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Abstract 
 
We propose the original methods for reconstructing model delay-differential equations from 
chaotic time series for various classes of time-delayed feedback systems including: i) scalar 
time-delay systems with arbitrary nonlinear function, ii) high-order time-delay systems, iii) 
systems with several coexisting delays, and iv) coupled time-delay systems. These methods 
are based on the statistical analysis of time intervals between extrema in the time series of 
time-delay systems and the projection of infinite-dimensional phase space of these systems to 
suitably chosen low-dimensional subspaces. The methods allow one to recover the delay 
times, the nonlinear functions, and the parameters characterizing the inertial properties of the 
systems and to define the a priori unknown order of a time-delay system. In the case of 
coupled time-delay systems the methods are able to define also the type, strength, and 
direction of coupling and can be used for the analysis of unidirectional and mutual coupling of 
time-delay systems for a wide range of the coupling coefficients variation. The proposed 
methods are efficient for the analysis of short time series under sufficiently high levels of 
noise. The methods are successfully applied to recovery of standard time-delay systems from 
their simulated time series corrupted with noise and to modeling various electronic oscillators 
with delayed feedback from their experimental time series. The proposed methods are applied 
to the problem of hidden message extraction in the communication systems with nonlinear 
mixing of information signal and chaotic signal of a time-delay system. Different ways for 
encryption and decryption of information in these communication schemes are investigated. 
Using both numerical and experimental data we obtained a high quality of the information 
signal extraction from the transmitted signal for different message signals and different 
configurations of the chaotic transmitter with a priori unknown parameters. 
 

1 Introduction 
 
Systems, whose dynamics is affected not only by the current state, but also by past states, 

are wide spread in nature [1]. Usually these systems are modeled by delay-differential 
equations. Such models are successfully used in many scientific disciplines, like physics, 
physiology, biology, economics and cognitive sciences. Typical examples include population 
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dynamics [2], where individuals participate in the reproduction of a species only after 
maturation, or spatially extended systems, where signals have to cover distances with finite 
velocities [3]. Within this rather broad class of systems, one can find the Ikeda equation [4] 
modeling the passive optical resonator system, the Lang-Kobayashi equations [5] describing 
semiconductor lasers with optical feedback, the Mackey-Glass equation [6] modeling the 
production of red blood cells, and many other models in biosciences for different phenomena 
from glucose metabolism to infectious diseases [7]. 

Generally, the time-delay systems are described by the following equation 
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where  is the system state at time t,  is the time derivative of order n,  are 
the delay times, and  are the parameters characterizing the inertial properties of the 
system. To uniquely define the system (1) behavior it is necessary to prescribe the initial 
conditions in the entire time interval 
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be considered as infinite-dimensional. In fact, even first-order delay-differential equations can 
possess high-dimensional chaotic dynamics [8]. Thus, the direct reconstruction of the system by 
the time-delay embedding techniques runs into severe problems. For a successful recovery of 
the time-delay systems one has to use special methods. The most of them are based on the 
projection of the infinite-dimensional phase space of time-delay systems onto low-dimensional 
subspaces [9–18]. These methods use different criteria of quality for the reconstructed 
equations, for example, the minimal forecast error of the constructed model [9–12], the minimal 
value of information entropy [13], or various measures of complexity of the projected time 
series [14–18]. Several methods of time-delay system recovery exploit regression analysis [19–
21]. In this chapter we present the original procedure of the delay time reconstruction based on a 
statistical analysis of time intervals between extrema in the time series and develop further the 
methods of time-delay system parameter estimation from time series proposed by us recently 
[22–25] for a more wide class of time-delay systems. The techniques are proposed for 
reconstructing ring-type time-delay systems from time series of various dynamical variables 
obtained from different points of the time-delay system. 

Until now, the main attention of the researches was focused on the development of methods 
for reconstruction of single time-delay systems. The problem of recovery of model equations for 
coupled time-delay systems from time series has not been practically considered yet. At the 
same time, interaction between time-delay systems is a typical case in many applications. For 
example, the use of coupled time-delay systems demonstrating chaotic dynamics of a very high 
dimension is promising for secure communication [26–30], in particular, for chaotic 
communication systems based on lasers with optical feedback [31–33]. Besides, coupled time-
delay differential equations are used for the description of behavior of interacting populations 
[2, 7, 34] and for modeling the processes in the human cardiovascular system [35, 36]. In this 
chapter we propose a method that is able to reconstruct two coupled scalar time-delay systems 
and to estimate the coupling strength and direction from the observed time series data. This 
method for recovery of coupled time-delayed feedback systems is applied in the chapter to the 
problem of hidden message extraction in the communication systems with nonlinear mixing of 
information signal and chaotic signal of a time-delay system. 

The chapter is organized as follows. In Sec. II we consider peculiarities of extrema location 
in the time series of time-delay systems. In Sec. III the method for reconstruction of first-order 
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time-delay systems is presented. The method is applied to recovery of time-delay differential 
equations from their simulated time series corrupted with noise and to modeling experimental 
system with delay-induced dynamics from chaotic time series. Different criteria of quality for 
the recovered equations are considered. In Sec. IV we propose the method for reconstructing 
ring-type time-delay systems from time series of various dynamical variables obtained from 
different points of the time-delay system. The method for reconstructing high-order time-delay 
systems is presented in Sec. V. The method efficiency is illustrated using various simulated and 
experimental time series. Sec. VI describes the technique for determining the a priori unknown 
order of a time-delay system. The recovery of time-delay systems with two coexisting delays is 
considered in Sec. VII. In Sec. VIII the method for reconstruction of coupled time-delay 
systems is proposed. We verify our method using both numerical and experimental data. In 
Sec. IX we apply the proposed methods to extracting the hidden message in the communication 
systems with nonlinear mixing of information signal and chaotic signal of a time-delay system. 
The message extraction procedure is illustrated using both numerical and experimental data for 
different configurations of the transmitter and different kinds of information signals. In Sec. X 
we summarize our results. 

 
2 Peculiarities of Time-Delay System Time Series 

 
Statistical analysis of time intervals between extrema in time series of various model and 

real time-delay systems reveals the following general regularities. If the system has inertial 
properties, the dependence of number N of pairs of extrema in its time series separated in time 
by τ  on the value of τ  demonstrates a pronounced minimum at the level of the delay time of 
the system [Fig. 1(a)]. Let us explain the qualitative features of )(τN  with one of the most 
popular delay-differential equation 

))(()()( 11 τε −+−= txftxtx� .                                               (2) 
In general case Eq. (2) is a mathematical model of an oscillating system composed of a ring 

with three ideal elements: nonlinear, delay, and inertial ones (Fig. 2). In the presence of inertial 
properties ( ), which corresponds to real situations, the extrema in  are close to 
quadratic ones and therefore 

01 >ε )(tx
0)( =tx�  and 0)( ≠tx��  at the extremal points. In fact, the condition 

 is satisfied for a point, which is a point of inflection, or a non-quadratic 
extremum, or belongs to an interval of constant value of the dynamical variable. But the 
presence of inertial properties in the system prevents the implementation of these conditions. It 
can be shown that in this case there are practically no extrema in x(t) separated in time by the 
delay time . Differentiation of Eq. (2) with respect to t gives 
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If for  in a typical case 0)( =tx� 0)( ≠tx�� , then, as it can be seen from Eq. (3), for the 
condition  must be fulfilled. Thus, there must be no extremum separated in time by 

 from a quadratic extremum and, hence, . For , the derivatives  and 
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)τ−tx�  can be simultaneously equal to zero, i.e., it is possible to find extrema separated in time 

by τ . Note that for chaotic temporal realizations of the systems under investigation practically 
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all critical points with  are the extremal ones, and therefore we call the points with 
 the extremal points throughout this chapter. 
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Figure 1. Typical dependence of number N of pairs of extrema in chaotic time series of a time-delay 
system separated in time by  on the value of τ  in the presence of inertial properties in the system (a) and 
in the absence of inertial properties (b). )(τN  is normalized to the total number of extrema in time series. 

 
Similar properties are inherent in a more general class of time-delay systems 
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Time differentiation of Eq. (4) gives 
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Similarly to Eq. (3), Eq. (5) implies that in a typical case of quadratic extrema derivatives 
 and  do not vanish simultaneously, i.e., if )( 1τ−tx� 0)( =tx� , then . 0)( 1 ≠−τtx�

In the absence of inertial properties ( ) differentiation of Eq. (2) with respect to t gives 01 =ε
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From Eq. (6) it follows that if , then 0)( 1 =−τtx� 0)( =tx� . Thus, for  every 
extremum of is followed within the time  by the extremum. As the result, 

01 =ε

)()(tx 1τ τN  shows a 
maximum for  [Fig. 1(b)].  1ττ =

The situation in the absence of inertial properties can be pictorially shown with the help of a 
ring circuit (Fig. 2), for which the condition  is equivalent to the lack of filter and the 
unbounded passband of other elements. The signal  propagates through the ring in one 
direction and in the process the delay element provides the signal delay for  and the nonlinear 
element transforms the signal in accordance with its transfer function . In this case 
the signal at the nonlinear element output is defined at the time t only by the signal at the delay 
element input at the time t . Hence, the time evolution of the points of  can be 
represented by the iteration diagram of the one-dimensional map  in Fig. 3(a), 
where one step of discrete time corresponds to the time shift  in the continuous time. 
Graphical plotting of the mapping of several neighbor points chosen in  in the 
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neighborhood of extremum [Fig. 3(b)] indicates that an extremum always maps into the 
extremum. From Fig. 3 it follows that the number of extrema separated in time by τ  slightly 
differing from  must be relatively small resulting in the presence of minima in Fig. 1(b). In 
actuality we have to deal not with the continuous  realization but with a discrete time series 

 obtained as a result of numerical solution of differential equation or experimental 
measurement of the system state x at the discrete time points. However, as can be seen from 
Fig. 3(b), in this case the situation is also typical, when an extreme point of the time series is 
followed by the extremum within the time . 

1τ
)(tx

{ }M
ttx 1=

1τ

0

)(xf = τ ≈s

1τ

1τ

 

 
 

Figure 2. Block scheme of a ring system with nonlinear time-delayed feedback. Numerals designate points 
where a dynamical variable can be measured. 

 
If the system has a bounded bandpass ( 1ε > ), which corresponds to real situations, the 

most probable value of the time interval between extrema in  shifts from  a to larger 
values and the extrema can be found most often at the distance  apart [Fig. 1(a)]. For 
instance, the computational investigation of Eq. (2) with quadratic nonlinear function 

 allows us to obtain an estimation  for large values of the parameter of 
nonlinearity 
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The presence of noise in time series brings into existence spurious extrema that are not 
caused by the intrinsic dynamics of a time-delay system. Thus, owing to high-frequency noise a 
probability to find a pair of extrema in time series separated in time by τ  has to increase in 
general. As a result, with noise increasing the average N value becomes greater. The probability 
to find a pair of extrema separated by the interval  also increases. However, for moderate 
noise levels this probability is still less than the probability to find a pair of extrema separated in 
time by . Hence, the qualitative features of the 1ττ ≠ )(τN  plot specified by the delay-induced 
dynamics are retained for a moderate noise level. 

 
3 Reconstruction of First-Order Time-Delay Systems 

 
Let us consider the procedure of first-order time-delay system recovery with Eq. (2) as an 

example. To define the delay time  one has to determine the extrema in the time series and 
after that to define for different values of time 

1τ
τ  the number N of pairs of extrema separated in 

time by τ  and to construct the )(τN  plot. The absolute minimum of )(τN  located near the 
absolute maximum is observed at the delay time . Note that this method of the delay time 
definition uses only operations of comparing and adding. It needs neither ordering of data, nor 
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calculation of approximation error or certain measure of complexity of the trajectory and 
therefore it does not need significant time of computation. The dependence of accuracy of the 
delay time recovery on the step of τ  variation and the time series length is considered in 
Ref. [22].  

)(tx�

)(t
−t

(x

 

 
 

Figure 3. (a) Quadratic transfer function of the nonlinear element and mapping of input signal points into 
output. (b) Signal temporal realization with the time series points (dots) shown in the neighborhood of two 
extremal points (circles). 

 
To recover the parameter  and the nonlinear function f from the chaotic time series let us 

rewrite Eq. (2) as 
1ε

))(()( 11 τε −=+ txftx .                                                  (7) 
Thus, it is possible to reconstruct the nonlinear function by plotting in a plane a set of points 

with coordinates . Since the parameter  is a priori unknown, one 
needs to plot  versus  under variation of 
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1x�ε ) ε , searching for a single-valued 
dependence in the  plane, which is possible only for . As a 
quantitative criterion of single-valuedness in searching for  we use the minimal length of a 
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line )(εL
( ),1 xετ

 connecting all points ordered with respect to  in the plane 
. The minimum of 

)( 1τ−tx
))()(( txttx +− � )(εL is observed at . The set of points 

constructed for the defined  in the plane 
1ε=ε

1ε ( ))()(), 11 txtx +�ετ(tx −  reproduces the nonlinear 
function, which can be approximated if necessary. In contrast to methods presented in 
Refs. [15,16], which use only extremal points or points selected according to a certain rule for 
the nonlinear function recovery, the proposed technique uses all points of the time series. It 
allows one to estimate the parameter  and to reconstruct the nonlinear function from short 
time series even in the regimes of weakly developed chaos. 
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Figure 4. (a) The time series of the Ikeda equation (8). (b) Number N of pairs of extrema in the time series 
separated in time by , as a function of τ . )(τ  is normalized to the total number of extrema in the time 

series.  (c) Length L of a line connecting all points ordered with respect to  in 

the  plane, as a function of 

)( 1τ−tx

.  is normalized to the number of points in the 

plane. . (d) The recovered nonlinear function.  

)

 
To test the efficiency of the proposed technique we have used it to reconstruct the equations 

of various time-delay systems having the form of Eq. (2) from the time series gained from their 
numerical solution. In particular, we apply the method to a time series of the Ikeda equation [4] 

)t +−=                                                (8) 
modeling the passive optical resonator system. The Ikeda equation (8) has the form of Eq. (2) 
with . The parameters of the system (8) are chosen to be , , and  
to produce a dynamics on a high-dimensional chaotic attractor [3]. Part of the time series is 
shown in Fig. 4(a). The time series is sampled in such a way that 200 points in time series cover 
a period of time equal to the delay time . The data set consists of 20000 points and 
exhibits about 1100 extrema. 

3/0 π=x
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For various τ  values we count the number N of situations when  and )(tx� )( τ−tx�  are 
simultaneously equal to zero and construct the )(τN  plot [Fig. 4(b)]. The step of τ  variation in 
Fig. 4(b) is equal to the integration step h 0.01= . The time derivatives  are estimated from 
the time series by applying a local parabolic approximation. The absolute minimum of 

)(tx�
)(τN  

takes place exactly at . To construct the 00.21 ==ττ )(εL  plot [Fig. 4(c)] the step of ε  
variation is also set by 0.01. The minimum of )(εL  takes place accurately at . In 
Fig. 4(d) the recovered nonlinear function is shown. It coincides practically with the true 
function of Eq. (8). Note that for the construction of the 

00.11 =ε=ε

)(εL  plot and for the recovery of the 
multimodal function f we use only 2000 points of the time series. For the approximation of the 
recovered function we use polynomials of different degree. The sinusoid amplitude [Fig. 4(d)] 
allows one to define the parameter µ  of Eq. (8). The parameter  can be calculated from the 
function value at . The approximation of the recovered function with a polynomial 
of degree 20 allows us to obtain the following estimation: 

0x
0)1 =τ(x −t

94.19=′µ  and 

0 1.046 ( /x 3 1.047)π′ = ≈ . 
 

 
 

Figure 5. Reconstruction of the Ikeda equation in the presence of a 20% additive noise. (a) The )(τN plot. 

. (b) The min ( ) (2.00)N Nτ = )(εL  plot. . (c) The recovered nonlinear function. )98.0()(min LL =ε

 
To investigate the robustness of the method to perturbations we apply it to the data 

produced by adding a zero-mean Gaussian white noise to the time series of Eq. (8). For the case 
where the additive noise has a standard deviation of 20% of the standard deviation of the data 
without noise (the signal-to-noise ratio is about 14 dB) the location of the minimum of )(τN  
still allows us to estimate the delay time accurately, 00.21 =′τ  [Fig. 5(a)]. The minimum of 

)(εL  takes place at  [Fig. 5(b)]. The nonlinear function recovered using the estimated 
values  and  is shown in Fig. 5(c). In spite of sufficiently high noise level and inaccuracy 
of estimation of  the recovery of the nonlinear function has a good quality, which is 
significantly higher than that reported in Ref. [21] for the same parameter values of the Ikeda 
equation with noise. 

98.01 =′ε

1

1τ ′ 1ε′

ε

The second example is the method application to experimental time series of the electronic 
oscillator with delayed feedback. In the block representation of this oscillator (Fig. 2) a delay 
for time  is provided by a delay line, the role of nonlinear element is played by an amplifier 1τ
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with the transfer function f and the system inertial properties are defined by a filter, which 
parameters specify . For the case when the filter is a low-frequency first-order RC-filter such 
oscillator is given by 

1ε

( −t

)(ε

))(()()( 1τ−+−= tVftVtVRC � ,                                              (9) 
where V  and V  are the delay line input and output voltages, respectively; R and C are 
the resistance and capacitance of the filter elements. Equation (9) is of the form (2) with 
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Figure 6. (a) Experimental time series of the electronic oscillator with delayed feedback. (b) Number N of 
pairs of extrema in the time series separated in time by τ , as a function of τ . )(τN  is normalized to the 

total number of extrema in the time series. . (c) The min ( (31.75 ms)N Nτ ) = )(εL  plot. )(εL  is 

normalized to the number of points. . (d) The recovered nonlinear function. min ( )L Lε = (1.000 )ms

 
At  ms and  ms we record the signal V  [Fig. 6(a)] using an analog-

to-digital converter with the sampling frequency  kHz. Since the delay time  is not a 
multiple of the sampling time T  ms, the recovery of  cannot be absolutely accurate. 
For the step of 

7.311 =τ 01.11 =ε

=s

)(t

1τ

4=sf 1τ

25.0
τ  variation equal to T , the absolute minimum of s )(τN  takes place at 

 ms [Fig. 6(b)]. The 75.311 =′τ )(εL  plot, constructed with 1τ ′  and the step of ε  variation equal 
to 0.025 ms, demonstrates the minimum at 000.11 =′ε  ms [Fig. 6(c)]. The recovered nonlinear 
function [Fig. 6(d)] coincides practically with the true transfer function of the amplifier. 

Besides the L  plot we use two another criteria of quality for the system recovery. The 
first of them exploits synchronization of unidirectionally coupled time-delay systems. We try to 
synchronize the recovered model equation with the experimental system (9) applying the 
following synchronization scheme [27]: 
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))()(())(()()( 11 tytVktyftyty −+′−′+−=′ τε � ,                                  (10) 
where  is the model variable, )(ty 1τ ′  and 1ε′  are the recovered parameters,  is the 
polynomial approximation of the reconstructed nonlinear function, and k is the coupling 
coefficient. If the recovered model parameters are close to the true ones and the coupling 
coefficient k is sufficiently large, the response system (10) rapidly synchronizes with the driving 
system (9). To quantify the measure of synchronization we calculate the synchronization error 

f ′

)(tyV=∆ )(t − , where ⋅  denotes a time average. 

 

 
 

Figure 7. (a) Synchronization error  as a function of ∆ 1τ ′ . (b) Synchronization error  as a function of 
 From bottom to top, the curves refer to the additive noise level of 0%, 1% and 10%, respectively. 

∆

1ε ′

 
Figure 7(a) shows the dependence of ∆  on the model parameter 1τ ′  varied in the vicinity of 

 ms with the step of variation equal to . To construct this plot we use , 
 ms, and approximation of the recovered function 

75.311 =′τ

000.11 =′ε
sT 0.5k =

f ′  with a polynomial of degree 
11. The value of  is computed after transients and is averaged over 2.5 s. The minimum of ∆ ∆  
is observed at 75.31=1′τ  ms as well as the minimum of )(τN . We also calculate the 
dependence of  on  after adding Gaussian white noise to the time series of the driving 
system. For the noise level of 1% and 10% the minimum of 

∆ 1τ ′

)1(τ ′∆  still takes place at 
 ms [Fig. 7(a)]. Note that for the construction of 75.311 =′τ )( 1τ ′∆  in the presence of noise we 

use  and  recovered from noisy time series. 1ε′ f ′

In a similar way we plot the dependence of ∆  on the model parameter  varied in the 
vicinity of  ms with the step of variation equal to 0.025 ms [Fig. 7(b)]. The minimum 
of  is observed at  ms which is slightly below the estimation of  obtained 
from the 

1ε′

000.11 =′ε

)(
)( 1ε′∆ 975.01 =′ε 1ε′

εL  plot. This distinction between 1ε′  estimations can result from inaccuracy of f ′  
approximation performed for calculation of ∆ . For the driving signal corrupted by additive 
Gaussian white noise of 1% and 10% the minimum of )( 1ε′∆  is again observed at 

 ms [Fig. 7(b)]. As can be seen from Fig. 7, the inaccuracy of the delay time 
estimation gives a greater synchronization error than the inaccuracy of estimation of . 

975.0=1′ε

1ε
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The next quantitative measure of accuracy used in this chapter for the recovered model is 
the one-step forecast error )()( tytV −=σ , where V  is the experimentally measured 

variable,  is the variable of the model having the form of Eq. (10) with , and 

)(t

)(ty 0k = ⋅

f

 

denotes a time average. This measure shows how the model with the recovered , , and 1τ ′ 1ε′ ′  
fits the observed data if the initial conditions for the one-step prediction are chosen from the 
experimental time series. The dependencies of σ on the parameters 1τ ′  and  are qualitatively 
similar to the dependencies  and 

1ε′

)( 1τ ′∆ )( 1ε′∆  (Fig. 7), respectively, and are not shown here. 
 

4 Peculiarities of Ring Time-Delay System Reconstruction 
 
In the ring time-delay systems described by Eq. (2) a dynamical variable can be measured 

at different points indicated in Fig. 2 by the numerals 1–3. However, it should be mentioned that 
in the real systems it is not always possible to localize the elements depicted in Fig. 2 or to 
choose the point of measurement because of the integrity of the system. The delayed feedback 
system recovery for the case when the observed dynamical variable is  measured at the 
point 1 has been considered in Sec. III.  

)(tx

In the case, when the observed dynamical variable is  measured at the point 2 
(Fig. 2), one can use the same procedure for estimation of the system parameters as in the case 
of  measurement since the observable is simply shifted in time by the delay time  about 

. For example, reconstructing the electronic oscillator with delayed feedback described by 
Eq. (9) from experimental time series of voltage V  at the delay line output we obtain the 
results qualitatively similar to those presented in Fig. 6 for the case of the system recovery from 
the time series of V . 

)( 1τ−tx
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Let us consider a technique of the time-delay system (2) reconstruction for the third 

possible case, when the observed variable is  measured at the point 3 (Fig. 2). As 
well as in the time series of , there are practically no extrema separated in time by  in the 
time series of the variable , since 

))(( 1τ−txf
)(tx
(xf

1τ

))( 1τ−t ( ) )/))((/)) 111 τττ −−= dxtxdfdt
)(

(tx�(( −txdf . 
Then, the delay time  can be estimated by the location of the absolute minimum in the 1τ τN  
plot constructed from the variable . )1τ )(( −txf

The nonlinear function f can be recovered by plotting  versus . To 
obtain the unknown values of  one has to filter the chaotic time series of the variable 

 with a low-frequency first-order filter with the cut-off frequency  and to 
shift the signal  at the filter output by the delay time  defined earlier. Since the parameter 

 and correspondingly the value of  are a priori unknown, we filter the time series of 
 under variation of the filter cut-off frequency 

))(( 1τ−txf )( 1τ−tx
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εν /1=  and plot  versus 
, where  is the signal at the filter output shifted by the time . Note that a 

single-valued dependence in the plane 

))1τ−
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(( tx
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f
)( 1τ−tu )1τ−(tu

( )))((),( 1τ− txft 1τ−u  is possible only for . In 
this case  and the set of points constructed in the plane reproduces the 

1εε =

)1τ−t ( −tx)1τ =(u
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function f, which can be approximated if necessary. As a quantitative criterion of single-
valuedness in searching for  we use again the minimal length of a line 1ε )(εL

)1

 connecting all 
points in the plane (  ordered with respect to u . The minimum of )))((( 11 ττ −− txtu ), f ( τ−t

)(εL  is observed at .  1εε =

))1τ−

()( −= bxtx�

0.2 b = 10c0.1 =

)(τN
1=

0.1′ε /11 =ε10= )(εL
ε

(f

(( τ−txf τ

)300(N

( −tu )))1τ((), −txf

(εL

We apply the method to time series of the variable  of the Mackey-Glass 
equation [6] 

(( txf

)(1
)()1
1

1

τ
τ
−+

−
+

tx
tax
c ,                                                  (11) 

which can be converted to Eq. (2) by division by b. The parameters of the system (11) are 
chosen to be , , a = , and  to produce a dynamics on a high-
dimensional chaotic attractor [8]. Part of the time series is shown in Fig. 8(a). The location of 
the absolute minimum of 

3001 =τ

 [Fig. 8(b)] allows us to recover the delay time, . The 
step of 

3001 =′τ
τ  variation in Fig. 8(b) is equal to the integration step h . The minimum of )(εL  

[Fig. 8(c)] takes place at  ( 1 ). To construct the 0=b  plot we use the step 
of  variation equal to 0.1. The nonlinear function recovered using the estimated  and 1τ ′ 1ε′  
[Fig. 8(d)] coincides practically with the true nonlinear function. 

 

 
 

Figure 8. (a) The time series of the variable  of the Mackey-Glass system. (b) Number N of 

pairs of extrema in the time series of  separated in time by 

))( 1τ−tx

))1 , as a function of τ . )(τN  is 

normalized to the total number of extrema in the time series. . (c) Length L of a line 

connecting points ordered with respect to 

)(minN =τ

)1τ ′  in the plane ( ( τ1′−tu , as a function of 

ε. )  is normalized to the number of points. . (d) The recovered nonlinear function. )0.10(L)(minL =ε

 



Recovery of Dynamical Models of Time-Delay Systems from Time Series 13

5 Reconstruction of Time-Delay Systems of High Order 
 
The method of the delay time definition based on the statistical analysis of time intervals 

between extrema in the time series can be extended to time-delay systems of high order 
))(),(()()()( 11

)1(
1

)( τεεε −=+++ −
− txtxFtxtxtx n

n
n

n �" .                        (12) 
Time differentiation of Eq. (12) gives 

)(
)(

))(),(()(
)(

))(),(()()()( 1
1

11
1

)(
1

)1( τ
τ

ττεεε −
−∂

−∂
+

∂
−∂

=+++ −
+ tx

tx
txtxFtx

tx
txtxFtxtxtx n

n
n

n ����" . (13) 

For  the condition  will be satisfied if the left-hand side of Eq. (13) 
does not vanish. If a probability to obtain zero in the left-hand side of Eq. (13) is very small for 
the extremal points, the 

0)( =tx� 0)( 1 ≠−τtx�

)(τN  plot qualitatively must have a shape similar to that inherent in the 
case of first-order delay-differential equations such as Eqs. (2) and (4). 

We have found out that for sufficiently small values of , iε ni ,,1 …= , the )(τN  plot 
demonstrates the absolute minimum at  as well in the case of the first-order time-delay 
systems. The distribution of the values of the left-hand side of Eq. (13) at the extremal points 
has a pronounced minimum in the neighborhood of zero in this case. As the parameters  
increase, the absolute minimum of 

1ττ =

)
iε

(τN  shifts from  to larger values. The greater are  
characterizing the influence of the system inertial elements, the greater is the shift. This time 
shift of 

1τ iε

)(τN  minimum does not depend on . Note that in the first-order time-delay systems 
the location of the absolute minimum in the 

1τ

( )τN  plot does not depend on . 1ε

The proposed method of the parameter  estimation and the nonlinear function recovery 
based on the projection of infinite-dimensional phase space of the time-delay system to suitably 
chosen two-dimensional subspaces can be also applied to a variety of time-delay systems of 
order higher than that of Eq. (2). For instance, if the dynamics of a time-delay system is 
governed by the second-order delay-differential equation 

1ε

))(()()()( 112 τεε −+−=+ txftxtxtx ��� ,                                         (14) 
the nonlinear function can be reconstructed by plotting in a plane a set of points with 
coordinates . Since the parameters  and  are a priori 
unknown, one needs to plot 

( )()()(),( 121 txtxtxtx ++− ��� εετ

2 1ˆ ˆ( ) ( )

) 1ε 2ε

( )x t x t x tε ε+ +�� �  versus  under variation of )( 1τ−tx 1̂ε  and 

2ε̂ , searching for a single-valued dependence, which is possible only for 1 1ε̂ ε= , 2 2ε̂ ε= . In 
this search for  and  we calculate the length of a line 1ε 2ε 1 2ˆ ˆ( ,L )ε ε  connecting points ordered 
with respect to  in the plane )( 1τ−tx ( )1 2, (1ˆ ˆ( ) (( ) ) )x t x xτ ε +�� t xε− + � t t . The minimum of 

1 2ˆ ˆ( , )L ε ε  is observed at 1 1ε̂ ε= 2 2ˆ, ε ε= . The set of points constructed in the plane for these 
defined values of  and  reproduces the nonlinear function. 1ε 2ε

The methods of reconstruction of second-order time-delay systems from scalar time series 
have been considered in Refs. [10, 17, 18]. However, these methods deal only with the recovery 
of the delay time and the nonlinear function. For the recovery of the latter one they use only the 
points of the phase space section. As the result, these methods need long time series for 
qualitative reconstruction of the nonlinear function. The proposed by us procedure of the delay 
time estimation based on the statistical analysis of time intervals between extrema in the time 



M.D. Prokhorov et al. 14

series needs significantly smaller time of computation than the methods of the delay time 
definition based on calculation of the filling factor of the projected time series [17] and 
minimization of the one-step forecast error of the recovered model equation [10, 18]. 

To verify the method efficiency we have applied it to experimental time series gained from 
the electronic oscillator with delayed feedback that is similar to that considered in Sec. III, but 
contains two identical low-frequency in-series RC-filters. The dynamics of this oscillator is 
governed by Eq. (14), where  and  are the delay line input and output voltages, 
respectively, , and , where , , , and  are, 
respectively, the resistances and capacitances of the first and the second filters. 

)(tx

2

)( 1τ−tx

112 CR=ε2111 CRCR +=ε 22CR 1R 2R 1C 2C

 

 
 

Figure 9. Reconstruction of the electronic oscillator with delayed feedback with a two-section filter. 
(a) Number N of pairs of extrema in the experimental time series separated in time by τ  normalized to the 
total number of extrema. . (b) The min ( ) (31.75 ms)N Nτ = 1 2ˆ ˆ( , )L ε ε  plot normalized to the number of 

points. . (c) The recovered nonlinear function. 21.48 ms, 0.48 ms )min 1 2ˆ ˆ( , ) (L Lε ε =

 
Using the analog-to-digital converter we record with the sampling frequency  kHz 

the time series of voltage at the delay line input for  ms,  ms, and 
 ms (  ms and  ms

4=sf
01.

)(
7.311 =τ 111 =CR

48.022 =CR 49.11 =ε 48.02 =ε 2). The absolute minimum of τN  is 
observed at  ms [Fig. 9(a)]. The 75.311 =′τ 1 2ˆ ˆ( , )L ε ε  plot, constructed with the step of 1̂ε  
variation equal to 0.01 ms and the step of 2ε̂  variation equal to 0.01 ms2, demonstrates the 
minimum at  ms and 48.11 =′ε 48.02 =′ε  ms2 [Fig. 9(b)]. These 1ε′  and 2ε′  values give the 
following estimation of the filter parameters: 00.1)11 =( ′CR  ms and  ms. The 
recovered nonlinear function [Fig. 9(c)] coincides with a good accuracy with the true transfer 
function of the nonlinear element. 

48.0)22 =′C(R
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Figure 10. Distribution D of the sum )()( 12 txtx ����� εε ′+′  for all points of the experimental time series (a) 
and for the extremal points (b). 

 
With the recovered parameters 1ε′  and 2ε′  we plot the distribution of the sum 

 using all points of the time series [Fig. 10(a)]. The maximum of this distribution 
is observed close to zero. The distribution of the same sum constructed using only the extremal 
points  demonstrates a pronounced minimum in the vicinity of zero [Fig. 10(b)]. This 
result counts in favor of the conclusion that the probability to obtain zero in the left-hand side of 
Eq. (13) is sufficiently small at the extremal points. The presence of minimum in the vicinity of 
zero in Fig. 10(b) agrees well with the existence of minimum at the delay time of the system in 
the 

)()( 12 txtx ����� εε ′+′

0)( =tx�

)(τN  plot [Fig. 9(a)]. 
The next example is the method application to time series of the third-order time-delay 

system 
))(()()()()( 1123 τεεε −+−=++ txftxtxtxtx ������                                   (15) 

with quadratic nonlinear function , where 2)( xxf −= λ λ  is the parameter of nonlinearity. The 
parameters of the system (15) are chosen to be , 3001 =τ 9.1=λ , , , and . 
The 

41 =ε 52 =ε 23 =ε
)(τN  plot, constructed with the step of τ  variation equal to unity, shows the absolute 

minimum at  [Fig. 11(a)]. The minimum of 3011 =′τ )(τN  tends to  as the parameters 
decrease and shifts to larger 

31 =τ 00

iε τ  as  increase. For example, we obtain iε 3001 =′τ  at , 
, and  and  at , , and . The higher is the order of 

the time-delay system (12), the more parameters are to be fitted. This problem is typical in high-
dimensional search space. As the result, the time of computation significantly increases. Since 
our procedure of the parameters estimation involves numerical calculation of the derivatives, the 
quality of reconstruction deteriorates with the increase of the time-delay system order, resulting 

5.21 =ε

22ε = 5.03 =ε 302 81 =ε ε1 =′τ 172 = 13 =ε 0
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in the necessity to calculate more high-order derivatives. In Fig. 11(b) the recovered nonlinear 
function of Eq. (15) is shown. The quality of this function recovery is worse than the quality of 
reconstruction for the first-order time-delay systems (8) and (11) [Figs. 4 and 8]. 

 

 
 

Figure 11. (a) Number N of pairs of extrema in the time series of Eq. (15) separated in time by τ , as a 
function of τ . )(τN  is normalized to the total number of extrema in the time series. . 

(b) The recovered nonlinear function. 

)301)(minN =τ (N

)()()()( 123 txtxtxtxS +′+′+′= ������ εεε . 

 
Since the considered method of the delay time definition provides accurate estimation of  

for high-order time-delay systems only at small  values, we modify the method in order to 
achieve exact recovery of  for any values of the parameters . Let us consider the modified 
method with the second-order delay-differential equation (14) as an example. Differentiating 
Eq. (14) with respect to time, we obtain 

1τ

iε

1τ iε

)(
)(
))(()()()( 1

1

1
12 τ

τ
τεε −

−
−

+−=+ tx
tdx
txdftxtxtx ������� .                              (16) 

Let us also construct the )(τN  plot, but, instead of using all extrema of time series as in the 
case of first-order time-delay systems, we will select only the points of extrema  at 
which the second and the third derivatives ( and � ) have the same sign. As can be seen 
from Eq. (16), for such points with 

0)( =tx�
)(tx��

0
)(tx��

)( =tx�  the condition  must be fulfilled at 
positive  and . Thus, there must be no extremum separated in time by  from the given 
one and, hence, . 

0)( 1 ≠−τtx�

1ε 2ε

(N
1τ

0)1 →τ
This modified method of determination of the delay time can also be used with time-delay 

systems of higher orders. In such cases, the )(τN

)()( tn

 plots should be constructed using only 

extrema in which all high-order derivatives , x 1,,2 += kn …

1τ

, (where k is the order of 
equation) have the same sign. However, as the order of the system increases, realization of this 
approach requires longer time series and the accuracy of  determination decreases as a result 
of increasing inaccuracy of the numerical evaluation of high-order derivatives. 

 
6 Determining Order of a Time-Delay System 

 
The modified method of reconstruction of high-order time-delay systems considered in 

Sec. V can be used for evaluating the a priori unknown order of a system from its time series. 



Recovery of Dynamical Models of Time-Delay Systems from Time Series 17

The idea of this approach consists in reconstructing the given system assuming that it is 
described by a time-delay equation of the first order, then reconstructing it as a time-delay 
system of the second order, and so on. A criterion of correct determination of the order of a 
model differential equation can be formulated in terms of the single-valuedness of a 
reconstructed nonlinear function. A quantitative measure of this single-valuedness can be the 
minimum length L of the line connecting points on the plot of the reconstructed nonlinear 
function. 

Let us consider a time series generated by the time-delay system of the first order 
))(()()( 11 τε −+−= txftxtx�                                                 (17) 

with the quadratic nonlinear function  and the parameters , 2)( xxf −= λ 10001 =τ 95.1=λ , 
and . We imagine that the order of the system is a priori unknown. First, we reconstruct 
a model equation assuming that the system is of the first order and has the form of Eq. (17). To 
recover the delay time we construct the 

251 =ε

)(τN  plot using all extrema of the time series. For the 
step of τ  variation equal to 10, the absolute minimum of )(τN

( )
 takes place at  

[Fig. 12(a)]. In order to recover the parameter  we plot 
10001 =′τ

1ε 1̂ ( )x t x tε +�  versus  under 
variation of 

)1τ ′( −tx

1̂ε  and calculate the length 1̂( )L ε  of the line connecting points in the plane 

( 1 1̂( ), ))( ) (x t x� t x+ tτ ε′− , which are ordered with respect to )( 1τ ′−tx . For 1̂ε  varied at the step 

of unity, the 1̂( )L ε  plot exhibits the minimum minL 1̂( ) 0.009ε =  at 251 =′ε  [Fig. 12(b)]. The 
reconstructed nonlinear function is presented in Fig. 12(c).  

Reconstructing the model equation of the system as the second-order equation of type (14), 
we use the modified method of delay time recovery described above. Varying τ  and counting 
for various τ  the number N of cases where  and )(tx� )( τ−tx�  simultaneously vanish and  
and �  have the same sign, we have plotted 

)(tx��
)(tx�� )(τN  [Fig. 12(d)]. In this figure the dependence 

)(τN  is normalized to the number of extrema in the time series where  and �  have the 
same sign. The derivatives are calculated using a local polynomial approximation. The 

)(tx�� )(tx��
)(τN  

plot, constructed by this method with the step of τ  variation equal to 10, yields the estimation 
 [Fig. 12(d)]. For this delay time the 9901 =′τ 1̂( , 2ˆ )L ε ε  plot, constructed with the step of 1̂ε  

variation equal to 0.5 and the step of 2ε̂  variation equal to 5, demonstrates the minimum 

minL 1̂ ˆ( , 2 0.047)ε ε =  at  and 321 =′ε 3352 =′ε  [Fig. 12(e)]. The nonlinear function reconstructed 
for these parameters is presented in Fig. 12(f). The quality of the nonlinear function recovery in 
Fig. 12(c) is much better than that in Fig. 12(f), and the minimum minL 1̂( )ε is five times smaller 
than minL 1̂( , 2ˆ )ε ε . The obtained results clearly indicate that the true model system is described 
by the first-order equation. It should be noted that in the case of exact recovery of the delay time 

 by the modified method, the minimum of 1τ 1 2ˆ )ˆ( ,L ε ε  is observed at 251 =′ε  and , 
which also indicates that the model system is of the first order. In this case 

0=2′ε

min 1̂ ˆ( , 2 min 1(L L ˆ )) 0.009ε ε ε= =  and the reconstructed nonlinear function coincides with that 
depicted in Fig. 12(c). 
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Figure 12. Reconstruction of the first-order time-delay system (17). (a) The )(τN  plot constructed 

using all extrema of the time series. . (b) The )1000()(min NN =τ 1̂( )L ε  plot constructed for . 

. (c) The recovered nonlinear function for 

10001 =′τ

min 1̂( ) (25) 0.009L Lε = = 1000=1′τ  and . (d) The 1ε ′ = 25

)(τN  lot constructed using the modified method. . (e) The )990() N=(minN τ 1 2ˆ ˆ( , )L ε ε  plot 

constructed for . . (f) The recovered nonlinear function for 

, , and . 

9901 =′τ

9901 =′τ 321 =′ε 2′ε
min 1̂ ˆ( , .0ε ε

335=
2 ) (32, 335) 0L L= 47=

 
Now let us consider a situation where the time series is generated by the second-order time-

delay system (14) with the quadratic nonlinear function and the parameters , 10001 =τ

95.1=λ , , and . Reconstructing the model equation under the assumption that 
the system is described by the first-order Eq. (17), we obtain the following results. For the step 
of 

451 =ε 5002 =ε

τ  variation equal to 10, the minimum of )(τN  is observed at 10101 =′τ  [Fig. 13(a)]. For 1̂ε  
varied at the step of unity, the 1̂( )L ε  plot demonstrates the minimum at 391 =′ε  [Fig. 13(b)]. 
The recovered nonlinear function is shown in Fig. 13(c).  
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Figure 13. Reconstruction of the second-order time-delay system (14). (a) The )(τN  plot constructed 

using all extrema of the time series. . (b) The )1010()(min NN =τ 1̂( )L ε  plot constructed for . 

. (c) The recovered nonlinear function for 

10101 =′τ

min 1̂( ) (39) 0.072L Lε = = 1010=1′τ  and . (d) The 391 =′ε

)(τN  plot constructed using the modified method. . (e) The )1000() N=(minN τ 1 2ˆ ˆ( , )L ε ε  plot 

constructed for . . (f) The recovered nonlinear function 

for , , and . 

10001 =′τ

10001 =′τ 5.441 =′ε
min 1( ,

2 =′ε
2ˆ ˆ ) (44.5, 540)L Lε ε =

540

0.012=

 
These results have to be compared with those obtained upon reconstruction of the system 

assuming that it is described by the second-order equation. The )(τN

1 ==τ

 plot constructed by the 
modified method demonstrates the absolute minimum at  [Fig. 13(d)]. The 1000τ

1 2ˆ ˆ( , )L ε ε  plot, constructed with the step of 1̂ε  variation equal to 0.5 and the step of 2ε̂  
variation equal to 5, exhibits the minimum at 5.441 =′ε  and 5402 =′ε  [Fig. 13(e)]. The 
nonlinear function reconstructed for these values [Fig. 13(f)] coincides quite well with the true 
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quadratic function of the system. As can be seen, the quality of reconstruction of the nonlinear 
function is much better in Fig. 13(f) than in Fig. 13(c), and the minimum 

min 1 2ˆ ˆ( , ) (44.5, 540) 0.012L Lε ε = =

min 1̂( ) (39) 0.072L L
 in Fig. 13(e) is six times smaller than 

ε = =

)(tx�

 in Fig. 13(b). This comparison indicates that the system under 
investigation is better described by the second-order equation. 
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7 Recovery of Time-Delay Systems with Two Coexisting Delays 

 
Let us consider now a time-delay system with two different delay times  and  1τ 2τ

))(),(),(( 21 ττ −−= txtxtxF .                                           (18) 
Differentiation of Eq. (18) with respect to t gives 

)(
)(

)(
)( 2

2
1

1
τ

τ
τ

τ
−

−∂
∂

+−
−∂

∂
+ tx

tx
Ftx

tx
F �� .                     (19) 

Similarly to temporal realization of Eq. (4), the realization  of Eq. (18) has mainly 
quadratic extrema and therefore 

)(tx
0)( =t  and 0)( ≠tx��  at the extremal points. Hence, if 

, the condition 
0)()( 21 ≠−+− ττ txbt �                                                    (20) 

must be fulfilled, where  and 
. The condition (20) can be satisfied only if 

 or/and . By this is meant that the derivatives  and , or 
 and  do not vanish simultaneously. As the result, the number of extrema 

separated in time by  and  from a quadratic extremum must be appreciably less than the 
number of extrema separated in time by other values of 

)(/))(),(),(( 121 τττ −∂−−∂= txtxtxtxFa

)(tx� (tx�
)2τ−

)1τ−

τ  and hence, the )(τN

2ττ =

 plot will 
demonstrate pronounced minima at  and . Compared to the method of optimal 
transformations used in Ref. [19] for the recovery of two delays our method requires longer 
time series, but it is significantly more simple and does not need preprocessing of the data as for 
example, adaptive partitioning of data used in Ref. [19]. 

1ττ =

We illustrate the procedure for estimating the other characteristics of time-delay system 
with two delays from time series for the system governed by the following equation 

))(())(()( 2211 ττ −+−+ txftxft .                                    (21) 
Differentiation of Eq. (21) with respect to t gives 

)(
)(
))(()(

)
))(

2
2

22
1

1

1 τ
τ
ττ

τ
τ

−
−∂
−∂

+−
−
− tx

tx
txftx

t
t �� .                    (22) 

From Eq. (22) it follows that if 
0)()( 21 =−=− ττ txt � ,                                                    (23) 

then  and 

)(
)(

1 tx
tx
��
�

−=ε .                                                                (24) 
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Thus, to estimate the parameter  one can find the points of  satisfying condition (23), 
define for them the first and the second derivatives, calculate  using Eq. (24), and conduct 
averaging. Note that one can also use Eq. (24) for the recovery of  in the case of a single 
delay, but such estimation uses only the points with  and is not so accurate as the 
method considered in Sec. III. To reduce the computation time we use Eq. (24) for the first 
approximation of the parameter  and improve this estimation later on. 

1ε )(tx

1ε

ε

0
1

)( 1 =−τtx�

1ε

To recover the nonlinear functions  and  we project the trajectory generated by 
Eq. (21) to a three-dimensional space 

1f 2f
( ))()(), 121 txtxtt +−− �εττ (), x(x . In this space the 

projected trajectory is confined to a two-dimensional surface since according to Eq. (21) 
))(())(()()( 22111 ττε −+−=+ txftxftxtx� .                                    (25) 

The section of this surface with the 2( ) conx t stτ− =  plane enables one to recover the 
nonlinear function  up to a constant since the points of the section are correlated via 1f

(1 1 1( ) ( ) ( )) 1x t x t f cx tε τ+ = − +� , where 1 2 2( ( ))c f x t τ= −  for some fixed value of . In 
a similar way one can recover up to a constant the nonlinear function  by intersecting the 
trajectory projected to the above-mentioned three-dimensional space with the 

)( 2τ−tx

1( )
2f

conx t stτ− =

2 )
 

plane. The points of this section are correlated via 1 2( ) 2)( ) ( (x t x t tf x cε τ+ = − +� , where 

2 1 1( ( ))c f x t τ= − ( −tx for fixed . )1τ
We demonstrate the method efficiency with a generalized Mackey-Glass equation obtained 

by introducing a further delay, 
1 1 2 2

1 2

1 ( ) 1 (( ) ( )
2 1 ( ) 2 1 ( )c

a x t a x tx t bx t
x t x t

)
c

τ τ
τ τ

− −
= − + +

+ − + −
� .                             (26) 

Division of Eq. (26) by b reduces it to Eq. (21) with . Figure 14(a) shows the b/11 =ε

)(τN  plot for , , 2.01 =a 3.02 =a 0.1b = , 10c = , , and . The first two most 
pronounced minima of 

701 =τ 3002 =τ

)(τN  are observed at 69=1′τ  and 32 = 00′τ . Another distinctive 
minimum of )(τN  is observed close to . Processing the points satisfying condition 
(23) with the recovered values 

21 ττ +=τ

1τ ′  and 2τ ′  we obtain the averaged estimation  for the 
parameter . To reduce inaccuracy in  determination by formula (24) we exclude 
from consideration the points with very small values of . 

4.91 =′ε

10/1 =b1ε = 1ε
)(tx��

Projecting the time series of Eq. (26) to the three-dimensional space 
 and constructing the sections of this space with the planes ( )()(),(),( 121 txtxtxtx +′′−′− �εττ

2( ) constx t
)

τ ′− = 1( )x t and constτ ′− =

1f 2f

1τ 1ε

 we obtain at these sections the recovered nonlinear 
functions  and  [Figs. 14(b) and (c)]. However, as the result of inaccuracy in estimation of 

 and  the quality of the nonlinear function recovery is not good enough. 
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Figure 14. (a) Number N of pairs of extrema in the time series of Eq. (26) separated in time by τ , as a 
function of τ . )(τN

1f

 is normalized to the total number of extrema in the time series. (b) The recovered 

nonlinear function . (c) The recovered nonlinear function . 2f

 
To achieve more high quality of the model equation reconstruction we propose the 

following procedure for the correction of the parameters. Varying  in a small vicinity of 
 we project the time series to several three-dimensional 

 spaces and plot their sections with the 

1τ

691 =′τ

( 1tx −τ( )()(),(), 12 txtxtx +′′− �ετ ) st2( ) conx t τ ′− =

( 1τL

 plane, 
searching for a section, which points contract to a curve demonstrating almost single-valued 
dependence. As a quantitative criterion of single-valuedness we use the minimal length of a line 

 connecting all points of the section ordered with respect to abscissa. The  plot 
demonstrates the minimum at 

)( 1τL )

1̂ 70τ =  [Fig. 15(a)]. Similarly, the correction of the delay time 
 is performed. We project the time series to 2τ ( )1 ( ) ( )1 2ˆ( ), ( ),x t x tτ τ x t x tε ′− − +�  spaces under 

variation of  in the vicinity of 2τ 2 300τ ′ =  and plot the sections 1̂( ) constx t τ− = . Note that for 
these sections the corrected delay time 1̂ 70τ =  is used. The minimum of  takes place at )( 2τL

2ˆ 300τ =  [Fig. 15(b)]. In the general case if 2 2τ̂ τ ′≠ , the procedure of  revision is repeated by 
plotting the sections of the embedding spaces with the 

1τ
( )2ˆx t constτ− =  plane with the 

corrected delay time 2τ̂ . Successive correction of  and  is continued until the parameters 
cease changing. For small deviations of initial estimates 

1τ 2τ

1τ ′  and 2τ ′  from the true delay times the 
procedure is converging and allows one to define both delay times accurately.  
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Figure 15. (a) Length L of a line connecting points ordered with respect to abscissa in the  

section, as a function of . . (b) Length L of a line connecting points ordered with 

respect to abscissa in the  section, as a function of . . (c) Length L of a 

line connecting points ordered with respect to abscissa in the 

1)( 2 =′−τtx

1τ

x t

)70()( 1min LL =τ

1̂( ) 1τ− = 2τ

x t

)300()( 2min LL =τ

2ˆ( ) 1τ− =

1 2ĉ f

 section, as a function of ε . 

. (d) Nonlinear function  recovered up to the constant )1.10()(min LL =ε 1f 2ˆ ))t( (x τ=

2 1ĉ f

−

1̂ ))t

, where 

. (e) Nonlinear function  recovered up to the constant 2ˆ( ) 1x t τ− = 2f ( (x τ= − , where 

. 1̂( ) 1x t τ− =

 
After revision of the delay times the parameter  should be corrected. Its new estimate 1ε 1̂ε  

can be obtained by formula (24). However, a more reliable estimation is the one using all points 
of one of the section. To obtain it we project the time series to 
( 1 2ˆ ˆ( ), ( ), ( ) ( ))x t x t x t x tτ τ ε− − +�  spaces under variation of ε in the vicinity of , searching 

for a single-valued dependence in the section 
1ε′

1̂( ) conx t stτ− =  or in the section 

2ˆ( ) constx t τ− = )(. The εL  plot shows the minimum at 1̂ .110ε =  [Fig. 15(c)]. In Fig. 15 the 
values of )(εL )( 1τL )( 2τL

1ε

, , and  are normalized to the number of points in the corresponding 
section. Note that the proposed procedure of the successive correction of the parameters needs 
in several orders of magnitude smaller time of computation than the method of simultaneous 
selection of the parameters , 1τ , and  for the three-dimensional embedding space 

. 
2τ

( ))()(),(),( 21 txtxtxtx +−− �εττ
Figures 15(d) and (e) illustrate the reconstructed nonlinear functions of the system with two 

coexisting delays (26) for the corrected parameters 1̂ 10.1ε = , 1̂ 70τ = , and 2ˆ 300τ = . The 
nonlinear functions  and  are recovered up to the constant by plotting the sections of the 1f 2f
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two-dimensional surface described by Eq. (25). To investigate the method efficiency in the 
presence of noise we apply it to noisy data and found that the method provides sufficiently 
accurate reconstruction of the investigated system for noise levels up to 10% (the signal-to-
noise ratio is 20 dB). 

 

 
 

Figure 16. Block diagram of the electronic oscillator with two delays. 
 
As another example, we consider the method application to experimental time series 

produced by a setup with two delays. A block diagram of the electronic scheme is shown in 
Fig. 16. This electronic oscillator is governed by Eq. (25), where  is the voltage at the input 
of the delay lines,  and  are the output voltages of the first and the second 
delay lines, respectively, and . The time series of V  are recorded at  ms, 

)(tx
)( 1τ−tx )( 2τ−tx

RC=1ε )(t 0.231 =τ

2 31.1τ =  ms, and  ms with the sampling frequency  kHz. The 01.11 =ε 4=sf )(τN  plot, 
constructed with the step of τ  variation equal to the sampling time T  ms, demonstrates 
the first two most pronounced minima at 

25.0=s

0.231 =′τ  ms and 2 31.0τ ′ =  ms [Fig. 17(a)]. These 
values of the delay times allow us to obtain the estimation 1.1= 61′ε

co

 ms from Eqs. (23) and 
(24). To obtain the estimation of ε1 using more number of points we project the time series to 

 spaces under variation of ε in the vicinity of , searching 

for a single-valued dependence in the section V t
( 1 2, (V tτ τ′ ′− − )( )V t ), ( )V tε � ( )V t+ 1ε′

1( ) nstτ ′− = . The )(εL  plot, constructed 
with the step of ε  variation equal to 0.01 ms, demonstrates the minimum at 1̂ 1.01ε =  ms 
[Fig. 17(b)]. The recovered nonlinear functions  and  are presented in Figs. 17(c) and (d), 
respectively, for  ms, 

1f 2f
0.23=1′τ 0.312 =′τ  ms, and 1̂ 1.01ε =  ms. These functions are recovered 

up to a constant and are sufficiently close to the true transfer functions of the nonlinear elements 
of the scheme. 
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Figure 17. (a) Number N of pairs of extrema in the time series of the experimental system with two 
delays separated in time by τ . )(τN  is normalized to the total number of extrema in the time series. 

(b) Length L of a line connecting points ordered with respect to abscissa in the V  V 
section, as a function of 

1.1)( 1 −=′−τt
ε . )(εL  is normalized to the number of points in the section. 

. (c) Nonlinear function  recovered up to the constant c , where 

 V. (d) Nonlinear function  recovered up to the constant , where 

 V. 

min ( ) (1.01 ms)L Lε =

8.0)( 2 −=′−τtV

1.1)( 1 −=′−τtV

1f
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))(( 11 τ ′−tV
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8 Reconstruction of Coupled Time-Delay Systems 

 
Let us consider the time-delayed feedback systems X1 and X2 described in the absence of 

coupling by the first-order delay-differential equation with single delay time 
))(()()( 2,12,12,12,12,12,1 τε −+−= txftxtx� ,                                       (27) 

where the indexes 1 and 2 correspond to the first and the second system, respectively. The 
systems  and  can be coupled in different ways. For instance, the system  variable 

 multiplied by a coupling coefficient  can be injected into the ring system  at one of 
the three points indicated in Fig. 18 by the Arabic numerals 1–3. Similarly, the system  
variable  multiplied by a coupling coefficient k  can be injected into the ring system  
at different points indicated in Fig. 18 by the Roman numerals I–III. If the type of action of  
on  is the same as the type of action of  on , then the dynamics of both coupled 
systems is described by one of the following equations 

1X

(2 tx

2X 1X

2X)(1 tx

X

1k

2X

1X

1X
) 2

2 2X 1X

))()(()()( 2,11,21,22,12,12,12,12,12,1 ττε −+−+−= txktxftxtx� ,                            (28) 

))()(()()( 1,21,22,12,12,12,12,12,1 txktxftxtx +−+−= τε � ,                                     (29) 

)())(()()( 1,21,22,12,12,12,12,12,1 txktxftxtx +−+−= τε � .                                    (30) 
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Equation (28) governs the both systems  and  for the type of coupling at which the 
first time-delay system acts on the second one at the point 1 and the second system acts upon 
the first one at the point I. We denote this type of coupling as 1/I. Equations (29) and (30) 
describe the both coupled systems for the types of coupling 2/II and 3/III, respectively. A block 
diagram of the coupled time-delay systems for the coupling type 3/III is shown in Fig. 19. If the 
systems  and  affect on each other in different ways, then they are described by different 
equations. For example, in the case of 1/II type of coupling, the system  is given by Eq. (29) 
and the system  is given by Eq. (28). Certainly, the variety of possible types of coupling 
between time-delay systems is very large. In this chapter we restrict our consideration to only 
three chosen types of linear coupling between two time-delay systems. 

1X 2X

1X 2X

2X
1X

At first we recover the model equation of the system , i.e., we estimate the parameters 
, , and  and reconstruct the nonlinear function . To determine the delay time  from 

the temporal realization  we exploit the considered above method based on the statistical 
analysis of time intervals between extrema in the time series. We find that this method of the 
delay time estimation can be successfully applied in the case where the system  is affected 
by the system  under the condition that this action is not followed by the appearance of a 
great number of additional extrema in the time series of .  

1X

1τ 1ε 2k 1f

X

1τ

)(1 tx

1X

2X

1

To recover the parameter , the nonlinear function , and the coupling coefficient  we 
propose a method using time series of both variables  and . At first, let us assume 
that the type of action of  on  is known a priori, i.e., we know the form of equation 
governing the dynamics of the time-delay system . As an example, we consider the case 
described by Eq. (28), when the system  variable is injected into the time-delayed feedback 
system  before the element providing the delay (point I in Fig. 18). Let us write Eq. (28) for 
the system  as 

1ε

2

1f
)(1 t

2k
x

1

)(2 tx
X 1X

X

2X

1X

1X
))()(()()( 122111111 ττε −+−=+ txktxftxtx� .                                       (31) 

According to Eq. (31) it is possible to recover the function f1 by plotting in a plane a set of 
points with coordinates . Since the parameters  and 

 are unknown, one needs to plot  versus  under variation 
of 

( ))()(),()( 11112211 txtxtxktx +−+− �εττ

)()( 11 txtx +�ε (1 −tx
1ε

2k )() 121 ττ −+ tkx
ε  and k, searching for a single-valued dependence in the plane 

, which is possible only for  and . As a 
quantitative criterion of single-valuedness in searching for  and  we use the minimal length 
of a line 

( ))()( 11 txtx +�

1ε

),()( 121 tkxt −+ ετ

),( kL

1x −τ 1εε =

2k
2kk =

ε , connecting all points ordered with respect to the abscissa in the mentioned 
plane. The minimum  is observed at  and . The dependence of 

 on  for the defined  and  reproduces the nonlinear 
function that can be approximated if necessary. The proposed technique uses all points of the 
time series. It allows one to estimate the parameters  and  and to reconstruct the nonlinear 
function from short time series. 

),(min kL ε 1εε =

)() 1221 ττ −+ txk 1ε

1ε 2k

2kk =

2k)(( 11 tx (1 −tx)t +1x�ε
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Figure 18. Block diagram of two coupled time-delay systems  and . The elements denoted as  

and  provide a delay and the elements denoted as  and , and  and  provide the nonlinear and 

inertial transformations of oscillations, respectively. The elements k  and  determine the strength of 

coupling between  and . Arabic numerals 1–3 designate points where the system  acts on the 

system . Roman numerals I–III designate points where  acts on . 
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Similarly it is possible to recover the nonlinear function  and the parameters  and k  

for the system  described by Eq. (29) or Eq. (30) by plotting  versus 
 or  versus , respectively, under variation of 

1f 1ε

)(t
2

1X )( 11 xtx +�ε
)()( 211 tkxtx +−τ )()()( 211 tkxtxtx −+�ε )( 11 τ−tx ε  

and k. If we know that time-delay systems (27) are linearly coupled in one of the three 
considered ways, but we do not know at which point (I, II, or III)  acts on , we have to 
reconstruct each of the model equations (28)–(30) of the system  and to define  
for each of these equations. The single-valuedness of the recovered nonlinear function can be 
achieved only in the case of the true choice of the model equation. Hence, the smallest 

 from the three obtained ones will correspond to the true model choice. Thus, along 
with estimation of the parameters of coupled time-delay systems the method allows one to 
identify the type of coupling. 

2X

1X
1X

)k,(εminL

),(min kL ε

The time-delay system  can be reconstructed from the time series of and  in 
a similar way. The method allows us to estimate the parameters  and , to recover the 
nonlinear function , and to define the coupling coefficient  and the type of action of  on 

. Identifying the type of coupling between the systems and estimating the values of both 
coupling coefficients  and k  we can judge of the character of interaction between the time-
delay systems  and . 

2X

2

)(2 tx

2ε

)(1 tx

1X
2τ

2f 1k

2X

1k
X1X 2

First we apply the method to the time series produced by two coupled identical time-delay 
systems described in the absence of coupling by the Mackey-Glass equation 
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)(1

)(
)()(

2,12,1

2,12,12,1
2,12,12,1 2,1 τ

τ

−+

−
+−=

tx

txa
txbtx c

� .                                        (32) 

The types of action of the systems  and  on each other are chosen to be the same 
(Fig. 19). We use the 3/III type of coupling according to  our classification. In this case the 
dynamics of both coupled systems is governed by Eq. (30). The system parameters are chosen 
to be , , , , , and  to produce a 

dynamics on a high-dimensional chaotic attractor. Part of the time series of the system  is 
shown in Fig. 20(a). The time series is sampled in such a way that 300 points in time series 
cover a period of time equal to the delay time . The data set consists of 10000 points 
and exhibits about 600 extrema as well as the time series of the system . 

1X

1 c
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Figure 19. Block diagram of coupled time-delay systems for the 3/III type of coupling. 
 
For various τ  values we count the number N of situations when  and  are 

simultaneously equal to zero, normalize N to the total number of extrema in the time series, and 
construct the 

)(1 tx� )(1 τ−tx�

)(τN  plot [Fig. 20(b)]. The step of τ  variation in Fig. 20(b) is equal to unity. The 
pronounced minimum of )(τN  takes place exactly at . 3001 ==ττ

The ),( kL ε  plot [Fig. 20(c)] allows us to recover the parameters  and . To reduce the 
computation time we choose a large initial step of 

1ε 2k
ε  and k variation and then reduce it in the 

neighborhood of minimum ),( kL ε . In Fig. 20(c) the step of ε  variation is set by 0.1 and the 
step of k variation is set by 0.01. The minimum of )k,(L ε  is observed at 10.1ε =  and 

. These values agree well with the true parameter values 0.10k = 1 1/ 1 10bε = =  and . 
In Fig. 20(d) the recovered nonlinear function  is shown. It coincides practically with the true 
nonlinear function. Note that for the construction of the 

1.02 =k

1f
),( kL ε  plot and for the recovery of the 

function  we use only 2000 points of the time series of  and . 1f )(1 tx )(t2x
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Figure 20. Reconstruction of the Mackey-Glass system  coupled with the identical Mackey-Glass 

system  for the 3/III type of coupling. (a) The time series of the system . (b) Number N of pairs of 

extrema in the time series of  separated in time by 

1X

2X 1X

1X τ , as a function of τ . )(τN  is normalized to the 
total number of extrema in the time series. (c) The ), k(L ε  plot for the choice of the model equation in the 

form of Eq. (30). ),( kL ε  is normalized to the number of points. . (d) The 

recovered nonlinear function at , , and . 

)10.0,1.10minL () L=,( kε

300=1τ 1.101 =ε 1.02 =k
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In a similar way we reconstruct the time-delay system X2 and obtain the following 
estimation of its parameters: , , and k . For the indicated above 
parameter values of two coupled identical systems (32) the method provides the detection of 
coupling presence and high accuracy of coupling coefficients estimation at . It 
should be noted that the method is still efficient for sufficiently high levels of noise. For 
example, we apply the method to the data produced by adding a zero-mean Gaussian white 
noise to the time series of both coupled identical Mackey-Glass equations. For the case where 
the additive noise has a standard deviation of up to 20% of the standard deviation of the data 
without noise, we obtain the same values of the recovered parameters as in the considered above 
case of noise absence. However, the quality of the nonlinear function recovery deteriorates with 
the noise increasing. 

3002 =τ 1.102 =ε 05.01 =

3.0003.0 2,1 ≤≤ k

Let us consider a more general case of coupled nonidentical noisy time-delay systems  
and  with different types of action on each other. We apply the method to the time series of 
two coupled Mackey-Glass equations for the 1/II type of coupling at , , 

, , , , , and . To investigate the robustness 

of the method to perturbations we analyze the time series of  and  both corrupted by 
additive Gaussian white noise. Figure 21 illustrates the obtained results for a noise level of 10%. 
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00
2X

2.0
3001 =τ
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42 =τ

1 =a 3.02 =a 1.02,1 =b 102,1 =c 05.01 =k 1.02 =k

X1 X

The presence of noise in time series brings into existence spurious extrema. These extrema 
are not caused by the intrinsic dynamics of a system and temporal distances between them are 
random. To smooth the time series corrupted by noise and to reduce the number of extrema 
caused by noise we use more nearest-neighbor points in the procedure of local approximation 
while estimating derivatives from data in comparison with the case of noise absence. In spite of 
the noise presence the pronounced minimum of the )(τN  plot constructed for the system  
time series is observed at  [Fig. 21(a)] and the pronounced minimum of 

1X
3001 ==ττ )(τN  for 

the time series of  is observed at  [Fig. 21(b)]. The 2X 4002 ==ττ ),( kL ε  plot, constructed 
for the system  recovery in the form of Eq. (29), demonstrates the minimum at 1X 10.0ε =  and 

 giving the accurate estimation of  and k . The location of the absolute minimum of 
the 

0.10k =
,(L

1ε 2

)kε  plot, constructed for the system  recovery in the form of Eq. (28), allows us to 
obtain the following estimation of the parameters:  and . The recovered 
nonlinear functions  and  are presented in Figs. 21(c) and (d), respectively. 

2X
1.102 =ε 05.01 =k

1f 2f
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Figure 21. Reconstruction of coupled nonidentical Mackey-Glass systems from data corrupted by additive 
Gaussian white noise for noise level of 10% and 1/II type of coupling. (a) Number N of pairs of extrema in 
the system  time series separated in time by 1X τ  normalized to the total number of extrema. (b) Number 

N of pairs of extrema in the system  time series separated in time by 2X τ  normalized to the total number 

of extrema. (c) The recovered nonlinear function  at , , and . (d) The 

recovered nonlinear function  at , , and . 
1f
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The next example is the method application to experimental time series gained from two 

coupled electronic oscillators with delayed feedback. A block diagram of the experimental setup 
is shown in Fig. 22. The delay of the signal V  for time  and the delay of the signal V  
for time  are provided by the delay lines DL-1 and DL-2, respectively, constructed using 
digital elements or computer. The delay lines are practically dispersion free while the signal 
band defined by the filter parameters lies within the band of analog-to-digital converters. The 
conversion frequencies of analog-to-digital converters are about 100 kHz and the cutoff 
frequencies of the filters are about 1 kHz and 2 kHz. The role of nonlinear devices ND-1 and 
ND-2 is played in the oscillators by the amplifiers with the transfer functions  and , 
respectively. These nonlinear devices ND-1 and ND-2 were constructed using bipolar 

)(1 t 1τ )(2 t

2f

2τ

1f
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transistors and field-effect transistors, respectively. The inertial properties of oscillators are 
defined by low-frequency first-order RC filters  and , which parameters specify  
and . The coupling of oscillators is realized using summing amplifiers with gains k  and . 
The type of coupling corresponds to the case 1/III according to our classification. 

11CR 22CR 1ε

2k2ε 1

( 2,1τ−t

2,1ε

2,1+ f

sf

2,1R

,1C

=

 

 
 

Figure 22. Block diagram of the experimental system of coupled electronic oscillators with delayed 
feedback for the 1/III type of coupling. DL-1 and DL-2 are the delay lines, ND-1 and ND-2 are the 
nonlinear devices, ADC-1 and ADC-2 are the analog-to-digital converters, and DAC-1 and DAC-2 are the 
digital-to-analog converters of the first and the second oscillator, respectively. ADC is a two-channel 
analog-to-digital converter and PC is a computer. 

 
In the absence of coupling the considered oscillators are given by 

))()()( 2,12,12,12,12,1 −= VtVtVCR � ,                                      (33) 

where  and V  are the delay line input and output voltages, respectively,  

and  are the resistances and capacitances of the filter elements in the first and the second 

oscillator, respectively. Equation (33) is of the form (27) with .  

)(2,1 tV

2

)( 2,12,1 τ−t

2,12,1 CR=

We record the signals V  and V  using a two-channel analog-to-digital converter 
ADC (Fig. 22) with the sampling frequency  kHz at  ms,  ms, 

 ms,  ms, , and . The parts of the time series of the 
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signals  and V  are presented in Figs. 23(a) and (b), respectively. For the step of )(1 tV )(2 t τ  
variation equal to the sampling time  ms, the pronounced minimum of 1.0=sT )(τN  takes 
place at 23.0τ =  ms [Fig. 23(c)] for the first oscillator and at 7.31=τ  ms [Fig. 23(d)] for the 
second oscillator. 

(L ε

),( kε 0.10k =

1ε 2

1

2X

To construct the ), k  plot we use the step of ε  variation equal to 0.01 ms and the step 
of k variation equal to 0.01. Reconstructing the model of the oscillator  in the form of 
Eq. (30) we obtain the minimum of 

1X
L  at 0.46ε =  ms and  that are close to the 

true values of  and k . The recovered nonlinear function [Fig. 24(a)] coincides closely with 
the true transfer function  of the nonlinear element of the first oscillator. 1f

 

 
 

Figure 23. Experimental time series of the first (a) and the second (b) coupled electronic oscillators with 
delayed feedback. Number N of pairs of extrema in the time series of the oscillator  (c) and the 

oscillator  (d), separated in time by 

X

τ , as a function of τ . )(τN  is normalized to the total number of 
extrema in the time series. 
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Reconstructing the system  in the form of Eq. (28) we observe the minimum of 2X ),( kL ε  
at 06.1=ε  ms and  that give a close estimation of  and . In Fig. 24(b) the 
recovered nonlinear function of the system  is shown. This function coincides closely with 
the true transfer function  of the nonlinear element of the second oscillator. If it is known that 
the system  is governed by one of the three model equations (28)–(30) but it is not known 
exactly which of the three types of linear coupling takes place, then one has to recover each of 
the model equations (28)–(30) for the system  and to define  for each of the three 
cases. For the choice of the system  model in the form of Eq. (29) we obtain 

10.0−=k

2f

ms, 0.00)

2ε

minL

1k

)

2X

X

2X

2X

(

2 ,( kε

min ( , )L k 0.98 135L 0.ε = = . Reconstructing the model equation of the system  
in the form of Eq. (30) we obtain 

2X

mi (0.97 ms 4Ln ( ,L k) , )0.01 0.13ε = = . In both cases 
 is normalized to the number of points. The results of the nonlinear function  

recovery for the choice of the model equation in the form of Eqs. (29) and (30) are shown in 
Figs. 24(c) and (d), respectively. From the three plots presented in Figs. 24(b)–(d) only the plot 
in Fig. 24(b) demonstrates a set of points that is close to a single-valued curve. In this case 

),(min kε

min ( , )L k

L

1.06 0.035L

2f

( ms, 0.10)ε = − =  that is significantly less than in the two other cases. 
This result indicates that the model equation of the second oscillator has the form of Eq. (28).  

 

 
 

Figure 24. Reconstruction of nonlinear functions of coupled electronic oscillators with delayed feedback. 
(a) The recovered nonlinear function  at  ms,  ms, and . (b)–(d) Results of 

the nonlinear function  recovery for the choice of the second oscillator model equation in the form of 

Eqs. (28)–(30), respectively, at the recovered parameters  ms and  (b),  ms 

and  (c), and  ms and k  (d). 
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We use the smallest value of  from the three obtained ones as a criterion for the 
identification of the right coupling. But if the minimal value of  is close to the values 
of  for the other two projections, it cannot be considered as the reliable criterion for 
identification of the coupling type. To ensure the validity of this criterion we use it only if the 
minimal value of  is less than the other values of  by a factor of two or a 
greater factor. The difference between the values of  for different projections depends 
not only on the level of noise but also on the coupling coefficient. For small coupling values it is 
difficult to identify the a priori unknown type of coupling. For example, for the considered 
above parameter values of coupled Mackey-Class equations and the coupling coefficient 

 we were able to identify with certainty the type of action of the system X

),(min kL ε

),(min kL ε

),(min kε

),(min kL ε

1.0=

),(min kL ε L
),(min kL ε

2k 2 on the 
system X1 for additive noise levels up to 20%. 

The proposed method can be also used for the reconstruction of a time-delay system 
affected by a system that is not a time-delay system and for the estimation of strength of this 
driving. In contrast to the other methods of detection of coupling between the systems from time 
series [37–39] the proposed technique is able to define not only the direction but also the value 
of coupling. 

The procedure of the coupling coefficients estimation considered with coupled time-delay 
systems like (28)–(30) for the three chosen types of linear coupling can be successfully applied 
to many other types of coupling between scalar time-delay systems of the form (27). For 
example, in the case of diffusive coupling between time-delay systems X1 and X2 described by 
the equation 

))()(())(()()( 2,11,21,22,12,12,12,12,12,1 txtxktxftxtx −+−+−= τε � ,                    (34) 

it is possible to recover the nonlinear functions  and the parameters  and k  of the 

systems  by plotting  versus  under 

variation of ε and k. The method is also efficient for some types of nonlinear coupling between 
the systems  and  if the coupling term does not contain the unknown functions  or . 
In the case of the coupling term  and other similar terms the 
method cannot be used. It should be noted that in the general case for the reconstruction of 
coupled time-delay systems and their coupling coefficients estimation we must know the type of 
coupling defining the embedding spaces to which the trajectories of time-delay systems are 
projected. 
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In principle, it is possible to extend the proposed method to time-delay systems described in 
the absence of coupling by delay-differential equation of higher order than Eq. (27). However, 
the higher the order of equation, the more parameters of coupled systems have to be recovered. 
As the result, the time of computation significantly increases and the quality of reconstruction 
deteriorates since the procedure involves numerical calculation of the higher order derivatives. 
Similar problems arise in the case of three and more coupled time-delay systems. 

 
9 Application to Chaotic Communication 

 
The discovery of the phenomenon of synchronization in chaotic systems [40] has given rise 

to active development of secure communication methods using chaotic signal as a carrier [41–
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44]. Chaotic communication systems are particularly attractive due to the broadband power 
spectrum of chaotic signals, high rates of information transmission, and tolerance to sufficiently 
high levels of noise. Besides, many chaotic communication schemes are simply realized and 
demonstrate a rich variety of different oscillating regimes. However, many chaotic 
communication schemes are not as secure as expected and can be successfully unmasked [45–
49]. To improve the security of data transmission it has been proposed to employ time-delay 
systems demonstrating chaotic dynamics of a very high dimension [26–31]. However, even in 
communication schemes using masking chaotic signals of time-delay systems the hidden 
message can be extracted in certain cases by an eavesdropper [11, 12]. In this chapter we 
consider different ways for encryption and decryption of information in communication 
schemes based on time-delay systems and propose a technique for extracting a hidden message 
in the case when the transmitter parameters are unknown. 

A block diagram of a transmitter, representing the ring system composed of delay, 
nonlinear, and inertial elements, is shown in Fig. 2. For the case when the filter is a low-
frequency first-order filter, this transmitter is described in the absence of information signal by 
the delay-differential equation (2). The information signal m(t) can be injected into the ring 
system (2) at different points denoted in Fig. 2 by the numerals 1, 2, and 3. Depending on the 
point at which the message signal is injected into the feedback circuit of the transmitter, the 
system’s dynamics is governed by one of the following equations: 

))()(()()( 111 ττε −+−+−= tmtxftxtx� ,                                          (35) 
))()(()()( 11 tmtxftxtx +−+−= τε � ,                                                  (36) 
)())(()()( 11 tmtxftxtx +−+−= τε � .                                                  (37) 

Equation (35) corresponds to the case when the signal m(t) is injected into the transmitter at 
the point 1. The cases of information signal injection at the points 2 and 3 are described by 
Eqs. (36) and (37), respectively. With this nonlinear mixing the information signal is directly 
involved in the formation of a complicated dynamics of the chaotic system. The signal s(t) 
transmitted into the communication channel can be also taken from different points of the ring 
system indicated in Fig. 2 by the numerals 1–3. Thus, there are nine different ways for realizing 
the transmitter depicted in Fig. 2. 

 

 
 

Figure 25. Block diagram of the chaotic communication system for the case 1/1. 
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Similar approach for the information encryption in delayed nonlinear feedback systems has 
been considered in Ref. [31]. The possibility of the message signal recovery at the receiver was 
discussed in Ref. [31] for different ways of the information signal injection into the time-delay 
system and different output points of the transmitter. The configuration and the parameters of 
the transmitter were assumed to be known to the authorized receiver. Nevertheless, in a number 
of cases the message recovery required processing of the signal at the receiver output, including 
determination of the reciprocal function of the nonlinear element. Since the transfer function of 
a nonlinear element is not necessarily one-to-one, this transformation may be incorrect. In such 
cases, we suggest using an approximate approach for recovering the information signal. This 
approach allows one to avoid inverse transformation. Moreover, using our method the 
information signal can be extracted from the transmitted signal s(t) even in the case when the 
transmitter parameters are a priori unknown. 

Let us consider different configurations of the transmitter shown in Fig. 2 and determine the 
corresponding signals at the output of the receiver being an identical copy of the transmitter. 
Figure 25 illustrates the communication scheme based on the transmitter configuration denoted 
as 1/1. In this case, with the help of a summator the information signal m(t) is added at the point 
1 to the chaotic signal x(t) of the transmitter whose dynamics is described by Eq. (35), and the 
signal s  is transmitted into the communication channel also from the point 1. )()()( tmtxt +=

The receiver is composed of the same elements as the transmitter, except the summator 
replaced by a subtracter breaking the feedback circuit. The receiver equation is 

))()(()()( 111 ττε −+−+−= tmtxftyty� .                                       (38) 
At the output of the subtracter we have the extracted information signal 

. )()()()( tytmtxtm −+=′

If the transmitter and the receiver are composed of identical elements, they become 
completely synchronized after the transient process. The difference between the oscillations of 

systems (35) and (38), )()()( tytxt −=∆ , decreases in time for any , since 01 >ε
1

)(
ε
∆

−=∆ t� . 

As the result of synchronization, )t()( ytx =  and )()( tmtm =′ . 
 

 
 

Figure 26. Block diagram of the chaotic communication system for the case 3/1. 
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If we take away the delay line in the receiver, Eq. (38) will take the form 
))()(()()(1 tmtxftyty ++−=�ε .                                               (39) 

In this case the receiver synchronizes with the transmitter in such a way, that 
 or, equivalently, . In other words, at time t the receiver (39) 

synchronizes with the future state of the transmitter (35) at time t . It is the case of 
anticipating synchronization [50]. The delay line will be necessary to extract the information 
signal. If we delay the signal y(t) by τ

)()( 1τ−= tytx

)(tm′

)()( 1 tytx =+τ

)()( 1 tmt =−τ

1τ+

1 and feed the signal  at the subtracter input, then 
we receive  at the subtracter output. 

)( 1τ−ty
)()( ytmtx −+=

Figure 26 shows the communication scheme based on the transmitter configuration 3/1. In 
this case, the information signal m(t) is added at the point 3 (see Fig. 2) to the chaotic signal of 
the transmitter whose dynamics is described by Eq. (37), and the signal ( ) ( )s t x t=  is 
transmitted into the communication channel from the point 1. The receiver equation is 

))(()()( 11 τε −+−= txftyty� .                                              (40) 
At the output of the subtracter we have the signal )()()( tytxtz −= . 
 
Table I. The difference signal z(t) at the output of the receiver for different points of information 

signal injection into the feedback circuit of the transmitter and different points of the signal output. 
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The values of the signal z(t) at the receiver output are presented in Table I for various 

configurations of the communication scheme. In the simplest cases 1/1, 2/2, and 3/3, where the 
information signal is injected into the feedback circuit of the transmitter and simultaneously 
transmitted into the communication channel, we immediately have the extracted message signal 

( ) ( )z t m t=  at the output of the receiver. In these cases the quality of extraction of the message 
m(t) does not depend on its amplitude and frequency characteristics. By this is meant that for the 
considered configurations the communication schemes allow one to transmit complicated 
information signals without distortion. For the case 1/2 the information signal is also recovered 
accurately, but with the delay . 1τ

For the other five configurations of the communication scheme the procedure of the 
message signal extraction is more complicated since the processing of the signal z(t) at the 
receiver output is required. For example, for recovering the information signal in the case 3/1 
depicted in Fig. 26, let us subtract Eq. (40) describing the dynamics of the receiver from 
Eq. (37) for the transmitter. The expression for m(t) takes the form 



Recovery of Dynamical Models of Time-Delay Systems from Time Series 39

))()(())()(()( 1 tytxtytxtm −−−= ��ε .                                       (41) 
Taking into account that )()()( tytxtz −= , the information signal can be obtained from the 

signal at the receiver output as follows: 
)()()( 1 tztztm −= �ε .                                                      (42) 

In a similar way one can recover the signal m(t) for the case 3/2: 
)()()( 111 ττε −−−= tztztm � .                                                 (43) 

In the communication system 2/3 the difference signal at the output of the receiver is 
))(())()(()( 11 ττ −−+−= txftmtxftz .                                  (44) 

Assuming that the information signal m(t) is small in comparison with x(t), let us expand 
the first term in Eq. (44) in a Taylor series and restrict our consideration to the two first terms of 
the expansion: 

)())(())(())()(( 1
11 tm

dx
txdftxftmtxf τττ −

+−≈+− .                         (45) 

This assumption is justified because the level of information signal in the communication 
schemes with nonlinear mixing must be sufficiently low, otherwise the chaotic signal may not 
provide enough masking [43]. From Eqs. (44) and (45) we obtain 

dxtxdf
tztm

/))((
)()(
1τ−

≈ .                                                      (46) 

Equation (46) can be used also for approximate recovery of the message signal in the case 
1/3. However, the recovered message signal is delayed by  in this case. 1τ

For the case 2/1 the message signal m(t) can be approximately determined as follows:  

dxtxdf
tztztm
/))((
)()()(

1

1

τ
ε
−
+

≈
�

.                                                       (47) 

The security of chaotic communication systems is based on the assumption that the 
parameters of the chaotic transmitter are known only to the authorized receiver having an 
identical copy of the transmitter. However, the information signal m(t) masked by the 
considered communication schemes in such a way, that its presence is imperceptible in the 
communication channel, can be extracted by an unauthorized listener from the transmitted 
signal s(t). Using the methods considered in Secs. III and IV it is possible to recover the 
parameters of the chaotic transmitter governed in the absence of message by delay-differential 
equation (2). These methods are still efficient in the presence of message in the transmitted 
signal if the message signal has small amplitude. In this case the information signal can be 
considered as noise deteriorating the accuracy of the transmitter parameters estimation. We have 
found out that our technique of time-delay system recovery provides sufficiently accurate 
estimation of the system parameters for noise levels up to 10%. To ensure the security of 
message transmission, the level of information signal in the considered communication systems 
is usually much lower [43]. Knowing the parameters of the transmitter one can construct the 
receiver and extract the message signal. 

At first we consider the procedure of hidden message recovery without knowing the 
transmitter parameters for the simplest case 1/1. We apply the method to a time series produced 
by nonlinear mixing of the chaotic signal of the Mackey-Glass system (11) and the frequency-
modulated harmonic signal 

))2cos(2sin()( tfBtfAtm mc ππ −= ,                                             (48) 
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where A defines the message amplitude,  is the central frequency of the power spectrum of 
the signal, B is the frequency modulation index, and  is the modulation frequency. As a 
bandpass signal, the frequency-modulated harmonic signal better imitates the structure of 
speech and music signals than a simple harmonic signal. With a fourth-order Runge-Kutta 
method for delay-differential equations we record 50000 points with the sampling interval 

. Parts of the time series and the power spectra of frequency-modulated signal m(t) and 
the transmitted chaotic signal 

cf

m

mf

0.5h =
)()()( ttxts +=  are presented in Figs. 27(a) and (b). As can be 

seen from these figures, the amplitude of the information signal comprises less than 1% of the 
amplitude of the chaotic carrier and the presence of message is not noticeable in the power 
spectrum of the transmitted signal s(t). 

Figures 27(c)–(d) illustrate the reconstruction of the transmitter parameters. To construct 
the )(τN  plot [Fig. 27(c)] we use 20000 points of the time series of s(t). The time series 
exhibits about 600 extrema and )(τN  is normalized to their total number. The step of τ  
variation in Fig. 27(c) is equal to the integration step h 0.5= . The location of the absolute 
minimum of )(τN  allows one to estimate the delay time, 0.3001 =′τ . Note that we obtain the 
same values of  for a time series whose length is shorter by a factor of 3. 1τ ′

 

 
 

Figure 27. (a) The frequency-modulated harmonic signal m(t) for A = 0.01, B = 3, = 5×10cf
-3, and 

fm = 5×10-4, the transmitted signal s(t) for a = 0.2, b = 0.1, c = 10, and , and the extracted 
frequency-modulated harmonic signal 

1 300τ =

)(tm′ . (b) The power spectra of the signals (1) m(t), (2) s(t), and 

(3) . (c) The )(tm′ )(τN  plot. . (d) The )0.300(minN )( N=τ )(εL  plot. . (e) The 
recovered nonlinear function. 

)0.= 10(L)(minL ε
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To construct the )(εL  plot [Fig. 27(d)] we use only 2000 points of s(t) realization. The step 
of ε variation is set by 0.1. The minimum of )(εL  takes place at 0.101 =′ε  ( ). The 
nonlinear function recovered using the estimated 

10/11 == bε

1τ ′  and 1ε′  is shown in Fig. 27(e). For the 
approximation of the recovered function we use polynomials of different degree. The 
approximating function is sufficiently close to the nonlinear function of the Mackey-Glass 
equation and ensures a high quality of synchronous response of the receiver if the degree of the 
polynomial is greater than 11. To increase the accuracy of polynomial approximation we use all 
points of the time series at the reconstruction of the nonlinear function. 

The more accurate is the estimation of the transmitter parameters, the higher is the quality 
of synchronous chaotic response of the receiver and, as a consequence, the higher is the quality 
of the message extraction. The quality of the recovery of the system parameters can be 
estimated by the level of the desynchronization noise (Fig. 28) leading to a worse quality of 
synchronous chaotic response. It follows from Fig. 28 that the level of the desynchronization 
noise is about 0.1% of the level of the chaotic signal and can achieve 10% of the amplitude of 
the information signal [Fig. 27(a)] at the receiver output. Part of the time series and the power 
spectrum of the extracted frequency-modulated signal )(tm′  are presented in Figs. 27(a) and 
(b), respectively. 

 

 
 

Figure 28. The noise of desynchronization of the transmitter (35) and the recovered receiver (38) in the 
absence of information signal. 

 
As another example, we consider an experimental communication system of 1/1 type using 

the chaotic signal of an electronic oscillator with delayed feedback. For the case when the filter 
is a low-frequency first-order RC-filter this oscillator is given by Eq. (9). The chaotic signal 

 of the system (9) is nonlinearly mixed with the harmonic signal  with 
amplitude A and frequency . The transmitted signal is 

)(tV )2sin()( tfAtm cπ=

)() tmcf ()( tVts += . We record the 
signals m(t) and s(t) using an analog-to-digital converter with the sampling frequency 

 kHz. In Figs. 29(a) and (b) parts of the time series and power spectra of these signals are 
presented. 

4=sf

Figures 29(c)–(d) illustrate the reconstruction of the transmitter. Since the delay time 
 ms is not a multiple of the sampling time T  ms, the recovery of  can not be 

absolutely accurate. For the step of 
7.541 =τ 25.0=s 1τ

τ  variation equal to T  the minimum of s )(τN  takes place 

at  ms [Fig. 29(c)]. The 75.541 =′τ )(εL  plot, constructed with 1τ ′  and the step of ε variation 
equal to 0.025 ms, demonstrates the minimum at 2.41 =′ε  ms [Fig. 29(d)] ( 1 4.21ε =  ms). The 
recovered nonlinear function is shown in Fig. 29(e). The approximation of this function with a 
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polynomial of degree two allows us to obtain a high-quality synchronous response of the 
receiver and, as the result, a sufficiently qualitative extraction of the hidden message. Part of the 
time series and the power spectrum of the extracted harmonic signal are shown in Figs. 29(a) 
and (b). Thus, the extraction of hidden information is possible in spite of the presence of noise 
inherent in a real system and the absence of multiplicity between the characteristic temporal 
scales of the chaotic transmitter and the sampling time, which result in the inaccurate estimation 
of the parameters. 

Let us apply our method for extracting the hidden message in the more complicated cases 
of communication schemes 3/1 and 2/3. We consider the recovery of the frequency-modulated 
harmonic signal (48) nonlinearly mixed with the chaotic signal of the Mackey-Glass system 
(11). The parameters of the information signal and the Mackey-Glass system are chosen the 
same as in the considered above case 1/1. The temporal realizations of the transmitted signals 
s(t) are qualitatively similar to the one shown in Fig. 27(a). For the configuration 3/1 of the 
transmitter (see Fig. 26) the procedure of its parameters recovery is the same as in the 
considered case 1/1. Part of the time series of the extracted frequency-modulated harmonic 
signal  calculated using Eq. (42) is presented in Fig. 30(a). The power spectrum of this 
signal is shown in Fig. 30(b). The extracted message signal is sufficiently close to the true 
information signal m(t) depicted in Fig. 27(a) and the power spectrum of 

)(tm′

)(tm′  is qualitatively 
similar to the power spectrum of m(t) [Fig. 27(b)]. 

 

 
 

Figure 29. (a) The original message signal m(t) with A = 0.25 V and fc = 27 Hz, the transmitted signal 
s(t) for  ms and  ms, and the extracted harmonic signal . (b) The power 

spectra of the signals (1) m(t), (2) s(t), and (3) m

7.541 =τ 21.41 == εRC )(tm′

)(t′ . (c) The )(τN  plot. . 

(d) The 
min ( )τ = (54.75 ms)N N

)(εL  plot. . (e) The recovered nonlinear function. min ε( ) (4.2 ms)L L=
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For the transmitter configuration denoted as 2/3 the procedure of the parameters recovery is 

different from the considered one since the signal [ ])()()( 1 tmtxfts +−= τ  transmitted into the 
communication channel is taken from the points 3 of the ring system with nonlinear time-
delayed feedback (Fig. 2).  

For various τ  values we count the number N of situations when  and )(ts� )( τ−ts�  are 
simultaneously equal to zero and construct the )(τN  plot [Fig. 31(a)]. The location of 
minimum of )(τN  allows us to define the delay time accurately, 3001 =′τ . To estimate the 
parameter from time series of the dynamical variable measured between the nonlinear 
element and the filter (see Fig. 2), we exploit the method proposed in Sec. IV. We filter the time 
series of s(t) under variation of the filter cut-off frequency 

1ε

εν /1=  and plot s(t) versus 
, where  is the signal at the filter output shifted by the time . Then, we 

calculate the length L of a line connecting all points in the plane 
)( 1τ ′−tu )1τ ′−t(u 1′τ

[ ])(t),1 sτ(tu ′−  ordered with 

respect to  and construct the )1τ ′(u −t )(εL  plot [Fig. 31(b)]. For the step of ε variation equal to 
0.1, the minimum of )(εL  is observed at 0.101 =′ε

)1τ =−

. For the filter cut-off frequency , 
in the absence of message  and the set of points in the plane 

 reproduces the function f. The nonlinear function recovered from s(t) 
using the estimated  and  is shown in Fig. 31(c). We approximated the recovered function 
with a polynomial of degree 15. 

1ε1 /1ν =

)( 1τ−tx(tu
)( (f ))

1τ ′
(tx),( 1τ−tx 1τ−

1ε′

 

 
 

Figure 30. (a) The extracted frequency-modulated harmonic signal for the communication scheme 3/1. 
(b) The power spectrum of the extracted message signal. 

 

 
 

Figure 31. Reconstruction of the transmitter parameters for the case 2/3. (a) The )(τN  plot. )(τN

(

 is 

normalized to the total number of extrema in the time series. . (b) The )300()(min NN =τ )εL  

plot. )(εL  is normalized to the number of points. . (c) The recovered nonlinear 

function at  and . 

)0.10(L=)(minL ε

3001 =′τ 0.101 =′ε
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Figure 32. (a) The extracted frequency-modulated harmonic signal for the communication scheme 2/3. 
(b) The power spectrum of the extracted message signal. 

 
Part of the time series of the extracted information signal calculated using formula (46) and 

the power spectrum of this extracted signal are presented in Fig. 32. From formula (46) it 
follows that the message signal may be recovered with a large error at the points where the 
derivative in the denominator is close to zero. This error can be reduced using frequency 
filtering of the recovered message signal. 

 
10 Conclusion 

 
We have proposed the methods for reconstructing various classes of time-delay systems 

from chaotic time series. These methods are based on the statistical analysis of time intervals 
between extrema in the time series and the projection of infinite-dimensional phase space of the 
time-delay system to suitably chosen low-dimensional subspaces. The methods can be applied 
to time-delay systems of different nature if these systems have similar structure of model 
equations. The proposed techniques allow one to estimate the delay times, the parameters 
characterizing the inertial properties of the systems, and the nonlinear functions even in the 
presence of sufficiently high level of noise. The proposed original method of the delay time 
definition uses only operations of comparing and adding. It needs neither ordering of data, nor 
calculation of certain measure of complexity of the trajectory or the minimal forecast error of 
the constructed model and therefore it does not need significant time of computation. For the 
systems with a single delay time the procedures proposed for the nonlinear function recovery 
and estimation of the parameters characterizing the inertial properties of the system use all 
points of the time series in contrast to the methods using only extremal points or points selected 
according to a certain rule. It allows one to use short time series and to reconstruct the nonlinear 
function even in the regimes of weakly developed chaos. The methods are successfully applied 
to recovery of standard time-delay systems from their simulated time series corrupted with noise 
and to modeling various electronic oscillators with delayed feedback from their experimental 
time series. 

Besides the recovering of the system parameters the proposed methods allow one to 
determine the a priori unknown order of the time-delay system. We have shown that the model 
equations of the ring time-delay systems can be reconstructed from time series of various 
dynamical variables measured at different points of the time-delay system.  
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We have proposed the method for estimation of coupling between two scalar time-delay 
systems based on the reconstruction of the model equations of coupled systems from their time 
series. The method is able to detect the presence of coupling between two time-delay systems, 
to define the strength and direction of coupling, and to recover the model equations of coupled 
time-delay systems from chaotic time series under sufficiently high levels of noise. It is shown 
that the method is applicable to the linear and diffusive types of coupling between time-delay 
systems. It is also efficient for some types of nonlinear coupling if the coupling term does not 
contain the unknown functions. The method can be used for the analysis of unidirectional and 
mutual coupling of time-delay systems and is effective for a wide range of variation of the 
coupling coefficients even in the case of coupling of principally different time-delay systems. In 
contrast to the other methods of detection of coupling between the systems from time series the 
proposed technique is able to define not only the direction but also the value of coupling. It is 
shown that restricting consideration to several allowed types of coupling it is possible to 
estimate the coupling coefficients and to recover the coupled systems even in the case where the 
type of coupling between time-delay systems is a priori unknown. In this case the method 
allows one to identify the type of coupling. The method efficiency is illustrated using both 
numerical data, produced by coupled time-delay differential equations including the case of 
noise presence, and experimental data, gained from coupled electronic oscillators with delayed 
feedback. 

We applied the proposed methods of time-delay system reconstruction to the problem of 
hidden message extraction in the communication systems with nonlinear mixing of information 
signal and chaotic signal of a time-delay system. Different ways for encryption and decryption 
of information in these communication schemes are investigated. We have shown that in the 
communication systems with nonlinear mixing the hidden message can be successfully 
extracted from the transmitted signal even in the case when the transmitter parameters are a 
priori unknown. The procedure of message extraction is based on the method of time-delay 
systems reconstruction. For different configurations of the transmitter and different measured 
dynamical variables this method allows one recover the model delay-differential equation of the 
transmitter from chaotic time series even in the presence of message signal of small amplitude. 
Thus, even chaotic communication systems with complicated configuration, where the 
information signal is injected into the feedback circuit of the transmitter with delay-induced 
dynamics at one point and transmitted into the communication channel from another point, can 
be successfully unmasked. Hence, the communication systems using chaotic signals of time-
delay systems are not as secure as expected in spite of very high dimension and large number of 
positive Lyapunov exponents of chaotic attractors of time-delay systems. 

For different configurations of the transmitter we have demonstrated the extraction of 
hidden message from the transmitted signal using both numerical data, produced by nonlinear 
mixing of chaotic signal of the Mackey-Glass system and frequency-modulated harmonic 
signal, and experimental data, produced by nonlinear mixing of harmonic signal and chaotic 
signal of the electronic oscillator with delayed feedback. A possible way to improve the level of 
security of the considered chaotic communication systems is to use modulation of their 
parameters or to employ high-dimensional time-delay systems. 
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