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Detection of synchronization from univariate data using wavelet transform
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A method is proposed for detecting from univariate data the presence of synchronization of a self-sustained
oscillator by external driving with varying frequency. The method is based on the analysis of difference

between the oscillator instantaneous phases calculated using continuous wavelet transform at time moments
shifted by a certain constant value relative to each other. We apply our method to a driven asymmetric van der
Pol oscillator, experimental data from a driven electronic oscillator with delayed feedback and human heartbeat
time series. In the latest case, the analysis of the heart rate variability data reveals synchronous regimes
between the respiration and slow oscillations in blood pressure.
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I. INTRODUCTION

Detecting regimes of synchronization between self-
sustained oscillators is a typical problem in studying their
interaction. Two types of interaction are generally recognized
[1-4]. The first one is a unidirectional coupling of oscilla-
tors. It can result in synchronization of a self-sustained os-
cillator by an external force. In this case the dynamics of the
oscillator generating the driving signal does not depend on
the driven system behavior. The second type is a mutual
coupling of oscillators. In this case the interaction can be
more effective in one of the directions, approaching in the
limit to the first type, or can be equally effective in both
directions. In the event of mutual coupling, synchronization
is the result of the adjustment of rhythms of interacting sys-
tems. To detect synchronization one can analyze the ratio of
instantaneous frequencies of interacting oscillators and the
dynamics of the generalized phase difference [3]. As a quan-
titative characteristic of synchronization one can use the
phase synchronization index [5,6] or the measure of synchro-
nization [7,8].

Synchronization of interacting systems including the cha-
otic ones has been intensively studied in recent years. The
main ideas in this area have been introduced using standard
models [1-4,7-14]. At present, more attention is focused on
application of the developed techniques to living systems. In
particular, much consideration is being given to investigation
of synchronization between different brain areas [6,15-17]
and to studying synchronization in the human cardiorespira-
tory system [18-22]. Investigating such systems one usually
deals with the analysis of short time series heavily corrupted
by noise. In the presence of noise it is often difficult to detect
the transitions between synchronous and nonsynchronous re-
gimes. Besides, even in the region of synchronization a
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2m-phase jumps in the temporal behavior of the generalized
phase difference can take place. Moreover, the interacting
systems can have a set of natural rhythms. That is why it is
desirable to analyze synchronization and phase locking at
different time scales [7,17,23-25].

A striking example of interaction between various
rhythms is the operation of the human cardiovascular system
(CVS). The main rhythmic processes governing the cardio-
vascular dynamics are the main heart rhythm, respiration,
and the process of slow regulation of blood pressure and
heart rate having in humans the fundamental frequency close
to 0.1 Hz [26]. Owing to interaction, these rhythms appear in
various signals: Electrocardiogram (ECG), blood pressure,
blood flow, and heart rate variability (HRV) [27]. Recently, it
has been found that the main rhythmic processes operating
within the CVS can be synchronized [18-21]. It has been
shown that the systems generating the main heart rhythm and
the rhythm associated with slow oscillations in blood pres-
sure can be regarded as self-sustained oscillators, and that the
respiration can be regarded as an external forcing of these
systems [20,21].

Recently, we have proposed a method for detecting the
presence of synchronization of a self-sustained oscillator by
external driving with linearly varying frequency [22]. This
method was based on a continuous wavelet transform of both
the signals of the self-sustained oscillator and external force.
However, in many applications the diagnostics of synchroni-
zation from the analysis of univariate data is a more attrac-
tive problem than the detection of synchronization from mul-
tivariate data. For instance, the record of only a univariate
signal may be available for the analysis or simultaneous reg-
istration of different variables may be rather difficult. In this
paper we propose a method for detection of synchronization
from univariate data. However, a necessary condition for ap-
plication of our method is the presence of a driving signal
with varying frequency. For the mentioned above cardiovas-
cular system our method gives a possibility to detect syn-
chronization between its main rhythmic processes from the
analysis of the single heartbeat time series recorded under
paced respiration.
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The paper is organized as follows. In Sec. II we describe
the method for detecting synchronization from univariate
data. In Sec. III the method is tested by applying it to nu-
merical data produced by a driven asymmetric van der Pol
oscillator. In Sec. IV the method is used for detecting syn-
chronization from experimental time series gained from a
driven electronic oscillator with delayed feedback. Section V
presents the results of the method application to studying
synchronization between the rhythms of the cardiovascular
system from the analysis of the human heart rate variability
data. In Sec. VI we summarize our results.

II. METHOD DESCRIPTION

Let us consider a self-sustained oscillator driven by exter-
nal force F with varying frequency

x =H(x) + e F(P(1)), (1)

where H is the operator of evolution, € is the driving ampli-
tude, and ®(¢) is the phase of the external force defining the
law of the driving frequency w,(f) variation:

dd(r)
dr

wy(1) = 2)
In the simplest case the external force is described by a har-
monic function F(P(r))=sin (7).

Assume that we have at the disposal a univariate time
series x(¢) characterizing the response of the oscillator (1) to
the driving force F. Let us define from this time series the
phase ¢,(7) of oscillations at the system (1) basic frequency
fo- The main idea of our approach for detecting synchroni-
zation from univariate data is to consider the temporal be-
havior of the difference between the oscillator instantaneous
phases at the time moments ¢ and 7+ 7. We calculate the
phase difference

Agy(t) = @yt + 7) = @y(1), (3)

where 7 is the time shift that can be varied in a wide range.
Note that ¢(r) and ¢,(t+7) are the phases of the driven
self-sustained oscillator corresponding to oscillations at the
first harmonic of the oscillator basic frequency f,.

The variation of driving frequency is crucial for the pro-
posed method. Varying in time, the frequency of the external
force sequentially passes through the regions of synchroni-
zation of different orders 1:1, 2:1,..., n:1,..., n:m,...
(n,m=1,2,3,...). Within the time intervals corresponding
to asynchronous dynamics the external signal practically has
no influence on the dynamics of the basic frequency f in the
oscillator (1) spectrum. Thus, the phase of oscillator varies
linearly outside the regions of synchronization, ¢(7)
=2mfot+ &, where @ is the initial phase. Then, from Eq. (3) it
follows that

Agy(t) =2mfyr, (4)

i.e., the phase difference Agy(7) is constant within the re-
gions of asynchronous dynamics.

Another situation is observed in the vicinity of the time
moments f,, where the driving frequency /(1)
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=~ (2mn/m)f, and n:m synchronization takes place. For sim-
plicity let us consider the case of 1:1 synchronization. In the
synchronization (Arnold) tongue the frequency of the system
(1) nonautonomous oscillations is equal to the frequency (2)
of the external force and the phase difference between the
phase of the driven oscillator ¢,(7) and the phase ®(z) of the
external force, A(r)= (1) —P(1), is governed in a first ap-
proximation by the Adler equation [28]. It follows from the
Adler equation that in the region of 1:1 synchronization the
phase difference Ad(t) varies by .

Representing the driven oscillator phase as ¢,(f)=Ad(r)
+®(¢), we obtain from Eq. (3):

Agy(1) =D(1+ 7) = P(1) + 7, (5)

where y=Ad(t+7)—Ad(r)=const is the correction of the
phase difference that appears due to synchronization of the
system by external force. Expanding the phase ®(¢+7) in a
Taylor series we obtain

dd(r) 1d2P(r)
Apy(t) = - Ao 6
(PO() v+ dt T+ 7 dl‘2 + ( )
Taking into account Eq. (2) we can rewrite Eq. (6) as
1dwy(t
Agolt) = y+ w7+ Ea;—dt()h . )

Thus the behavior of the phase difference (3) is defined by
the law of the driving frequency w,() variation.

For the linear variation of the driving frequency, w,(r)
=a+ B¢, from Eq. (7) it follows that

Ay(t) = y+ at+ BT/2 + 10t. (8)

Consequently, in the region of synchronization the phase dif-
ference varies linearly in time, Agy(f) ~1. In the case of the
nonlinear variation of w,(z), the dynamics of A¢(r) is more
complicated. However, if w,(¢) varies in a monotone way
and the time of its passing through the synchronization
tongue is small, one can neglect the high-order terms of the
expansion and consider the law of Ag,(r) variation as the
linear one. We will show below that this assumption holds
true for many applications.

The absolute value of the change in the phase difference
Agy(r) within the synchronization region can be estimated
using Eq. (7):

Ap,=Agy(ty) = Agy(t)) =[w,(ty) — w,(t))]7
+ ( dwd(t) d(ud(t) )f boeee (9)

dt =1, dt 2
where #; and t, are the time moments when the frequency of
the external force passes through, respectively, the low-
frequency and high-frequency boundaries of the synchroni-
zation tongue. Assuming that the rate of wy(¢) variation is
slow, we can neglect the terms containing the derivatives of
w,4(t) and obtain
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Ap,~ Awr, (10)

where Aw=w,(t,)—wy(t;) is the bandwidth of synchroniza-
tion.

The obtained estimation corresponds to the case of 1:1
synchronization, characterized by equal values of the driving
frequency f, and the oscillator frequency f, f;/fo=1. How-
ever, the considered approach can be easily extended to a
more complicated case of n:m synchronization. In this case
the change in Agy(r) within the region of synchronization
takes the value

AQDS=@AQ)T. (11)
n

Hence the analysis of the phase difference (3) behavior al-
lows one to distinguish between the regimes of synchronous
and asynchronous dynamics of driven oscillator. The phase
difference A () is constant for the regions of asynchronous
dynamics and demonstrates monotone (often almost linear)
variation by the value A, defined by Eq. (11) within the
regions of synchronization.

To define the phase ¢,() of oscillations at the basic fre-
quency we use the approach based on the continuous wavelet
transform [7,8,24,29]. It is significant, that the wavelet trans-
form [30,31] is the powerful tool for the analysis of nonlin-
ear dynamical system behavior. The continuous wavelet
analysis has been applied in the studies of phase synchroni-
zation of chaotic neural oscillations in the brain [32-36],
electroencephalogram signals [37], R-R intervals and arterial
blood pressure oscillations in brain injury [38], chaotic laser
array [39]. It has also been used to detect the main frequency
of the oscillations in nephron autoregulation [40] and coher-
ence between blood flow and skin temperature oscillations
[41]. In these recent studies a continuous wavelet transform
with various mother wavelet functions has been used for in-
troducing the instantaneous phases of analyzed signals. In
particular, in Refs. [34,37] a comparison of Hilbert transform
and wavelet method with the mother Morlet wavelet has
been carried out and good conformity between these two
methods has been shown for the analysis of neuronal activity.
It is important to note that in all the above mentioned studies
the wavelet transform has been used for the analysis of syn-
chronization from bivariate data, when the generalized phase
difference A¢(7) of both analyzed rhythms was investigated.
The proposed method allows one to detect synchronization
from the analysis of only the one signal of the oscillator
response to the external force with monotonically varying
frequency. Taking into account the high efficiency of the
analysis of synchronization with the help of the continuous
wavelet transform using bivariate data, we will use the con-
tinuous wavelet transform for determining the instantaneous
phase of the analyzed univariate signal.

The continuous wavelet transform [30,31] of the signal
x(7) is defined as

W(s,10) = f " X0y, (), (12)

where wy,,o(t) is the wavelet function related to the mother
wavelet ¢y(1) as ¢, (£)=( 1/\s) gl (t—15)/s]. The time scale
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s corresponds to the width of the wavelet function, 7, is the
shift of the wavelet along the time axis, and the asterisk
denotes complex conjugation. It should be noted that the
wavelet analysis operates usually with the time scale s in-
stead of the frequency f, or the corresponding period T
=1/f, traditional for the Fourier transform.

The wavelet spectrum

W(S’t()) = |W(S,t0)|eXp[j(PS(t0)] (13)

describes the system dynamics for every time scale s at any
time moment ¢,. The value of |W(s,#,)| determines the pres-
ence and intensity of the time scale s at the time moment #,.
We use the complex Morlet wavelet [42] (7))
=(l/%‘77)exp[j(r77]exp[—772/ 2] as the mother wavelet func-
tion. The choice of the wavelet parameter o=2m provides
the simple relation f~1/s between the frequency f of the
Fourier transform and the time scale s [31].

III. METHOD APPLICATION TO DETECTING
SYNCHRONIZATION IN A DRIVEN ASYMMETRIC
van der POL OSCILLATOR

A. Model

Let us consider the asymmetric van der Pol oscillator un-
der external force with linearly increasing frequency:

¥ = (1 — ux — x)x% + Q%x = & sin D(r), (14)

where u is the parameter characterizing the system asymme-
try, 1=0.247 is the natural frequency, and ¢ and ®(¢) are,
respectively, the amplitude and phase of the external force.
The phase ®(r)=2m((a+Bt/T)]t defines the linear depen-
dence of the driving frequency w,(z) on time:

wd(t)z%it)=2w[a+ 2B1T], (15)
where @=0.03, 8=0.17, and T=1800 is the maximal time of
computation. This system has been considered in Ref. [22] as
a model for studying synchronization between the respira-
tion, which can be regarded as an external force, and the
process of slow regulation of blood pressure and heart rate,
which can be treated as a self-sustained oscillator. In the
present paper we use this model system for testing our new
method of detecting synchronization from univariate data.
The chosen values of the model parameters provide close
correspondence of frequencies and the ways of the driving
frequency variation in the simulation and experimental study
described in Sec. V. The parameter w is chosen to be equal to
unity throughout this paper. In this case the phase portrait of
oscillations is asymmetric and the power spectrum contains
both odd and even harmonics of the basic frequency f
=0.0973, as well as the power spectrum of the low-frequency
fluctuations of blood pressure and heart rate [22]. Recall that
the classical van der Pol oscillator with x=0 has a symmet-
ric phase portrait and its power spectrum exhibits only odd
harmonics of f;,. We calculate the time series of nonautono-
mous asymmetric van der Pol oscillator (14) at £=0.2 using
a fourth-order Runge-Kutta method with the integration step
Ar=0.01.
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FIG. 1. (Color online) Shaded plot of the wavelet power spec-
trum |W(s,t)| for the signal generated by oscillator (14). Time is
shown on the abscissa and time scale is shown on the ordinate. The
color intensity is proportional to the absolute value of the wavelet
transform coefficients. The values of the coefficients are indicated
by the scale from the right side of the figure.

B. Results

Figure 1 shows the amplitude spectrum |W(s,z,)| of the
wavelet transform for the signal of driven oscillator (14). The
Morlet wavelet is used as the mother wavelet function
throughout the paper. The wavelet parameter is chosen to be
o=2m, unless otherwise specified. The time scale s, corre-
sponding to the first harmonic of the oscillator basic fre-
quency f, is indicated in Fig. 1 by the dot-and-dash line. The
dashed line indicates the time scale s; corresponding to the
linearly increasing driving frequency w,(z). The analysis of
the wavelet power spectrum reveals the classical picture of
oscillator frequency locking by the external driving. As the
result of this locking, the breaks appear close to the time
moments ¢, and #,, denoted by arrows, when the driving fre-
quency is close to the oscillator basic frequency (w,(t,)
=~2f,) or to its second harmonic (w,(t,,) =4f,), respec-
tively. These breaks represent the entrainment of oscillator
frequency and its harmonic by external driving. If the detun-
ing 6=(w,;—27f,) is great enough, the frequency of oscilla-
tions returns to the oscillator basic frequency.

The dynamics of the phase differences Agy(f) determined
by Eq. (3) is presented in Fig. 2(a) for different positive 7
values. One can see in the figure the regions where Agy(?) is
almost constant. These are the regions of asynchronous dy-
namics, when the driving frequency is far from the oscillator
basic frequency and its harmonics. The regions of monotone
increase of Agy(r) are also well-pronounced in Fig. 2(a).
These are the regions of synchronization observed in the vi-
cinity of the time moments 7, when w,(t,,) = 2mnf.

The proposed method offers several advantages over the
method in Ref. [22] based on the analysis of the phase dif-
ference between the signals of oscillator and the external
force. First, the regions of Ag,(f) monotone variation corre-
sponding to synchronous regimes are easily distinguished
from the regions of constant A¢g(z) value corresponding to
asynchronous dynamics. Second, the new method is consid-
erably more sensitive than the previous one because the
phase difference is examined at the time scales having high
amplitude in the wavelet spectrum. In particular, the region
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FIG. 2. (Color online) Phase differences Agy(r) (3) calculated at
the time scale s, corresponding to the basic frequency f;,=0.0973 of
the driven asymmetric van der Pol oscillator (14) for different (a)
7>>0 and (b) 7<0.

of 3:1 synchronization in the vicinity of the time moment 75,
denoted by arrow is clearly identified in Fig. 2. Third, the
proposed method is substantially simpler than the method of
the phase difference calculation along the scale varying in
time [22].

It follows from Eq. (7) that in the region of synchroniza-
tion the change of the phase difference Ay (f) increases with
7 increasing. As the result, the presence of interval of A¢pg(r)
monotone variation becomes more pronounced, Fig. 2(a).
This feature helps to detect the existence of synchronization
especially in the case of high-order synchronization and
noise presence. However, the accuracy of determining the
boundaries of the region of synchronization decreases as 7
increases.

It should be noted that for negative 7 values the monotone
reduction of the phase difference is observed in the region of
synchronization, Fig. 2(b). As it can be seen from Fig. 2(b),
the increase of 7 by absolute value leads to increase of
Agy(1) variation in the region of synchronization as well as
in the case of positive 7.

C. Influence of noise and inaccuracy of the basic time scale
definition

Experimental data, especially those obtained from living
systems, are always corrupted by noise. Besides, in many
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FIG. 3. (Color online) (a) Parts of the time series of the signal
(16) for different intensities D of additive noise. (b) Wavelet power
spectrum |W(s,y)| of the signal x,(¢) at the noise intensity D=10.
The dot-and-dash line indicates the time scale s, corresponding to
the oscillator basic frequency fy. (c), (d) Phase differences Agy(r)
for different intensities D of noise at (¢) 7=10 and (d) 7=100. The
inset in (c) is the enlarged fragment of the region of 1:1
synchronization.

cases it is not possible to define accurately the basic fre-
quency of the system under investigation. For example, in-
teraction between the human cardiovascular and respiratory
systems and nonstationarity hampers accurate estimation of
natural frequencies for cardiovascular rhythms. Therefore,
the actual problem is to test the method efficiency for detect-
ing synchronization in the presence of additive noise and
inaccuracy of the basic frequencies estimation.
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FIG. 4. (Color online) Phase differences Ag,(7) calculated at the
time scales s;=s¢+As for 7=100 and D=10. The curve numbers
correspond to the following time scales: (1) 5,=7.28<sq, (2) s,
=8.28<sq, (3) 51=50=10.28, (4) 5,=12.28>35, and (5) 5,=15.28
>50.

To analyze the influence of noise on the diagnostics of
synchronization we consider the signal

x,(t) =x(t) + D{(1), (16)

where x(t) is the signal of the asymmetric van der Pol oscil-
lator (14), £(z) is the additive noise with zero mean and uni-
form distribution in the interval [-0.5, 0.5], and D is the
intensity of noise. To simulate the noisy signal {(r) we use
the random-number generator described in Ref. [43].

Typical time series x,(r) generated by Eq. (16) for differ-
ent intensities of noise are presented in Fig. 3(a) for the
region of 1:1 synchronization. In spite of the significant dis-
tortion of the signal by noise its wavelet power spectrum,
Fig. 3(b), still allows to reveal the main features of the sys-
tem dynamics. In particular, the dynamics of the time scale
sy and the effect of frequency entrainment in the region of
1:1 synchronization indicated by arrow are recognized in
Fig. 3(b). Hence the use of the wavelet transform for deter-
mining the phases of the signal and its harmonics allows one
to detect the regimes of synchronization from noisy time
series.

The phase differences Agy(7) calculated using Eq. (3)
with 7=10 are shown on Fig. 3(c) for different intensities D
of additive noise. The dependence Ag(f) becomes more
jagged as D increases. However, for D <10 we can identify
the regions where the phase difference demonstrates near-
monotone variation. In the average this variation is about the
same as in the case of noise absence [see the inset in Fig.
3(c)]. Figure 3(d) shows Agy(z) for 7=100. In this case it is
possible to detect the presence of synchronization for signifi-
cantly higher levels of noise than in the case of small 7. The
reason is that the value of Ag, (11) increases in the region of
synchronization as the time shift 7 increases, whereas the
amplitude of A¢y(z) fluctuations caused by noise does not
depend on 7. For very large intensities of noise (D=50 in
Fig. 3) the synchronous behavior is not so clearly pro-
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FIG. 5. Block diagram of the electronic oscillator with delayed
feedback driven by the signal with varying frequency.

nounced as at smaller D values, but it should be mentioned
that in this case the power of noise exceeds the power of the
oscillator signal in several times.

Let us consider the method efficiency in the case when the
scale s of observation differs from the time scale s, associ-
ated with the oscillator basic frequency f,,. Figure 4 illus-
trates the behavior of the phase difference A () calculated
for the time series of Eq. (16) at the time scales s;=s,+As,
where As is the detuning of the scale with respect to the
basic scale so=1/f,=10.28. It can be seen from the figure
that for |As| <2.0 the phase dynamics is qualitatively similar
to the case of accurate adjustment of the scale s to the basic
scale so. At greater As values the phase difference demon-
strates significant fluctuations impeding to detect the epochs
of Agy(t) monotone variation. Thus, to detect synchroniza-
tion using the proposed method, one needs to know only
approximately the basic time scale s.

IV. INVESTIGATION OF SYNCHRONIZATION IN A
DRIVEN ELECTRONIC OSCILLATOR WITH DELAYED
FEEDBACK

A. Experiment description

We apply the method to experimental data gained from a
driven electronic oscillator with delayed feedback. A block
diagram of the experimental setup is shown in Fig. 5. The
oscillator represents the ring system composed of nonlinear,
delay, and inertial elements. The role of nonlinear element is
played by an amplifier with the quadratic transfer function.
This nonlinear device is constructed using bipolar transistors.
The delay line is constructed using digital elements. The in-
ertial properties of the oscillator are defined by a low-
frequency first-order RC filter. The analogue and digital ele-
ments of the scheme are connected with the help of analog-
to-digital (ADC) and digital-to-analog converters (DAC). To
generate the driving signal we use the sine-wave generator 2
whose frequency is modulated through the wobble input by
the signal of the sawtooth pulse generator /. The driving
signal is applied to the oscillator using the summator 3. The
considered oscillator is governed by the first-order time-
delay differential equation

RCU(1) == U(1) + F(U(t = d)) + Uy sin[ 27 (1)t],
(17)

where U(r) and U(r—d) are the delay line input and output
voltages, respectively, d is the delay time, R and C are the
resistance and capacitance of the filter elements, F is the
transfer function of the nonlinear device, Uy is the amplitude
of the driving signal, and f,, is the driving frequency. We
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FIG. 6. (Color online) Time series of electronic oscillator with
delayed feedback under external driving with varying frequency
(18) and the driving amplitude (a) Uy=0.5 V and (b) Uy=2 V.
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record the signal U(r) using an analog-to-digital converter
with the sampling frequency f=15kHz at d=1.5 ms and
RC=0.46 ms under the following variation of the driving
frequency

fex(D) =v X 109072, ()

where v=220 Hz and the control voltage U, (r) varies lin-
early from 0 V to 16 V within 800 ms providing f,,, varia-
tion from 220 Hz to 1000 Hz. Under the chosen parameters
the considered oscillator demonstrates periodic oscillations
with the period 7=3.7 ms. Four experiments were carried
out at different amplitudes of the external driving equal to
0.5V, 1V, 1.5V, and 2 V. The amplitude of driven oscil-
lation was about 3 V.

B. Results

The experimental time series of the electronic oscillator
with delayed feedback driven by the external force with
varying frequency (18) are depicted in Fig. 6 for two values
of the driving amplitude. The results of investigation of the
oscillator synchronization by the external driving are pre-
sented in Fig. 7. The phase differences A¢y(f) defined by Eq.
(3) are calculated under different driving amplitudes U, for
the time shift 7=—0.66 ms. One can clearly identify in the
figure the regions of Ag,(7) monotone variation correspond-
ing to the closeness of the driving frequency to the oscillator
basic frequency and its harmonics. These regions of synchro-
nous dynamics are indicated by arrows.

It is well seen from Fig. 7 that the interval of monotone
variation of Agg(f) increases with increasing amplitude of
the driving force. This fact agrees well with the known effect
of extension of the region of synchronization with increase in
the amplitude of the external driving. Note that, in spite of
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FIG. 7. (Color online) Phase differences Agy(z) (3) calculated at
the time scale s, corresponding to the basic frequency f,=270 Hz
of the driven electronic oscillator with delayed feedback. The curve
numbers correspond to different amplitudes U, of the external
force: (1) Uy=0.5V, (2) Uy=1V, (3) Uyp=1.5V, and (4) U,
=2 V.

the nonlinear variation of the driving frequency, at small
driving amplitudes the phase difference Ag,(z) varies almost
linearly in time within the synchronization tongue as it was
discussed in Sec. II. For the large driving amplitude (U,
=2 V) the synchronization tongue is wide enough and the
phase difference behavior begins to depart from linearity.
Nevertheless, the variation of Agy(¢) remains the monotone
one and allows us to detect the presence of synchronization
and estimate the boundaries of the synchronization tongue.

V. SYNCHRONIZATION OF SLOW OSCILLATIONS IN
BLOOD PRESSURE BY RESPIRATION FROM THE DATA
OF HEART RATE VARIABILITY

In this section we investigate synchronization between the
respiration and rhythmic process of slow regulation of blood
pressure and heart rate from the analysis of univariate data in
the form of the heartbeat time series. This kind of synchro-
nization has been experimentally studied in [21,22,44,45].
The study protocol was approved by the institutional ethical
board and all subjects gave their written informed consent.
We studied eight healthy volunteers. The signal of ECG was
recorded with the sampling frequency 250 Hz and 16-bit
resolution. Note that according to [46] the sampling fre-
quency 250 Hz used in our experiments suffices to detect
accurately the time moment of R peak appearance. The ex-
periments were carried out under paced respiration with the
breathing frequency linearly increasing from 0.05 Hz to
0.3 Hz within 30 min. We specially included the lower fre-
quencies for paced respiration in order to illustrate the pres-
ence of the most pronounced regime of 1:1 synchronization
between the respiration and slow oscillations in blood pres-
sure. The rate of respiration was set by sound pulses. The
detailed description of the experiment is given in Ref. [21].

Extracting from the ECG signal the sequence of R-R in-
tervals, i.e., the series of the time intervals between the two
successive R peaks, we obtain the information about the
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FIG. 8. (Color online) Typical sequence of R-R intervals for the
case of breathing with (a) linearly increasing frequency and its
wavelet power spectra at (b) o=27r and (c) o=16. The dashed lines
indicate the time scale s, corresponding to the basic frequency f,
=0.1 Hz of slow oscillations in blood pressure.

heart rate variability. The proposed method of detecting syn-
chronization from uniform data was applied to the sequences
of R-R intervals.

A typical time series of R-R intervals for breathing at
linearly increasing frequency is shown in Fig. 8(a). Since the
sequence of R-R intervals is not equidistant, we exploit the
technique for applying the continuous wavelet transform to
nonequidistant data. The wavelet spectra |W(s, )| for differ-
ent parameters o of the Morlet wavelet are shown in Figs.
8(b) and 8(c) for the sequence of R-R intervals presented in
Fig. 8(a). For greater o values the wavelet transform pro-
vides higher resolution of frequency [31] and better identifi-
cation of the dynamics at the time scales corresponding to
the basic frequency of oscillations and the varying respira-
tory frequency. In the case of o=2 the time scale s of the
wavelet transform is very close to the period 7 of the Fourier
transform and the values of s are given in seconds in Fig.
8(b). Generally, the time scale s is related to the frequency f
of the Fourier transform by the following equation:

o+ Vo +2
s=———. (19)
4of

Because of this, the units on the ordinates are different in
Figs. 8(b) and 8(c). The wavelet spectra in these figures dem-
onstrate the high-amplitude component corresponding to the
varying respiratory frequency manifesting itself in the HRV
data. The self-sustained slow oscillations in blood pressure
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FIG. 9. (Color online) Phase differences Ay (z) calculated at the
time scale s, corresponding to the basic frequency f,=0.1 Hz of the
Mayer wave. (a) Phase differences computed at different time shifts
7 for R-R intervals of one of the subjects. The curve numbers
correspond to different time shifts: (1) 7=30s, (2) 7=50 s, and (3)
7=100 s. (b) Phase differences computed for R-R intervals of the
other three subjects.

(Mayer wave) have in humans the basic frequency of about
0.1 Hz, or respectively, the basic period close to 10 s. The
power of this rhythm in the HRV data is less than the power
of respiratory oscillations. As the result, the time scale s is
weakly pronounced in the spectra.

Figure 9 presents the phase differences Agy(z) calculated
for R—-R intervals of four subjects under respiration with lin-
early increasing frequency. All the curves in the figure ex-
hibit the regions with almost linear in the average variation
of Agy(7) indicating the presence of synchronous dynamics.
In particular, the region of 1:1 synchronization is observed
within the interval 200-600 s when the frequency of respi-
ration is close to the basic frequency of the Mayer wave.
This region is marked by arrow. In this region the frequency
of blood pressure slow oscillations is locked by the increas-
ing frequency of respiration and increases from 0.07 Hz to
0.14 Hz. Outside the interval of synchronization, #<<200 s
and 7> 600 s, the phase differences demonstrate fluctuations
caused by the high level of noise and nonstationarity of the
experimental data. Some of these fluctuations take place
around an average value as well as in the case of the driven
van der Pol oscillator affected by noise (see Fig. 3). The
frequency of blood pressure slow oscillations demonstrates
small fluctuations around the mean value of about 0.1 Hz
outside the interval of synchronization.

The phase differences in Fig. 9(a) are plotted for different
7. As the time shift 7 increases, so does the range of Agy(t)
monotone variation in the region of synchronization. This
result agrees well with the results presented in Sec. III. Simi-
lar behavior of A () is observed for each of the eight sub-
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jects studied. In Fig. 9(b) phase differences Agy(f) computed
for R-R intervals of another three subjects are presented. The
phase differences demonstrate the wide regions of almost
linear variation for all the subjects. Such behavior of the
considered phase difference cannot be observed in the ab-
sence of synchronization, if only the modulation of blood
pressure oscillations by respiration is present. These results
allow us to confirm the conclusion that the slow oscillations
in blood pressure can be synchronized by respiration. How-
ever, to come to this conclusion, the proposed method needs
only univariate data in distinction to the methods [21,22]
based on the analysis of bivariate data. Note, that paper [21]
contains the more detailed investigation of synchronization
between the respiration and slow oscillations in blood pres-
sure than the present one. Recent reports (see, for examples,
[47,48,50]) focused on examining the relationship between
respiration and heart rate have shown that there is nonlinear
coupling between respiration and heart rate. In particular,
such coupling is well studied for the respiratory modulation
of heart rate [49,50] known as respiratory sinus arrhythmia.
The presence of coupling between the cardiac and respiratory
oscillatory processes has been revealed also using bispectral
analysis in [51,52] underboth spontaneous and paced respi-
ration. Our results are in agreement with those when syn-
chronization between the oscillating processes occurs as the
result of their interaction.

VI. CONCLUSION

We have proposed the method for detecting synchroniza-
tion from univariate data. The method allows one to detect
the presence of synchronization of the self-sustained oscilla-
tor by external force with varying frequency. To implement
the method one needs to analyze the difference between the
oscillator instantaneous phases calculated at time moments
shifted by a certain constant value with respect to each other.
The instantaneous phases are defined at the oscillator basic
frequency using continuous wavelet transform with the Mor-
let wavelet as the mother wavelet function. The necessary
condition for the method application is the variation of the
frequency of the driving signal. The method efficiency is
illustrated using both numerical and experimental univariate
data under sufficiently high levels of noise and inaccuracy of
the basic time scale definition.

We applied the proposed method to studying synchroni-
zation between the respiration and slow oscillations in blood
pressure from univariate data in the form of R-R intervals.
The presence of synchronization between these rhythmic
processes is demonstrated within the wide time interval. The
knowledge about synchronization between the rhythms of
the cardiovascular system under paced respiration is useful
for the diagnostics of its state [53]. The method allows one to
detect the presence of synchronization from the analysis of
the data of Holter monitor widely used in cardiology.

The proposed method can be used for the analysis of syn-
chronization even in the case when the law of the driving
frequency variation is unknown. If the frequency of the ex-
ternal driving varies in the wide range, the analysis of the
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oscillator response to the unknown driving force allows one
to make a conclusion about the presence or absence of syn-
chronization in the system under investigation.
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