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In recent years, the problem of determining the
parameters of systems with delayed feedback (time-
delay systems) from the corresponding time series of
observable dynamic variables has received much atten-
tion. Various methods have been proposed that make it
possible to recover the model equations of time-delay
systems using the chaotic time series of their oscilla-
tions [1–9]. Unfortunately, these methods are not effec-
tive in cases where such systems occur in periodic
regimes [10]. However, many of the practically impor-
tant dynamical time-delay systems can operate in peri-
odic or nearly-periodic regimes [11, 12]. Therefore, the
task of developing methods using time series for the
recovery of parameters of time-delay systems perform-
ing periodic oscillations is of considerable importance.
First attempts in this direction were recently under-
taken by Siefert [13], who proposed to estimate the
delay by monitoring the system response to an external
noise (with a large amplitude and a correlation time
much shorter than the delay time of the system under
consideration) and analyze the corresponding correla-
tion function.

This Letter describes an alternative approach to the
recovery of parameters of time-delay systems in a peri-
odic regime. The proposed method is based on an anal-
ysis of the system response to a regular external action
that leads to the onset of a transient process in the sys-
tem under consideration.

Let us consider a system described by the following
first-order differential equation with a delayed argu-
ment:

(1)

where 

 

x

 

 is the dynamical variable, 

 

τ

 

1

 

 is the delay time,

 

ε

 

1

 

 is a parameter characterizing the inertia of the sys-
tem, and 

 

f

 

 is a nonlinear function. Previously, it was
established [8] that time series of the time-delay sys-
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tems of type (1) contain virtually no extrema spaced
from each other by 

 

τ

 

1

 

. If system (1) performs chaotic
oscillations, the extrema in the time series are irregu-
larly encountered and spaced by various time intervals.
Taking into account this behavior, we proposed a
method for determining 

 

τ

 

1

 

 using statistical analysis of
the time intervals between extrema in the chaotic time
series of a given time-delay system. According to the
proposed procedure, the numbers 

 

N 

 

of situations
whereby the pairs of points spaced by 

 

τ

 

 simultaneously
represent the extrema in the given time series are deter-
mined for various 

 

τ

 

 and the 

 

N

 

(

 

τ

 

) plot is constructed.
Then, 

 

τ

 

1

 

 is readily determined as the value correspond-
ing to the absolute minimum in this plot [8].

However, this method fails to operate if system (1)
performs periodic self-sustained oscillations and,
hence, the extrema in the time series are encountered in
a regular manner. As a result, the 

 

N

 

(

 

τ

 

) plot exhibits sev-
eral peaks separated by the intervals where 

 

N

 

 = 0. Fig-
ure 1 shows an example of such a time series and the
corresponding 

 

N

 

(

 

τ

 

) plot for system (1) with 

 

τ

 

1

 

 = 300,

 

ε

 

1

 

 = 10, 

 

f

 

(

 

x

 

) = 

 

λ

 

 – 

 

x

 

2

 

, and 

 

λ

 

 = 1.0. For the given nonlin-
earity parameter 

 

λ

 

, system (1) exhibits periodic
motions with a period of 

 

T

 

a

 

 = 619 (Fig. 1a). Since the
time series is asymmetric, the 

 

N

 

(

 

τ

 

) plot (Fig. 1b) dis-
plays two peaks (at 

 

τ

 

 = 305 and 

 

τ

 

 = 314), which corre-
spond to the distances between maxima 

 

B

 

 and min-
ima 

 

C

 

 and between minima 

 

C

 

 and maxima 

 

D

 

, respec-
tively. Thus, the 

 

N

 

(

 

τ

 

) plot cannot be used for
determining the delay from the time series of periodic
oscillations in system (1).

Let an external signal 

 

F

 

(

 

t

 

) be applied to system (1),
which is now described by the following equation:

(2)

Consider an external signal 

 

F

 

(

 

t

 

) representing rectangu-
lar pulses with amplitude 

 

A

 

, period 

 

T

 

, and duration 

 

M

 

.
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If this action is strong enough, this will lead to the onset
of a transient process. As a result, the system performs
motions in a broader region of the phase space, which
provides additional information on the system dynam-
ics that helps to recover its parameters [14]. In particu-
lar, the appearance of a large number of additional
extrema in the regions of time series corresponding to
the transient process leads to the appearance of a pro-
nounced minimum on the 

 

N

 

(

 

τ

 

) plot, which can be used
to determine the delay time.

Figure 2 shows a time series and the corresponding

 

N

 

(

 

τ

 

) plot for system (2) with the same parameters as
those for the autonomous system (1) (illustrated in
Fig. 1) and the external signal parameters 

 

A

 

 = 0.5, 

 

T

 

 =
490, and 

 

M

 

 = 0.2

 

T

 

. As can be seen, the time series is
similar to a chaotic one (Fig. 2a) and contains a large
number of irregular extrema. This makes possible to
estimate exactly the delay from the 

 

N

 

(

 

τ

 

) plot con-
structed at a unit step in 

 

τ

 

, which reveals a clear mini-
mum at 

 

τ

 

 = 

 

τ

 

1

 

 = 300 (Fig. 2b).
Investigations show that the proposed method of

determining the delay time is applicable in a broad
range of parameters of the external action. For 

 

A 

 

= 0.5
and 

 

M

 

 = 0.2

 

T

 

, the repetition period 

 

T

 

 of external pulses,
for which the 

 

τ

 

1

 

 value is exactly determined, can be
arbitrarily selected in the interval from 

 

T 

 

= 1.2

 

τ

 

1

 

 to
1.8

 

τ

 

1

 

. There are narrower intervals of 

 

T

 

 (below 

 

τ

 

1

 

 and
above 2

 

τ

 

1

 

) where the delay time is also accurately esti-
mated. It should be noted that, in selecting 

 

T

 

, it is pos-
sible to use a rough estimate for the delay time of an

autonomous system (1), according to which 

 

τ

 

1

 

 is
always smaller than 

 

T

 

a

 

/2. We have also verified the pro-
posed procedure by varying the external pulse duration
within broad limits (from 

 

M

 

 = 0.05

 

T

 

 to 0.5

 

T

 

). The
method remained effective, but small 

 

M

 

 values make
necessary an increase in the pulse amplitude 

 

A 

 

(which
can be decreased with increasing M). It should be noted
that the delay can also be estimated using a harmonic
external action F(t), provided that its parameters are
such that the initial time-delay system exhibits chaotic
behavior under this action.

Once τ1 is determined, the inertial parameter ε1 can
be recovered and the nonlinear function f reconstructed
from the unperturbed periodic time series (Fig. 1a)
using an algorithm described previously [8] (in applica-
tion to the chaotic time series of a time-delay system).
In order to implement this approach, the points of a
given time series are plotted on the plane of coordinates
[x(t – τ1), ε (t) + x(t)], the parameter ε is varied at a cer-
tain step, and the length of a straight segment L(ε) con-
necting points (ordered with respect to abscissa x(t – τ1)
in this plane is determined. If ε = ε1, then, according to
Eq. (1), the points on the indicated plane reproduce the
nonlinear function and the length L(ε) of the connecting
segment exhibits a minimum. The greater the error of
estimated parameters, the less ordered are the points
and the longer is the broken line connecting these
points as compared to the case where these points fit to
a one-dimensional curve.
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Fig. 1. Time-delay system (1) performing oscillations in a periodic regime: (a) a typical time series of oscillations in the system;
(b) a plot of the number N of the pairs of extrema in the given time series spaced by various time intervals τ (normalized to the total
number of extrema).
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Fig. 2. Reconstruction of the delay time of system (2): (a) typical time series of oscillations in the system; (b) a plot of the
number N of the pairs of extrema in the given time series spaced by various time intervals τ (normalized to the total number of
extrema), which shows that Nmin(τ) = N(300).
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Figure 3a shows the L(ε) curve constructed with ε
varied at a step of 0.01 for the delay time τ1 = 300
recovered as described above. As can be seen, the L(ε)
function has a minimum at ε = ε1 = 10.00. Figure 3b
presents the nonlinear function reconstructed for τ1 =
300 and ε1 = 10.00 from a periodic time series of sys-
tem (1). Note that, using this approach, only a fragment
of this function can be reconstructed because, by virtue
of the regular character of motions, the oscillations are
performed in a small region of the phase space. For a
more complete recovery of the nonlinear function, it is
possible to use a time series of the nonautonomous sys-
tem (2). In this case, the plot of ε1 (t) + x(t) versus
x(t − τ1) should be constructed using only points of the
time series corresponding to the intrinsic dynamics of
the time-delay system (i.e., points should be selected in
the intervals between sequential pulses of the external
action). Figure 3c shows the nonlinear function recon-
structed in this way, which quite well coincides with the
true quadratic function of system (1).

The proposed method also remains effective in the
presence of a noise. In order to check for this, we
applied the procedures described above to a time series
obtained by adding a Gaussian white noise with zero
mean to the initial time series corresponding to Eq. (2).
In the case where the added disturbance had a standard
deviation amounting to 10% of that for the time series
without noise, the position of N(τ) minimum still
allowed the delay to be exactly recovered. The values of
ε1 and the nonlinear function were also recovered with
a good precision, but it was necessary to employ the
time series of a non autonomous system and use only
points selected in the intervals between sequential
pulses of the external action.

In conclusion, we proposed a method for the recov-
ery of delay time, inertial parameter, and nonlinear
function of a time-delay system performing periodic
oscillations. The proposed method is based on an anal-

ẋ

ysis of the system response to a regular external action
that leads to the onset of a transient process, which pro-
vides additional information on the system dynamics
and helps recovering the required parameters.
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Fig. 3. Reconstruction of the inertial parameter ε and nonlinear function f upon the recovery of delay time τ1: (a) a plot of the

length L of the straight segment connecting points (ordered with respect to abscissa) on the [x(t – τ1), ε (t) + x(t)] plane for ε varied
at a certain step; (b, c) nonlinear functions f reconstructed from the periodic time series of systems (1) and (2), respectively.
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