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Systems with delayed feedback (time-delay sys-
tems) are widely encountered in both nature and tech-
nology [1]. In contrast to the investigation of dynamics
of the autooscillatory time-delay systems, the problem
of reconstructing the model equations for such systems
from their time series is studied in less detail. Since
even simple systems with delayed feedback can exhibit
chaotic oscillations of very high dimensionality, uni-
versal methods for their reconstruction are ineffective
and, hence, special approaches have to be developed for
the recovery of equations of particular delay-feedback
systems [2–8]. However, all approaches developed pre-
viously were aimed at the recovery of isolated time-
delay systems, whereas situations involving several
interacting systems with delayed feedback are typically
encountered in solving important applied problems [9–
11].

Recently, we have proposed [12] a method for the
recovery of two linearly coupled time-delay system
from their chaotic time series. This Letter presents the
development of our method for the case of an arbitrary
number of interrelated delay-feedback systems and
describes a method for the reconstruction of model
delay-differential equations from the time series of the
chains of coupled delay-feedback systems with various
types of coupling between elements of the chain.

Let us first consider a chain consisting of three uni-
directionally coupled time-delay systems described by
the following system of differential equations:
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 are the coupling coefficients.
This type of coupling between time-delay systems
and the resulting synchronization of oscillations in
elements of the chain have been previously studied in
[9, 13].

For recovering the delay times 
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 from the time
series 
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), let us use the method proposed previously
[8], which is based on the fact that time series of the
delay-feedback systems of type (1) contain virtually
no extrema separated from one another by an interval
equal to the delay time. Then, in order to recover 
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, it
is necessary to find extrema in a given time series,
determine the number 

 

N

 

 of the pairs of extrema spaced
from each other by various intervals 

 

τ

 

 in this time
series, construct the 

 

N

 

(
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) plot, and estimate the delay
time 

 

τ

 

i

 

 as the position of the absolute minimum of this
function. Investigations showed that this method of
determining the delay times can be also successfully
applied to coupled time-delay systems, provided that
their interaction does not lead to the appearance of a
large umber of additional extrema in the time series.

System (1) is not subjected to the action of other
systems and, hence, the parameter 

 

ε

 

1

 

 and the nonlinear
function 

 

f

 

1

 

 can be recovered using the aforementioned
method [8]. In order to reconstruct the model equa-
tions (2) and (3) of the second and third systems in
the chain, we propose to use the following approach.
As can be seen from Eqs. (2) and (3), the dependences

ε3 ẋ3 t( )
=  x3 t( )– f 3 x3 t τ3–( )( ) k2 x2 t( ) x3 t( )–[ ],+ +
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respectively. In order to determine the unknown param-
eters 
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 and 

 

k

 

1, 2

 

, we suggest to try various values so as
to obtain single-valued relationships on the correspond-
ing planes, which is only possible provided a correct
choice of these parameters. As a quantitative criterion
of such a unique relationship in the search for 

 

ε
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 and

 

k
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, we can use the minimum length 
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) of a broken
line connecting sequential points (ordered with respect
to the abscissa) on the corresponding planes. If the
choice of 

 

ε

 

2, 3

 

 and 

 

k

 

1, 2

 

 is incorrect, we will obtain a
set of points that do not obey a functional relation-
ship. The lower the accuracy in the choice of param-
eters, the less ordered are the points and the longer
is the length of the broken line connecting these
points (compared to the case when this set of points
belongs to a one-dimensional curve). In order to
reduce the computational time, the step of variation
of the ε and k values can be initial taken relatively large
and then decreased in the vicinity of the minimum of
L(ε, k).

As an application example, Fig. 1 illustrates the
recovery of Eq. (3) from very noisy chaotic time series
of the variables x2(t) and x3(t) in the chain of unidirec-

ẋ2 3, tionally coupled Ikeda systems [14] described by the
following equations:

(4)

where i = 1, 2, 3 and we use the boundary condition
x0 ≡ x1, which implies that the first element is not sub-
jected to the action of other elements. The parameters
of all three Ikeda equations were set identical (µ1, 2, 3 =
20, τ1, 2, 3 = 2, x01, 02, 03 = π/3), while the initial condi-
tions were different. Systems with such parameters
demonstrate the motion on a chaotic attractor of high
dimensionality [14]. Equations (4) correspond to εi = 1.
The coefficients of coupling between elements in the
chain were different: k1 = 1.5, k2 = 1. It should be noted
that synchronization of the unidirectionally coupled
Ikeda systems with the indicated parameters is
observed for k1 = k2 ≥ 7.5. All three coupled systems
were rendered noisy by adding white Gaussian noise
with a zero mean and a mean-square deviation amount-
ing to 20% of that for the noiseless time series (which
corresponds to a signal-to-noise ratio about 14 dB).

Figure 1a shows a fragment of the time series of
oscillations in the third element of the chain under
consideration. The scale was such that a temporal inter-
val equal to the delay time accommodated 200 points
of the time series. Despite a high noise level, the

ẋi t( ) xi t( )– µi xi t τi–( ) x0i–( )sin+=
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Fig. 1. Reconstruction of an element of a chain of unidirectionally coupled Ikeda systems (1)–(3) in the presence of a 20% white
Gaussian noise: (a) the typical experimental time series of x3(t); (b) a plot of the number N of the pairs of extrema spaced by various
distances τ in the given time series (normalized to the total number of extrema), which yields Nmin(t) = N(2.00)); (c) a plot of L(ε, k)
(normalized to the maximum value Lmax(ε, k) = L(0.0, 2.0) in a given interval of parameters, which yields Lmin(ε, k) = L(0.98, 0.95));

(d) nonlinear function f3 reconstructed for  = 2.00,  = 0.98,  = 0.95.τ3' ε3' k2'
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N(τ) curve constructed for τ varied at a step of
0.01 exhibits a clearly distinguished minimum at the
value of τ equal exactly to the delay time (Fig. 1b). It
should be noted that the time series was smoothed in
order to reduce the number of noise-related extrema (in
evaluation of the derivative) using a procedure of local
approximation over seven neighboring points. The
length L(ε, k) of a broken line connecting sequential
points (ordered with respect to the abscissa) on the
plane of coordinates (x3(t – τ3), ε3 (t) + x3(t) –
k2(x2(t) – x3(t))) was found to be minimum for ε3 = 0.98
and k2 = 0.95, which were tried at a 0.01 step (Fig. 1c).
Figure 1d presents the multimodal function recovered
for these values of parameters, which well coincides
with the true nonlinear function in the Ikeda equation.
Approximation of the recovered nonlinear function by
a 12th order polynomial yielded the following approx-
imate values of the remaining parameters:  = 19.31

and  = 1.025 (π/3 ≈ 1.047).

Now let us consider a chain consisting of diffusion-
coupled systems with delayed feedback described by
the following equations:

(5)

where i is the number of the chain element and k is the
coupling coefficient. Synchronization of such systems
was studied by Burić et al. [15, 16], but the problem of
recovery of the equations of chains of coupled time-
delay systems has not been described until now.
In order to reconstruct equations of the elements of
chain (5), we propose the following approach. The val-
ues of τi can be determined using the method described
above, based on the statistical analysis of temporal
intervals between extrema of the time series. It was
established that this method of evaluation of the delay
time reliably works in a very broad range of parameters

ẋ3

µ3'

x03'

εi ẋi t( ) xi t( )– f i xi t τi–( )( )+=

+ k xi 1+ t( ) 2xi t( )– xi 1– t( )+[ ],

of the interacting systems and the coupling coefficients.
In order to reconstruct the nonlinear functions fi and the
parameters εi and k, we will use the time series of oscil-
lations in three sequential elements: ith and the neigh-
boring ones, (i – 1)th and (i + 1)th. As can be seen from
Eq. (5), a manifold of points with the coordinates
(xi(t − τi), εi (t) + xi(t) – k[ki + 1(t) – 2xi(t) + xi – 1(t)])
plotted on the plane will reproduce the function fi. Since
the quantities εi and k are not known a priori, we have
to try various ε and k in certain intervals so as to provide
a single-valued relationship on the indicated plane,
which is possible only with a correct choice of the
parameters. As a quantitative criterion of such a unique
relationship in the search for ε1 and k2, we again use the
minimum length L(εi, k) of a broken line connecting
sequential points (ordered with respect to the abscissa)
on this plane. A minimum of the length of this line will
correspond to the true values of εi and k, while the cor-
responding plot will reproduce the correct nonlinear
function.

In order to illustrate the proposed method, let us
consider the reconstruction of an element of chain (5)
consisting of three diffusion-coupled nonidentical
Mackay–Glass systems

(6)

(i = 1, 2, 3) with periodic boundary conditions (x4 ≡ x1).
The system parameters (τ1 = 300, τ2 = 350, τ3 = 400;
a1 = 0.2, a2 = 0.3, a3 = 0.25; b1, 2, 3 = 0.1; c1, 2, 3 = 10) cor-
respond to the motion of elements on a chaotic attractor
of high dimensionality. Being divided by bi, the chain
of Mackay–Glass equations reduces to a system of
type (5) with ε1, 2, 3 = 10. Note that the coefficient of
coupling between elements of the chain (k = 0.1) is
2.5 times smaller than the value corresponding to the
complete synchronization of oscillations in the chain.

ẋi
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Fig. 2. Reconstruction of an element of a chain of diffusion-coupled Mackay–Glass systems (6) in the presence of a 10% white
Gaussian noise: (a) a plot of the number N of the pairs of extrema spaced by various distances τ in the time series of x2(t) (normalized

to the number of points in time series), which yields Nmin(τ) = N(350); (b) nonlinear function f2 reconstructed for  = 350,  =

10.0, k' = 0.09 as S2 = (t) + x2(t) – k'(x3(t) – 2x2(t) + x1(t)).
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As above, all the three coupled Mackay–Glass systems
were rendered noisy by adding 10% white Gaussian
noise (which corresponds to signal-to-noise ratio about
20 dB).

Figure 2 shows the results of reconstruction of the
second element in the closed chain of three diffusion-
coupled Mackay–Glass equations. Despite the presence
of noise, the N(τ) curve constructed using the time
series of x2(t) for τ varied at a step of 1.0 exhibits a
clearly distinguished minimum at the value of τ = τ2 =
350 (Fig. 2a). The length L(ε, k) of a broken line exhib-
ited a minimum for ε2 = 10.0 and k = 0.09. Figure 2b
presents the reconstructed nonlinear function f2. Analo-
gous procedures ensure a high-quality recovery of the
first and third elements of the chain.

The proposed approach has no limitations with
respect to the number of elements in the chain of cou-
pled time-delay systems. Moreover, the method can be
expanded to coupled delay-feedback systems of high
order with several delay times, and even with additional
delay in the coupling between local elements. However,
such complications of the system lead to a considerable
of the volume of computations, since a greater number
of parameters have to be recovered. In the case of syn-
chronization in the chain of diffusion-coupled systems
with delayed feedback, which takes place for a strong
coupling between elements, the proposed method
ensures the recovery of parameters of the local ele-
ments, but the coupling coefficients cannot be deter-
mined.

In conclusion, we proposed a method for the recov-
ery of model delay-differential equations for the chains
of coupled delay-feedback systems, which is effective
at a high level of noise.
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