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Abstract

We consider different ways for encryption and decryption of information in communication systems using chaotic
signal of a time-delay system as a carrier. A method is proposed for extracting a hidden message in the case when the
parameters of the chaotic transmitter are a priori unknown. For different configurations of the transmitter the proce-
dure of information signal extraction from the transmitted signal is demonstrated using numerical data produced by
nonlinear mixing of the chaotic signal of the Mackey–Glass system and frequency-modulated harmonic signal.
� 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The discovery of the phenomenon of synchronization in chaotic systems [1] has given rise to active development of
secure communication methods using chaotic signal as a carrier [2–5]. Chaotic communication systems are particularly
attractive due to the broadband power spectrum of chaotic signals, high rates of information transmission, and effi-
ciency at sufficiently low signal-to-noise ratio. Besides, many chaotic communication schemes are simply realized
and demonstrate a rich variety of different oscillating regimes. However, many chaotic communication schemes are
not as secure as expected and can be successfully unmasked [6–10]. To improve the security of data transmission it
has been proposed to employ time-delay systems demonstrating chaotic dynamics of a very high dimension [11–17].
However, even in communication schemes using masking chaotic signals of time-delay systems the hidden message
can be extracted in certain cases by an eavesdropper [18–20].

In this paper we consider various ways of information encoding in communication schemes based on time-delay sys-
tems and propose a technique for extracting a hidden message in the case when the transmitter parameters are
unknown.
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2. Communication schemes with nonlinear mixing of information signal and time-delay system signal

A block diagram of a transmitter, representing the ring system composed of delay, nonlinear, and inertial elements,
is shown in Fig. 1. For the case when the filter is a low-frequency first-order filter, this transmitter is described in the
absence of information signal by the delay-differential equation

e0 _xðtÞ ¼ �xðtÞ þ f ½xðt � s0Þ�; ð1Þ

where x(t) is the system state at time t, function f defines nonlocal correlations in time, s0 is the delay time, and param-
eter e0 characterizes the inertial properties of the system. The information signal m(t) can be injected into the ring system
(1) at different points denoted in Fig. 1 by the numerals I–III. Depending on the point at which the message signal is
injected into the feedback circuit of the transmitter, the system’s dynamics is governed by one of the following
equations:

e0 _xðtÞ ¼ �xðtÞ þ f ½xðt � s0Þ þ mðt � s0Þ�; ð2Þ
e0 _xðtÞ ¼ �xðtÞ þ f ½xðt � s0Þ þ mðtÞ�; ð3Þ
e0 _xðtÞ ¼ �xðtÞ þ f ½xðt � s0Þ� þ mðtÞ: ð4Þ

Eq. (2) corresponds to the case when the signal m(t) is injected into the transmitter at the point I. The cases of infor-
mation signal injection at the points II and III are described by Eqs. (3) and (4), respectively. With this nonlinear mixing
the information signal is directly involved in the formation of a complicated dynamics of the chaotic system. The signal
s(t) transmitted into the communication channel can be also taken from different points of the ring system indicated in
Fig. 1 by the numerals 1–3. Thus, there are nine different ways for realizing the transmitter depicted in Fig. 1.

Similar approach for the information encryption in delayed nonlinear feedback systems has been considered in [14].
The possibility of the message signal recovery at the receiver was discussed in [14] for different ways of the information
signal injection into the time-delay system and different output points of the transmitter. The configuration and the
parameters of the transmitter were assumed to be known to the authorized receiver. Nevertheless, in a number of cases
the message recovery required processing of the signal at the receiver output, including determination of the reciprocal
function of the nonlinear element. Since the transfer function of a nonlinear element is not necessarily one-to-one, this
transformation may be incorrect. In such cases, we suggest using an approximate approach for recovering the informa-
tion signal. This approach allows one to avoid inverse transformation. Moreover, using our method the information
signal can be extracted from the transmitted signal s(t) even in the case when the transmitter parameters are a priori
unknown.

Let us consider different configurations of the transmitter shown in Fig. 1 and determine the corresponding signals at
the output of the receiver being an identical copy of the transmitter. Fig. 2 illustrates the communication scheme based
on the transmitter configuration denoted as III/1. In this case, with the help of a summator the information signal m(t)
is added at the point III to the chaotic signal of the transmitter whose dynamics is described by Eq. (4), and the signal
s(t) = x(t) is transmitted into the communication channel from the point 1. The receiver is composed of the same ele-
ments as the transmitter, except that the summator is replaced by a subtracter breaking the feedback circuit. The recei-
ver equation is

e0 _yðtÞ ¼ �yðtÞ þ f ½xðt � s0Þ�: ð5Þ

At the output of the subtracter we have the signal z(t) = x(t) � y(t).
The values of the signal z(t) at the receiver output are presented in Table 1 for various configurations of the com-

munication scheme. In the simplest cases I/1, II/2, and III/3, where the information signal is injected into the feedback
circuit of the transmitter and simultaneously transmitted into the communication channel, we immediately have the

Fig. 1. Block diagram of a delayed nonlinear feedback system generating a chaotic signal. The numerals I–III indicate points where an
information signal can be injected into the system. The numerals 1–3 indicate the output points of the transmitter.
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extracted message signal z(t) = m(t) at the output of the receiver. In these cases the quality of extraction of the message
m(t) does not depend on its amplitude and frequency characteristics. By this is meant that for the considered configu-
rations the communication schemes allow one to transmit complicated information signals without distortion. For the
case I/2 the information signal is also recovered accurately, but with the delay s0.

For the other five configurations of the communication scheme the procedure of the message signal extraction is
more complicated since the processing of the signal z(t) at the receiver output is required. For example, for recovering
the information signal in the case III/1 depicted in Fig. 2, let us subtract Eq. (5) describing the dynamics of the receiver
from Eq. (4) for the transmitter. The expression for m(t) takes the form

mðtÞ ¼ e0½ _xðtÞ � _yðtÞ� � ½xðtÞ � yðtÞ�: ð6Þ

Taking into account that z(t) = x(t) � y(t), the information signal can be obtained from the signal at the receiver output
as follows:

mðtÞ ¼ e0 _zðtÞ � zðtÞ: ð7Þ

In a similar way one can recover the signal m(t) for the case III/2:

mðtÞ ¼ e0 _zðt � s0Þ � zðt � s0Þ: ð8Þ

In the communication system II/3 the difference signal at the output of the receiver is

zðtÞ ¼ f ½xðt � s0Þ þ mðtÞ� � f ½xðt � s0Þ�: ð9Þ

Assuming that the information signal m(t) is small in comparison with x(t), let us expand the first term in Eq. (9) in a
Taylor series and restrict our consideration to the two first terms of the expansion:

f ½xðt � s0Þ þ mðtÞ� � f ½xðt � s0Þ� þ
df ½xðt � s0Þ�

dx
mðtÞ: ð10Þ

Fig. 2. Block diagram of the chaotic communication scheme for the case III/1.

Table 1
The difference signal z(t) at the output of the receiver for different points of information signal injection into the feedback circuit of the
transmitter and different points of the signal output

Input point Output point

1 2 3

I m(t) m(t � s0) f ½xðt � s0Þ þ mðt � s0Þ� � f ½xðt � s0Þ�

II e0½ _yðtÞ � _xðtÞ� þ f ½xðt � s0Þ þ mðtÞ� � f ½xðt � s0Þ� m(t) f ½xðt � s0Þ þ mðtÞ� � f ½xðt � s0Þ�

III x(t) � y(t) x(t � s0) � y(t � s0) m(t)

M.D. Prokhorov, V.I. Ponomarenko / Chaos, Solitons and Fractals 35 (2008) 871–877 873



Author's personal copy

This assumption is justified because the level of information signal in the communication schemes with nonlinear mix-
ing must be sufficiently low, otherwise the chaotic signal may not provide enough masking [4]. From Eqs. (9) and (10)
we obtain

mðtÞ � zðtÞ
df ½xðt � s0Þ�=dx

: ð11Þ

Eq. (11) can be used also for approximate recovery of the message signal in the case I/3. However, the recovered mes-
sage signal is delayed by s0 in this case.

For the case II/1 the message signal m(t) can be approximately determined as follows:

mðtÞ � zðtÞ þ e0 _zðtÞ
df ½xðt � s0Þ�=dx

: ð12Þ

3. Recovery of information signal nonlinearly mixed with chaotic signal of the time-delay system

The security of chaotic communication systems is based on the assumption that the parameters of the chaotic trans-
mitter are known only to the authorized receiver having an identical copy of the transmitter. However, a hidden mes-
sage can be extracted by a third party having only the time series of the transmitted signal s(t). To do this, one has to
recover the parameters of the time-delay system (1) generating a masking chaotic signal. In this case the nonlinear func-
tion f and the parameters s0 and e0 are a priori unknown.

To reconstruct the parameters of the transmitter governed in the absence of message by delay-differential Eq. (1), we
use the method proposed recently in [21]. This method is based on the statistical analysis of time intervals between
extrema in the time series of time-delay systems and the projection of infinite-dimensional phase space of these systems
to suitably chosen low-dimensional subspaces. The method allows one to reconstruct the model equation of a ring time-
delay system from chaotic time series of various dynamical variables [x(t), x(t � s0), or f[x(t � s0)] (see Fig. 1)] measured
at different points of the system. The method is still efficient in the presence of message in the transmitted signal if the
message signal has small amplitude. In this case the information signal can be considered as noise deteriorating the
accuracy of the transmitter parameters estimation. We have found out that our technique of time-delay system recovery
provides sufficiently accurate estimation of the system parameters for noise levels up to 10%. To ensure the security of
message transmission, the level of information signal in the considered communication systems is usually much lower.

Successful recovery of hidden message without knowing the transmitter parameters was demonstrated in [19] for the
simplest case I/1. In the present paper we illustrate the efficiency of our method for extracting a hidden message in the
more complicated cases III/1 and II/3.

Let us consider a transmitting time-delay system described by the Mackey–Glass equation

_xðtÞ ¼ �bxðtÞ þ axðt � s0Þ
1þ xcðt � s0Þ

; ð13Þ

which can be converted to Eq. (1) with e0 = 1/b and the function

f ½xðt � s0Þ� ¼
axðt � s0Þ

b½1þ xcðt � s0Þ�
: ð14Þ

The parameters of the system (13) are chosen to be a = 0.2, b = 0.1, c = 10, and s0 = 300 to produce a dynamics on a
high-dimensional chaotic attractor. As an information signal nonlinearly mixed with the chaotic signal of the system
(13), we use the frequency-modulated harmonic signal

mðtÞ ¼ A sin½2pfct � B cosð2pfmtÞ�; ð15Þ

where A defines the message amplitude, fc is the central frequency of the power spectrum of the signal, B is the fre-
quency modulation index, and fm is the modulation frequency.

Fig. 3 shows parts of the time series and the power spectra of the frequency-modulated signal m(t) and the trans-
mitted signal s(t) for the communication scheme III/1. With a fourth-order Runge–Kutta method for delay-differential
equations we record 50,000 points of s(t) with the sampling interval h = 1. As it can be seen from Fig. 3, the amplitude
of the information signal comprises about 1% of the amplitude of the chaotic carrier and the presence of message is not
noticeable in the power spectrum of the transmitted signal s(t).

To recover the delay time s0 of the transmitter we determine the extrema in the time series of s(t) applying a local
parabolic approximation, define for different values of time s the number N of pairs of extrema separated in time by s,
and construct the N(s) plot (Fig. 4(a)). The step of s variation is set by 1. The time series exhibits about 3000 extrema
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and N(s) is normalized to their total number. It was shown in [21] that there are practically no extrema separated in time
by the delay time in time series of a time-delay system. In Fig. 4(a) the absolute minimum of N(s) is observed at
s00 ¼ 300.

To recover the parameter e0 we calculate for different e values the length L of a line connecting all points ordered
with respect to abscissa in the plane ½xðt � s00Þ; e _xðtÞ þ xðtÞ� and construct the L(e) plot (Fig. 4(b)) [21]. L(e) is normalized
to the number of points in the plane. The L(e) plot, constructed with the step of e variation equal to 0.1, demonstrates
the minimum at e00 ¼ 10:1 (e0 = 1/b = 10). The set of points constructed for the defined s00 and e00 in the plane ½xðt � s00Þ;
e00 _xðtÞ þ xðtÞ� reproduces with a good accuracy the nonlinear function (14) of the Mackey–Glass equation (Fig. 4(c)).
For the approximation of the recovered function we use a polynomial of degree 12.

After the transmitter parameters are determined, one can construct the receiver. The more accurate is the estimation
of the system parameters, the higher is the quality of synchronous chaotic response of the receiver and, as a conse-
quence, the higher is the quality of the message extraction. Part of the time series of the extracted frequency-modulated
harmonic signal m

0
(t) calculated using Eq. (7) is presented in Fig. 5(a). The power spectrum of this signal is shown in

Fig. 5(b).
As another example, let us consider the recovery of the frequency-modulated signal (15) nonlinearly mixed with the

chaotic signal of the Mackey–Glass system in the communication scheme II/3. The parameters of the information signal
and the Mackey–Glass system are chosen the same as in the considered above case III/1. The temporal realization of the
transmitted signal s(t) = f[x(t � s0) + m(t)] is qualitatively similar to the one shown in Fig. 3(c).

Fig. 3. (a) The frequency-modulated signal for A = 0.01, B = 3, fc = 5 · 10�3, fm = 5 · 10�4. (b) The power spectrum of the frequency-
modulated signal m(t). (c) The transmitted signal. (d) The power spectrum of the transmitted signal s(t).

Fig. 4. Reconstruction of the transmitter parameters for the case III/1. (a) The N(s) plot. Nmin(s) = N(300). (b) The L(e) plot.
Lmin(e) = L(10.1). (c) The recovered nonlinear function at s00 ¼ 300 and e00 ¼ 10:1.
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For various s values we count the number N of situations when _sðtÞ and _sðt � sÞ are simultaneously equal to zero and
construct the N(s) plot (Fig. 6(a)). The location of minimum of N(s) allows us to define the delay time accurately,
s00 ¼ 300.

To estimate the parameter e0 from time series of the dynamical variable measured between the nonlinear element and
the filter (see Fig. 1), we exploit the method proposed in [21]. We filter the time series of s(t) under variation of the filter
cut-off frequency m = 1/e and plot s(t) versus uðt � s00Þ, where uðt � s00Þ is the signal at the filter output shifted by the time
s00. Then, we calculate the length L of a line connecting all points in the plane ½uðt � s00Þ; sðtÞ� ordered with respect to
uðt � s00Þ and construct the L(e) plot (Fig. 6(b)). For the step of e variation equal to 0.1, the minimum of L(e) is observed
at e00 ¼ 10:0. For the filter cut-off frequency m0 = 1/e0, in the absence of message u(t � s0) = x(t � s0) and the set of
points in the plane {x(t � s0), f[x(t � s0)]} reproduces the function f. The nonlinear function recovered from s(t) using
the estimated s00 and e00 is shown in Fig. 6(c). We approximated the recovered function with a polynomial of degree 15.

Part of the time series of the extracted information signal calculated using formula (11) and the power spectrum of
this extracted signal are presented in Fig. 7. From formula (11) it follows that the message signal may be recovered with
a large error at the points where the derivative in the denominator is close to zero. This error can be reduced using
frequency filtering of the recovered message signal.

Fig. 6. Reconstruction of the transmitter parameters for the case II/3. (a) The N(s) plot. N(s) is normalized to the total number of
extrema in the time series. Nmin(s) = N(300). (b) The L(e) plot. L(e) is normalized to the number of points. Lmin(e) = L(10.0). (c) The
recovered nonlinear function at s00 ¼ 300 and e00 ¼ 10:0.

Fig. 5. (a) The extracted frequency-modulated harmonic signal for the communication scheme III/1. (b) The power spectrum of the
extracted message signal.

Fig. 7. (a) The extracted frequency-modulated harmonic signal for the communication scheme II/3. (b) The power spectrum of the
extracted message signal.
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4. Conclusion

We have considered different communication schemes with nonlinear mixing of information signal and chaotic signal
of time-delay system. We have shown that in these communication systems the hidden message can be successfully
extracted from the transmitted signal even in the case when the transmitter parameters are a priori unknown. The pro-
cedure of message extraction is based on the method of time-delay systems reconstruction. For different configurations of
the transmitter and different measured dynamical variables this method allows one recover the model delay-differential
equation of the transmitter from chaotic time series even in the presence of message signal of small amplitude. Thus, even
chaotic communication systems with complicated configuration, where the information signal is injected into the feed-
back circuit of the transmitter with delay-induced dynamics at one point and transmitted into the communication chan-
nel from another point, can be successfully unmasked. The extraction of hidden message from the transmitted signal is
demonstrated for different configurations of the transmitter for the case of mixing of chaotic signal of the Mackey–Glass
system and frequency-modulated harmonic signal. A possible way to improve the level of security of the considered cha-
otic communication systems is to use modulation of their parameters or to employ high-dimensional time-delay systems.
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