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The phenomenon of violation of equal probability of the postbifurcation states under a fast
change of the control parameter is studied with an experimental system with continuous time
and with a system of coupled maps. It is shown that the choice of one of the possible final states
differing only in the phase of oscillations depends on the rate of the control parameter varistion
and noise level. For the coupled system, the dependence of the final states basin structure on

the coupling coefficient is investigated.
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1. Introduction

Systems with time-varying parameters are
widespread in nature. Their investigation is of most
interest in the interval of parameter variation con-
taining bifurcation values. After the completion of
the perameter change such systems come to g dis-
tinct final state. If there are ssveral possible states,
the systern has to choose one of them. For exam-
ple, after the first period-doubling bifurcation, a
doubled period motion can be realized by two ways
differing only by the phase shift [Bezruchko et al.,
2003}.
In the case of very slow (adiabatic} change of
. the parameters even a small noise in the system
" exerts a crucial influence on the choice of this or
~‘that final state. If the noise distribution is symmet-
~ ric with respect to the final states, then these states
- are established with the same probability p. This
“is the case of the so-called probability. symmetry

[Brush et al., °1995]. For. instance, if there are only

two possible final states, then p1 = p2 = 1/2. In the

‘case of infinitesimal noise either the first (p1 = 1,

po = 0) or the second (p1 = 0, pp = 1) of these
two final states is selected, depending on the initial
conditions, with & unit probability that corresponds
to completely predictable behavior. These limiting
cases of the bifurcation transition are called the
“stochastic” and “dynamic” varianis, respectively
[Brush ef al., 1995]. In real systems, certain inter-
mediate situations are realized in which both the
noise and the rate of the control parameter variation
are significant. Nevertheless, a conditional bound-
&l‘y D V;Teen STOCHaS51L d;ll(l Clylldﬁllb i l‘.Li'bLL'U'lb can
he defined using a criterion according tc which the
possible final state is attained at & preset plobabﬁ— :
my{eg p1 = 0.75, po = 0.25).

" Previously, the phenomenon of violation of the

. probebility symmetry of the final states in a sys- _
© tern with time-varying parameters in the presence. . =
of nofse was numerically studied by Butkovskii et al, o

Lo 1689




1640 B. P. Bezruchko et el

[1696], Bezruchko and Ivanov {2000], and Bilchin-
skaya et al. [2002] using one-dimensional maps
of the type @pey = f{@n +&n.7), Where fis a
quadratic function, &, is the noise possessing zero
mean and symmetric distribution, and r i the bifur-
cation parameter varying in time according o a
plecewise-linear law. The aim of the present paper
is to examine the violation of the final states prob-
ability symmetry for an experimental system with
continuous time, and for a coupled system.

2. Experimental Study of Fast
Bifurcation Transitions

The experimental study of fast bifurcation tran-
sitions was carried out using an electronic oscilla-
tor with delayed feedbaclk. A block diagram of the
experimental setup is shown in Fig. 1. The delay
line and the nonlinear element were constructed
using digital elements. They were connected with
the analogue low-frequency RC-filter with the help

of analog-to-digital and digital-to-analog convert-
ers. The noise signal from a controlled noise gen-
erator was entered into the ring oscillator using a
summing amplifier. The characteristic of the non-
linear element had the form f(z) = r — z?, where

the control parameter r was varied in time as

r(t)*{r1+3t’ t<T, 1)
N |ry + 8T =7y, t>1T.

Here r; and 75 are the initial and final values of the
parameter 7 variation, s is the rate of the control
parameter variation determined as s = (ro —r1)/T,
and T is the time within which the parameter 7
changes from 71 to 73 coming through the first
period-doubling bifurcation value 7z.

For different values of the noise variance o° we
determine the probabilily p1 of one of the two pos-
sible final states of the system, Fig. 2. The final
states differing from each other by the phase of
the period-2 oscillations were defined from the vols-
age time series for diferent s values. In order o
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Fig. 1. Block diagra,m of the electronic oscillator with
delayed fesdback. ADC is the analog-to-digital converter,

DAC is the digital-to-analog converter, and X.is the sum- "

ming amplifier.
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Fig. 2. FProbability m of o chosen final state versus noise
intensity logarithm in{o?) for the electronic osciliator with
delayed feedback. The curve numbers correspond to § =
6.75 % 1073 (1), 5 = 185 x 1079 (2), s = 27 x 1073 (3),
and s = 67.5 x 107% (4).

aceumulate sufficient statistics, necessary for cal-
culating meen probabilities, 2000 experiments were
carried out with each set of the noise variance and
the parameter variation rate. If the rate of the con~

trol parameter variation Is very sm all, then the time

il L3 ollldil,

within which the parameter changes by an appre-
ciable value is much greater than the characterls-
tic time of the system relaxation. As a result, after
the period-doubling bifurcation the system stays in
the vicinity of the cycle having lost the stability.
In this case, the choice of the final state is defined
mainly by noise. If the noise distribution is symmet-
ric with respect to the final states, then these states
are established with the same probability even for a
relatively low level of noise. As the parameter vari-
ation rate grows, the results of the bifurcation tran-
sition becorne more predictable. The increasing rate
of the control parameter change leads to the motion
of boundaries of basins of attraction of final states
in the phase space. The choice of the initial condi-
tions begins to exert more influence on the choice
of the final state, Fig. 2.

As the noise variance ncreases for a given vaiue
of s, the probability p; decreases unless it becomes
close to 0.5. With further increasing of noise the
mean value of probability p; fluctuates in the vicin-

ity of 0.5 lavel, Fig. 2. In this case the mean values of

“py are close to each other for different s values. Some

points of the curves 2 and 3 are not shown in this
vegion in order to avoid overloading of the figure.

~For the same reason, the points of the curve 4 are
“not shown for small levels of noise corresponding to
_the case where the mean values of probability p1 are
“greater than 0.97. Each point in Fig. 2 being a mean

value has its own error bars. For every point in the
plot the error of p; definition does not exceed 3%.




The noise intensity varies in more than 1000 times

for the points of the curves in Fig. 2 and thus, the
region of comparison is sufficiently wide.

The obtained results agree well with the results
of mumerical simulation. In particular, the depen-
dence of probability of a chosen final state on
the noise intensity observed in the experimental
system is qualitatively similar to that observed
for the quadratic maps [Butkovskii et al., 1986;
Bezruchko & Ivanov, 2000; Bilchinskaya ef al.,

2002].

3. Basins of Attraction of Final States
for a System of Coupled Maps
with Varying Parameters

To investigate the violation of the final states prob-
ability symmetry in coupled systems with time-
varying parameters, we consider a system of two
coupled quadratic maps with additive noise

+gn)? — Ryl 2
bl = T — (1 —k)(yn + R )
where z, y are the dynamical variables, !c is the
coupling coefficient, ry, is the control parameter, gn
and A, are the noise processes. The parameter T,
depends on time by a plecewise-linear law

- l<n< N
g {22 (3)

|77 = const, n=N,

where g is the rate of the control parameter varia-
$ion, rg and rp are its initial and final values, respec-
tively, N is the number of steps used to pass the
interval {ro,7F)-

We examine the case of 7g = 0.5 and rp == 1,
where the interval of the control parameter varia-
tion contains only one bifurcation value rp = 0. 75
ccrrespundlug to the frst period-doubling bifurca-
tion of a single map. To finish the transients, 1600
iterations were executed af the fixed parameater rp.
Additive noise g, was uniformly distributed in the

interval (—fyg, +fyg) and was assumed %o be uncor-
related: (Gngm) = 35,.1,,1 where 53 = ’v2 /3 is the
variance, Oy, is the Kronecker delta. The 1101se pro-
~cess fi, has similar features. The values of g, and
R, are assumed to be independent: {gnfim) = 0.

For 7, = 7 the isclated quadratic map has two

“equivalent ‘final states: ml = {z¥, 27 rﬁ‘ b

- and mp = {z~ AR S S where T and z~
~.arxe the greater and the smaller values, Tespectively,
-of the dynamical variable , for the period-2 cycle.

'__The.:'g:pupled.._';nap.'System (2) has four equivalent |

Vielution of the Final States Probability Symmetry 1691

final states for k = 0 and 7, = 77 211 = (T1. W),
zg = (@1,0), 221 = (z2,3), and 222 = (22,72),
where z1; and z are the in-phase states (T1 = 21,
Ty = ya), and 72 and zg1 are the out-of-phase ones.
At nonzero k, depending on its value, one or two
pairs of final states are possible that correspond to
motions on the in-phase and the out-of-phase cycles
of the coupled system. The choice of these states
depends on initial conditions {zo,%o), noise ievel,
the rate s of the control parameter variation, and
the coupling coefficient &

First, we consider the configuration of final
state basins of attraction for period-2 cycles of sys-
tem (2) depending on the parameters & and s in the
absence of noise. In Fig. 3 the basins are shown for
the case k = 0. If the initial point (29, y0) is beyond
the basin of attraction, the solution goes to infin-
ity (this region is shown in white in Fig. 3 and in
the subsequent figures with the basins). The points
of the attractors are indicated by circles (in-phase
cycle} and squares {out-of-phase cycle) in white
or black depending on background. For dynami-
cal regimes the basin structure qualitatively differs
from that for the stationary case. The region of
finite solutions decreases and the basins vary in size
as the result of redistribution of various final states
probability depending on the rate of the bifurca-
tion parameter variation. For example, for the pair
z11 and zgp of final states and the pair zip and 22
the inversion of hasins is observed depending on the
parity or oddness of the step number N. It is infer-
esting to note that, if we prescribe the initial con-
ditions on one of the attractors, the system with
varying parameters can evelve to the final state cor-
responding to another attractor.

For k $ 0 some final states observed in the
stationary case at 7p ave not observed in the sys-
tem with time-varying parameters unless the rate of
the control parameter variation is below some crit-
ical value. For instance, for 0 < k < 1 the inter-
val of the parameter r is observed within which
only the in-phase attractor exists in the stationary
system after period-deubling bifurcation, Fig. 4. In
the dynamical case at a very small rate of the con-

trol parameter variation in this interval, the system

has time to settle on the in-phase attractor for any
mztza,l_{:ondmons. As a result, the entire region of
finite solutions becomes the basin of attraction of

“the in-phase reghne and its respective final states.
“With the parameter s increasing there appears nar- o

row fragments of basius of the out~of-phase attrac- '
tor ﬁnal states which expa,nd for iarge s, Flg 5
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Fig. 3. Basin structure of the final states 211 (light gray), zea (gray), z12 {d
= 0) and k£ = 0. (&) The control parameter is fixed, rn =1, {b) s = 0.25, {c) s = 0.167, (d} s = 0.0L
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Fig. 4. Stability regions for the period-1 and period-2 cycles
of the aystem (2) in the (%, r) plane for the case of the param-
.cters not varying in time and gn = hn = 0. 1p and 2g are the

in-phase period-1 and peried-2-cycles, respectively. Iy 11 and -
2; are the out-of-phase cycles of periods 1 and 2, respectively.

‘Golid lines are the lines of period-doubling bifurcations. The
regions of stability of_put-pf—_phase cycles are bounded with
dashed lines. SR - '
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ark gray), and zg; (black) in the absence of noise

Similarly to the stationary case, the basins of the
final states 2z, and 299 corresponding to the in-
phase attractor become convex ai dynamical bifur-
cations and the basins of the out-of-phase attrac-
tor final states z:o and zo; become concave as the
coupling coefficient increases. For some & values
the out-of-phase period-2 cycle loses stability and
basing of attraction of z9 and zo) states disappear.
Yor k = 0.5 the basins of z11 and 29 fival states,
which have been rectangular for zero k, take the
forrm of concentric circles. The region of finite solu-

tions is maximal in this case.
In the region of large k values the coupled sys-
monstrates the out-ofphase regimes.

s Ta -1
LEIIL 4180 GQEeIMNoNsIrates

Tf the system (2} parameters do not vary in- time
and noise is absent, the bifurcation lines of out-of-

" phase regimes are symmetric with respect to the

line k = 0.5, Fig. 4. However, the oscillation states
~at strong coupliing differ radically from those ab
" weak coupling {Bezruchko et al., 2003}, For instance,
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Fiz. 5. Basins of the final states 211, 222, 212, and 22 for & = 0.005 in the absence of noise. (a) The control parameter is

fixed, 7 = 1, {b) 5 = 0.167, (¢} s = 0.01, (d) s = 4.002.
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Fig. 6. Basins of the final stales 211 (light gray), zae {gray),

k=0.995. (a) s = 0.167, (b} s =0.01.

in the stationary case two out-oi-phase period-1
cycles, denoted as 1 and 1n, exist in the system
for & > 2/3. The stability region of these cycles
is symmetric to the stability region of the out-

of-phase period-2 cycle with respect to the line -

“k = 0.5. The final states corresponding to the cycles

S and 1y, denoted by 212 and 27, coincide with -
‘the out-of-phase period-2 cycle final states z12 and -

{b}

22 (dark gray), and 22 (black) in the absence of noise and

201, but in distinction to them, z*? and 2°! do not
transfer one into another at successive iterations.

- As a result, for strong coupling in dynamical regime
‘there is no inversion of cut-of-phase period-1 states
“besing depending on the parity or oddness of N,
“Fig,.6. The other feature of final state besins at .
k > 0.5 are similar to.those observed in the case of - -
k<05, ' T o
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Fig. 7. Basins of the final states 211, 292, 212, and 293 for k= —0.905 in the absence of acise. (a) The control parameter s
xed, rp = 1, (b) 8= 0,167, {c) s = 0.0, (d) 5 =0.002
fixed, rp=1,(b)a=10 0.0, {d) s = 0.002.
&0

For coupling values & < 0 and & > 1 the out-
of-phase period-2 and period-1 cycles, respectively,
emerge at smaller values of the control parameter r
than the in-phase period-2 cycle does, Fig. 4. Conse-
quently, the interval of the parameter r is observed
within which cnly the ocut-of-phase attractors exist
in the coupled system. This fact results in the pref-
erence of the out-of-phase regimes at small rates of
the control parameter variation. The probability of
their final states increases at dynamical bifurcations
at the expense of the in-phase regimes probability.
The redistributicon of basins area is illustrated in
Fig. 7. Thus, depending on the coupling between
clements and the rate of their pararneters variation
one can obtain the required final state of the system
and thereby control its dynamics.

To illustrate the probability of the system (2)
possible states we caleulated the relative area A of
every final state basin against the coupling coeffi-
. clent,

(29, 1) specular symmetry the areas of their basins

coincide for any % ‘and s values, and the curves for.
"z11 and zge final states exchange places ab every

N iter atmn step

Fig. 8. By virtue of the final states (z1,y2) and

2
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Fig. 8. Dependence of the relative area A of the final state
basins on the coupling coefficient for s =0, gn =hn =0.

The noise adding leads to smearing of the
clearly defined boundaries of basins and o equaliza-
tion of probability of all final states. The greater is

the noise level and the smaller is the rate of the con-

Cu ULl idy

trol narameter vﬂﬂnhﬂn 'Hﬂa oreator ig tha affart of
LIQL DATAINSLIOT VarL The greater 18 the elioct OF

.probability equalization, Fig. 9. For other k values

the effect -of noise on the basin structure is qualita-

‘$ively similar to that presented in Fig. 9. For other -
intensities of noise we obtain the plots qualitatively o
- similar to the presented ones but with other values = =
-of 5. Besides the case of uniformly distributed noise, - - "
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{e)

Fig. 9. DBasin structure of the final states z11, za2, 219, and 291 for & = 0.005 in the presence of noise, cr_,?, 2 o*i S

4

= 107,

(a) The contral parameter is fixed, rn = 1, {b) s = 0.167, () & = 0.025, {d) s = 0.0L.

wa also considered the case of Gaussian noise which
distribution was symmetric with respect to the final
states. The obtained resuits were qualitatively sim-
ilar for both types of noise.

4, Conclusion

The obtained results extend the notion about the
features of fast bifurcations in dynamical systems
and systerns with noise, The viclation of the final
states probability symmetry is obgserved for the
experimental system with continuous time and for
the coupled map system. It is shown that the selec-
tion of final states in these systems depends on the
rate of the control parameter variation and noise

~Af nnninling L\n“"zrrﬂnn slamaonie

Tha Aot o vi-
22538 LLWOULL BritdliUiaug
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enhances the effect of probability symmetry break
inherent in uncoupled elements for small noise level.

lawral
vk

In the presence of noise the equalization of proba-~-

bilities .of all possible final states takes place.
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