowing to check an effect of “hidden” intermediate units in
an ensemble.

The suggested estimators perform well at different values
of the diffusion coefficient g providing reasonable sensitivity
and the rate of false positives within acceptable limits. Thus,
at g=0.003 and 2=0.05 (coupling is weak so that all p;
< 0.3) the rate of correct coupling detections is 0.5 which is

PHYSICAL REVIEW E 79, 046204 (2009)

quite a considerable value. A typical example is shown in
Fig. 8(c).

V. CONCLUSIONS

We have suggested estimators of couplings in ensemble of
oscillators based on phase dynamics modeling. They allow
us to reveal architecture of couplings between noisy oscilla-
tors from a single time series. An analytic significance level
is derived to detect couplings reliably that is important for
applications.

The main conditions for the approach applicability can be
summarized as follows:

(i) phases of the oscillators are well defined and phase
oscillator model (2) is adequate;

(ii) couplings are not strong enough to induce consider-
able synchrony between any two oscillators; and

(iii) a time series length is not less than several dozens of
basic periods and depends on an ensemble size as shown in
Fig. 7.

The results are validated with different numerical ex-
amples including a model of an active nonlinear medium.
Thus, the suggested approach makes a fruitful idea of phase
dynamics modeling essentially wider applicable in practice
for the analysis of couplings in oscillatory ensembles.
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