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The problem of determining directional coupling between neuronal oscillators from their time series
is addressed. We compare performance of the two well-established approaches: partial directed
coherence and phase dynamics modeling. They represent linear and nonlinear time series analysis
techniques, respectively. In numerical experiments, we found each of them to be applicable and
superior under appropriate conditions: The latter technique is superior if the observed behavior is
“closer” to limit-cycle dynamics, the former is better in cases that are closer to linear stochastic
processes. © 2007 American Institute of Physics. �DOI: 10.1063/1.2430639�

Empirical characterization of coupling between oscilla-
tory systems with different dynamical properties is an
actively studied problem in the field of both linear and
nonlinear time series analysis. In particular, neuronal os-
cillators represent an important class of systems for
which systematical investigation of the problem is still
lacking. Here, we reveal coupling directions between neu-
ronal oscillators by using a linear, partial directed coher-
ence, and a nonlinear, phase dynamics modeling, time se-
ries analysis techniques for various spiking and bursting
regimes and different types of coupling. Conditions of ap-
plicability and superiority for both techniques are formu-
lated. Phase dynamics modeling appears the most effi-
cient tool for studying dynamics close to a limit-cycle
behavior, while partial directed coherence is superior
when a nonlinear structure is distorted by noise. The
former technique allows analysis of shorter time series
but is less robust to dynamical noise influence.

I. INTRODUCTION

Interaction between neuronal systems at the single-cell
level,1,2 as well as at the levels of mesoscopic neuronal
populations3–5 and macroscopic brain structures,6–8 has been
actively studied over the last decades. In particular, synchro-
nization phenomena in neuronal populations have often been
in the center of attention1–3,6,9 due to their relevance for in-
vestigating information processing in the brain, motor con-
trol, or pathological dynamical states such as epilepsy. De-
tection of weak directional couplings in ensembles of
neuronal oscillators from their time series is of comparable
importance.10 The notion of “weak” coupling is relative.
Here, it is relevant to understand it as “insufficient to induce
a stable synchronization regime.” Appropriate analysis tech-
niques would reveal directionality and strength of informa-
tion flow and thus localize “driving” and “driven” parts of

neuronal networks. The latter could be used, e.g., to localize
epileptic foci11 and to monitor restoration processes.12 So far,
this problem has been rarely addressed.12,13 Phase dynamics
modeling was used in Ref. 13 to reveal coupling between
Hindmarsh-Rose oscillators that exhibited periodic spiking
individually. Kiemel and co-authors12 considered coupled
bursting neurons under a specific hypothesis about distribu-
tion of spikes within a burst.

Our purpose here is to investigate possibilities of reveal-
ing directional couplings between two neuronal oscillators in
a systematic manner. In particular, we consider various dy-
namical regimes such as spiking and bursting, including pe-
riodic, deterministically chaotic, stochastically perturbed,
and noise-induced regimes. Furthermore, different types of
coupling, such as linear and threshold coupling,14 are inves-
tigated.

There is a number of techniques for the detection of
directional coupling from time series. These analysis tech-
niques can be subdivided into two major groups: �1� linear
techniques—for instance, Granger causality,15 directed trans-
fer function,16 partial directed coherence,17,18 and �2� nonlin-
ear ones—for instance, nearest neighbors statistics,19,20 non-
linear Granger causality,21 nonlinear cross-prediction,22

phase dynamics modeling.23,24 Any of these techniques can
be used for the analysis of neuronal oscillators. However,
such an application is often not straightforward. Linear tech-
niques are well established and many of their properties are
derived analytically, including significance levels. However,
they are developed in the framework of linear stochastic pro-
cesses and observed empirically to be applicable in the case
of weak nonlinearity,18 while neuronal spiking and bursting
dynamics are highly nonlinear. Nonlinear state space
techniques20–22 may not be applied without modifications
since state space vectors reconstructed via the delay embed-
ding follow rather complicated orbits due to temporal non-
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uniformity of the spiking or bursting dynamics. One of the
very promising and sensitive techniques based on phase dy-
namics modeling23,24 is justified for quasiharmonic oscilla-
tors with moderate phase nonlinearity.25 For neuronal dy-
namics, the phase can be easily defined in the case of
periodic spiking, in contrast to the noise-induced spiking or
bursting regimes �see Sec. III B�.

Therefore, conditions for practical applicability of differ-
ent analysis techniques to neuronal oscillators and their rela-
tive superiority require a special investigation. Here, we ana-
lyze the performance of two time series analysis techniques
exemplarily: partial directed coherence �PDC� and phase dy-
namics modeling �PDM�. Both techniques give estimators of
the coupling strengths equipped with significance levels
which is of special importance for practical applications.
Both techniques have already shown their efficiency for sev-
eral practical examples.18,25–28

The paper is organized as follows. Section II describes
several mathematical models of neurons used here as test
examples. Section III comprises some details of both cou-
pling estimation techniques and methodology of our investi-
gation. The results are presented in Sec. IV and are discussed
in Sec. V.

II. NEURON MODELS

Various conductance-based neuron models have been in-
troduced that typically take the form of ordinary nonlinear
differential equations of dimension in the range 2–6,29–32

where one variable stands for a membrane potential and oth-
ers for ionic currents. Roughly speaking, a common feature
of those models is that they have fast as well as slow vari-
ables. The fast variables describe the membrane potential
and, possibly, some of the ionic currents. The slow variables
represent the rest of the ionic currents.14 As a consequence,
the neuron models are characterized by pulselike time real-
izations of the membrane potential. These systems are non-
linear and can exhibit a variety of dynamical regimes.

They can be excitable, i.e., generate a pulse �spike�, only
in response to a sufficiently strong perturbation. Determinis-
tic neuron models can also exhibit regimes of periodic, qua-
siperiodic, and chaotic spiking. Excitable systems under the
influence of considerable noise can show repetitive noise-
induced spiking, typically with quite irregular interspike in-
tervals �ISIs�. However, subsequent ISI values may have the
least variance for some intermediate noise level so that the
dynamics are similar to a moderately perturbed periodic
spiking.33–35 Such an effect is called “coherence
resonance.”33 The other possible type of neuron dynamics is
called “bursting” �see, e.g., Refs. 14 and 36�. Spikes are or-
ganized into short sequences �bursts� separated with com-
paratively long intervals of quiescence; i.e., interburst inter-
vals �IBIs�. The bursting can also be periodic, chaotic, etc.
Numerous types of spiking and bursting regimes are classi-
fied based on bifurcations of the quiescent state and of a limit
cycle involved.14

Two physiologically motivated ways of coupling be-
tween neurons are usually considered:14,37,38

• Linear diffusive coupling which models electrotonic cou-
pling via gap junction. The function f , which determines
the type of coupling, takes the form

f�x1,x2� = x2 − x1, �1�

where x1 and x2 stand for the membrane potentials of the
two neurons. The function f�x1 ,x2� determines the influ-
ence of the x2 dynamics on x1. This type of coupling is
typically considered as bidirectional and symmetric.14

• Unidirectional step-like �threshold� coupling, which mod-
els chemical synapse behavior.39 The coupling function
reads

f�x1,x2� = h�x2��xth − x1� , �2�

where x1 and x2 stand for the membrane potentials of the
postsynaptic and presynaptic neurons, respectively, h�x2�
is, e.g., the Heaviside function or hyperbolic tangent func-
tion modeling threshold response, xth is a certain constant
that is high and positive for excitatory coupling and can be
set negative for inhibitory coupling.

Sometimes, unidirectional linear coupling is used as a sim-
pler model of synaptic connections �see, e.g., Ref. 40�. The
coupling function then reads

f�x1,x2� = x2. �3�

This description captures just the fact of the dependence of
the post-synaptic neuron dynamics on the membrane po-
tential of the presynaptic neuron x2.

In the following, we consider all these types of coupling
and select neuron models representing different dynamical
regimes: periodic spiking including the case of stochastic
perturbations, noise-induced spiking of excitable systems, as
well as periodic and chaotic bursting. We consider periodic
spiking resulting from different bifurcations of a quiescent
state. This is of particular interest since phase dynamics of
neuronal oscillators are known to depend on the kind of the
bifurcation involved.14

A. Classical FitzHugh-Nagumo oscillator

The first example is a classical FitzHugh-Nagumo
�FHN� oscillator30 where the limit cycle underlying periodic
spiking arises via supercritical Andronov-Hopf bifurcation
�see, e.g., Ref. 33�. The equations for two coupled FHN os-
cillators are given by

�1ẋ1 = x1 − x1
3/3 − y1 + k1f�x1,x2� ,

ẏ1 = x1 + a1 + D�1�t� ,

�4�
�2ẋ2 = x2 − x2

3/3 − y2 + k2f�x2,x1� ,

ẏ2 = x2 + a2 + D�2�t� ,

where �i�t� are independent sources of Gaussian white noise
with zero mean: ��i�t��i�t���=��t− t��. The parameter D de-
notes noise intensity and parameters ai determine a dynami-
cal regime of an individual oscillator. For �ai � �1, the ith
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oscillator has a global fixed point attractor. When ai passes
the value of ±1, the limit cycle appears. Typically, one con-
siders �i�1. In such a case, the variables xi are fast and yi

are slow, leading to a kind of spiking behavior. The param-
eters �i determine the rate of relaxation of an individual os-
cillator to a nullcline yi=xi−xi

3 /3.14 Hence, they affect the
value of the limit cycle period. We chose a1=a2=0.5 to ana-
lyze periodic spiking �Fig. 1�a�� and a1=a2=1.05 to analyze
noise-induced spiking �Fig. 1�b�� of excitable systems.

The noise-free FHN oscillators can be easily synchro-
nized if their frequencies are similar, while their phase dy-
namics are almost independent of each other for strongly
different frequencies that are not in a low-order resonant ra-
tio. Therefore, we consider both the case of �1��2 and sig-
nificantly different �i. The latter situation corresponds to dif-
ferent spiking frequencies of the interacting oscillators.

Parameters ki govern the coupling strengths. If one of
them is equal to zero, then the coupling is unidirectional.

B. Modified FitzHugh-Nagumo oscillator

The second example is a modified FitzHugh-Nagumo
�MFHN� oscillator where the limit cycle arises via “saddle-
node off invariant curve” bifurcation.40 The equations read

ẋ1 = x1 − x1
3/3 − y1 + k1f�x1,x2� ,

ẏ1 = �1�g�x1� − y1 − I1 + D�1�t�� ,

�5�
ẋ2 = x2 − x2

3/3 − y2 + k2f�x2,x1� ,

ẏ2 = �2�g�x2� − y2 − I2 + D�2�t�� ,

where g�u�=�u, u�0, and g�u�=�u , u�0. The parameters
were set to �=0.5, �=2.0 following Ref. 40. The piecewise-
linear function g causes a different kind of bifurcation, lead-
ing to periodic spiking as compared to the classical FHN
system and, hence, different phase nonlinearity. In particular,
MFHN oscillators can generate spikes whose width is much
less than an ISI �Fig. 1�c��. This property is close to a real
neuron spiking.

Both classical and modified FHN oscillators exhibit
Class 2 excitability;14 i.e., repetitive spikes are generated in a
certain frequency band and the basic frequency is relatively
insensitive to a bifurcation parameter whose change leads to
the appearance of the limit cycle underlying periodic spiking.

C. Morris-Lecar system

The third example represents Class 1 excitability; i.e.,
the spiking frequency tends to zero when the system is ap-
proaching the bifurcation point. Such a behavior is realized,
e.g., by the Morris-Lecar �ML� system31 where the limit
cycle arises via “saddle-node on invariant curve” bifurcation
at certain parameter values.14,39 The equations are given by

ẋ1 = I1 − gl�x1 − Vl� − gKy1�x1 − VK�

− gCam	�x1 − VCa� + k1f�x1,x2� ,

ẏ1 = 
�x1��w	�x1� − y1� + D�1�t� ,

�6�
ẋ2 = I2 − gl�x2 − Vl� − gKy2�x2 − VK�

− gCam	�x2 − VCa� + k2f�x2,x1� ,

ẏ2 = 
�x2��w	�x2� − y2� + D�2�t� ,

where m	�u�= 1
2 �1+tanh� u−V1� /V2�, w	�u�= 1

2 �1+tanh� u
−V3� /V4�, 
�u�= 1

3cosh�u−V3� /2V4, V1=−0.01, V2=0.15,
V3=0.1, V4=0.145, Vl=−0.5, VK=−0.7, VCa=1.0, gl=0.5,
gK=2.0, gCa=1.33 �Fig. 1�d��. The identical ML oscillators
are known to be relatively difficult to synchronize even
though their phase dynamics are mutually dependent.14

D. Hindmarsh-Rose oscillator

In order to analyze different bursting regimes, coupled
four-dimensional Hindmarsh-Rose oscillators41 with a unidi-
rectional threshold coupling

ẋ1 = y1 + 3x1
2 − x1

3 − z1 + I1,

ẏ1 = 1 − 5x1
2 − y1 − gw1,

ż1 = ��− z1 + 4�x1 + h� + D�1�t�� ,

ẇ1 = ��− w1 + 3�y1 + h�� ,

ẋ2 = y2 + 3x2
2 − x2

3 − z2 + I2 + k
3.0 − x2

1 + e−50.0�n−4.0� , �7�

ẏ2 = 1 − 5x2
2 − y2 − gw2,

FIG. 1. Time series of neuron oscillators. Horizontal dashed lines show the
threshold value used to define the phase. The latter is a quantity changed by
2 after each crossing of the threshold from below and linearly changing
between crossings. �a� Unidirectionally coupled FHN oscillators Eq. �4�
with linear coupling Eq. �3�, a1=a2=0.5, �1=0.01, �2=0.0095, D=0.02,
k1=0, k2=0.001. Solid line shows x1, “oscillatory” dashed line, x2. �b� Indi-
vidual excitable FHN oscillator equation �4� in a coherent resonance regime,
a1=0.5, k1=0, D=0.02. �c� Individual MFHN oscillator equation �5�, k1

=0, D=0.02. �d� Individual ML oscillator equation �6�, k1=0, D=0.005. �e�
Periodic bursting dynamics of an individual Hindmarsh-Rose oscillator
equation �7�, I1=2.7, D=0. �f� Chaotic bursting dynamics of an individual
Hindmarsh-Rose oscillator equation �7�, I1=3.14, D=0.
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ż2 = ��− z2 + 4�x2 + h� + D�2�t�� ,

ẇ2 = ��− w2 + 3�y2 + h�� ,

ṅ = ��x1 + 1.0��x1 + 1.0� − 0.05n ,

are investigated, where g=0.0278, �=0.00215, �=0.0009,
h=1.605, l=1.619, and � is the Heaviside function. The dif-
ferential equation for n is a more plausible model of a chemi-
cal synapse than the threshold coupling equation �2�. For the
parameter values given, the isolated neuron exhibits quies-
cent membrane voltage for I1�0.73, bistability in state space
near a subcritical Hopf bifurcation occurring at I1=0.82, pe-
riodic bursting for 0.82� I1�3.0 �Fig. 1�e��, chaotic bursting
for 3.0� I1�3.25 �Fig. 1�f��, and “continuous” chaotic spik-
ing for I1�3.25.

III. METHODS

A. Phase definition

The first step for any phase dynamics based approach is
the estimation of instantaneous phases 	�1�ti�
 and 	�2�ti�

from the time series 	x1�ti�
 and 	x2�ti�
, where ti= i�t �i
=1, . . . ,N�, �t is the sampling interval. The most widespread
techniques for the phase extraction are based on the analytic
signal approach implemented via Hilbert transform42 or com-
plex wavelet transform.43 However, they are not well suited
for pulselike signals.

For the spiking dynamics, the phase of a signal can be
defined as a quantity which is equal to 2n when the value
of xi crosses a certain threshold from below for the nth time
and linearly increases between two subsequent crossings.
This is a phase related to spikes; we call it “spiking phase”
and use the threshold value of xi=0 in all examples below to
determine it �Figs. 1�a�–1�d��. This definition is very robust
in the case of only two neuronal oscillators, which is consid-
ered here, since the spikes can be easily detected even under
significant measurement noise. Moreover, interspike inter-
vals seem to carry all necessary information about the dy-
namics.

The PDM technique described in Sec. III B has already
been shown to be applicable to deterministic neuronal oscil-
lators individually exhibiting periodic spiking.13 However,
the “spiking phase” dynamics are essentially nonuniform in
time for the bursting regimes. The phase increases rapidly
within a burst and much slower between bursts. The phase
dynamics exhibit strong diffusion for a chaotic bursting re-
gime so that applicability of the PDM technique without any
adaptations is questionable. It is important to note the diffi-
culties of the analysis of bursting regimes when the phase is
related to ISIs.

It is possible to consider a “bursting phase” as suggested
in Ref. 12. However, the technique of Kiemel and co-authors
involves rather time-consuming calculations; i.e., integration
of the Fokker-Planck equation to evaluate the likelihood
function, and a specific assumption about the character of
spiking within a burst. In contrast, we use the threshold
crossing technique in Sec. IV E, but with a lower threshold
corresponding to the onset of a burst: the threshold value of

xi=−1 �see Figs. 1�e� and 1�f��. Such an approach is not
appropriate for several systems since it may sometimes be
difficult to distinguish between ISI and IBI. For the system
investigated in Sec. IV E, however, distinction between ISI
and IBI is clear. We check the behavior of both phase defi-
nitions in Sec. IV E.

B. Phase dynamics modeling

To identify coupling from the phases of two weakly
coupled oscillators, Rosenblum and Pikovsky proposed to
test whether the future time evolution of the phase of each
oscillator is influenced by the phase of the other one.23 For
this purpose, one constructs a global model map

�1�t + �� − �1�t� = F1��1�t�,�2�t�� + �1�t� ,

�8�
�2�t + �� − �2�t� = F2��2�t�,�1�t�� + �2�t� ,

where �1,2�t� are unwrapped phases, � is a finite interval, and
�1,2 are zero-mean random processes. F1 is a trigonometric
polynomial of the form

F1��1,�2� = �
m,n

�am,ncos�m�1 + n�2�

+ bm,nsin�m�1 + n�2�� . �9�

F2 is defined analogously. Equations �8� are the difference
form of rather universal stochastic differential equations44

describing the evolution of coupled phase oscillators and re-
flect the properties of a wide range of oscillatory processes.
Following Refs. 23 and 24, we used third-order polynomials
for F1,2 and set � equal to the minimal of the two basic
oscillation periods for all numerical examples below.

The strength of the influence of the process x2 on the
process x1 �2→1� is defined as

c1
2 =

1

22�
0

2 �
0

2

��F1/��2�2d�1d�2. �10�

It can be shown24 that

c1
2 = �

m,n
n2�am,n

2 + bm,n
2 � . �11�

When dealing with time series, one has to estimate the
coefficients am,n ,bm,n, e.g., via the least-squares technique.
The estimators ĉ1 and ĉ2 of the quantities c1 and c2 can then
be derived by making usage of Eq. �11� with true coefficients
values am,n ,bm,n substituted by their least-squares estimates

âm,n , b̂m,n. Here and throughout the paper, we supply with
“hats” all the estimates obtained from time series. The esti-
mators ĉ1 and ĉ2 are quite exact for long and stationary time
series and become biased otherwise.24 To remove this bias,
we follow the approach of Ref. 24 and use the modified
estimators �̂1←2 and �̂2←1 for the quantities c1 and c2 char-
acterizing the influences 2→1 and 1→2, respectively �see
the formulas in the appendix�. Furthermore, 1.6�̂�̂i←j

is the
0.05 significance level for �̂i←j, i.e., the presence of the in-
fluence j→ i is inferred from a time series if �̂i←j

�1.6�̂�̂i←j
, where the factor of 1.6 has been found empiri-

cally. The quantities �̂i←j have skewed distributions, which
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prevents an analytic derivation of their quantiles. The esti-
mator of the variance �̂�̂i←j

is derived based on the weighted
sum of variances of polynomial coefficients estimators �see
the appendix�. Under the conditions of moderate coupling
and moderate phase nonlinearity the modified estimators are
unbiased in the case of relatively short time series covering
about 50 basic periods or more.25

A reliable detection of the coupling direction can only be
achieved in the nonsynchronous regime. If the coupling is
strong enough to induce synchronization, the information
about the coupling direction is lost, and the indices intro-
duced above can take arbitrary values that are not related to
the coupling intensity and direction. Hence, it is important to
determine the overall degree of correlation between the
phases of the two dynamics. For this purpose, we calculate
the mean phase coherence

R = �cos��1 − �2��2 + �sin��1 − �2��2, �12�

where angled brackets denote averaging over time.6 It is
symmetric in �1 and �2, attains the value of R=1 for the
case of complete phase synchronization ��1−�2=const� and
tends to zero for uncoupled oscillators. As we show in Sec.
IV, a value of R=0.75 �sometimes even R=0.5� signifies the
possibility of strong coupling and probable inconsistency of
the PDM-based coupling estimators.

C. Partial directed coherence

Partial directed coherence is a parametric approach
based on modeling multivariate dynamical systems by
m-dimensional vector auto-regressive processes of model or-
der p, abbreviated VAR�p�:

�x1�t�
�

xm�t�
� = �

r=1

p

ar�x1�t − r�
�

xm�t − r�
� + ��1�t�

�
�m�t�

�. �13�

�i�t� are Gaussian white noise processes with covariance ma-
trix �. Estimating the elements akj,r �k , j=1, . . . ,m , r
=1, . . . , p� of the coefficient matrices ar is the basic step of
partial directed coherence analysis. Below, we consider only
the case of m=2.

Modeling the multivariate systems by vector auto-
regressive processes is related to the causality term intro-
duced by Granger.15 Granger causality defines causal inter-
actions in terms of predictability. The process Xj does not
Granger-cause another process Xi with respect to all other
processes if the linear prediction of Xi�t+1� based on the past
and present values of all variables, but Xj cannot be im-
proved by adding the past and present values of Xj.

Partial directed coherence has been introduced as a
frequency-domain measure for Granger causality.17 The dif-
ference between the m-dimensional identity matrix I and the
Fourier transform of the coefficients

A��� = I − �
r=1

p

a�r�e−i�r �14�

leads to the definition of partial directed coherence:

�i←j���� =
�Aij����

�k
�Akj����2

. �15�

Normalized between 0 and 1, a direct interaction from
process Xj to process Xi is inferred by a nonzero partial di-
rected coherence �i←j����. Let us denote ̂i←j��� as the
estimator of i←j��� obtained from Eq. �15� with Akj���
replaced by its estimate Âkj���. In order to test the statistical
significance of the nonzero value of ̂i←j��� in application to
finite time series, critical values are used. The �-significance
level for the estimator of partial directed coherence can be
approximated by18

� Ĉij����1,1−�
2

N�k
�Âkj����2�1/2

, �16�

where �1,1−�
2 is the 1−� quantile of the �2-distribution with

one degree of freedom and Ĉij��� is an estimate of the con-
stant

Cij��� = �ii� �
k,l=1

p

H j j�k,l��cos�k��cos�l��

+ sin�k��sin�l���� . �17�

H j j�k , l� are entries of the inverse H=R−1 of the covariance
matrix R of the VAR process.45

D. Design of simulation study

The above-mentioned ordinary differential equations for
noise-free systems are integrated with the aid of Runge-
Kutta-Verner fifth-order and sixth-order method to obtain
time series of a necessary length N for different values of
coupling strength. An adaptive step size was used to provide
an error lower than 10−6 over a sampling interval. In the
presence of dynamical noise, the Euler integration scheme
with a fixed step size equal to 0.01�t is used. The values of
the sampling interval �t vary for different examples and are
reported below.

We use N=30 000 data points in all examples below that
corresponds to 1000–1500 interspike intervals. Those rela-
tively long signals are needed to apply partial directed coher-
ence reasonably since it requires sufficiently high-order p to
describe power spectrum of pulse signals with a linear VAR
model accurately. In this study, we chose the model order to
be p=500. We compare both techniques by applying them to
each time series and checking whether they give correct con-
clusion about coupling character. Namely, two conditions are
examined:

�1� A technique should not give more false positive conclu-
sions about the coupling than determined by the signifi-
cance level.

�2� A technique is desired to give a high probability of posi-
tive conclusion about the presence of coupling if the
latter is really present.

The former condition is compulsory. Otherwise, an analysis
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technique is unreliable. As for the second condition, the
probability to detect true coupling depends on the coupling
strength, noise level, and time series length. For each tech-
nique, we find a range of coupling coefficient values where

each of the two conditions is fulfilled. Thereby, we compare,
in particular, the sensitivity of the techniques to weak
coupling.

IV. NUMERICAL RESULTS

A. Classical FitzHugh-Nagumo oscillators

The first investigation deals with the classical FitzHugh-
Nagumo system with parameters a1=a2=0.5, corresponding
to a periodic spiking regime of an individual noise-free os-
cillator. We take a sampling interval �t=0.1, which corre-
sponds approximately to 20 data points per interspike inter-
val. In Fig. 2 we present the results for a moderate noise
level D=0.02, similar values of time constants �1=0.01 and
�2=0.0095, and a unidirectional linear coupling �cf. Eq. �3��
with k1=0 and k2=k. The values of all the estimates are
shown versus coupling strength k for a single-trial experi-
ment.

An almost phase synchronized regime �R�0.75� is es-
tablished both for excitatory coupling �k�0.004� and inhibi-
tory one �k�−0.002� �Fig. 2�a��. �̂1←2 is not significantly
different from zero, as indicated by its confidence interval in
the range −0.002�k�0.004 �Fig. 2�b��, and it becomes spu-
riously “significantly” nonzero when the degree of phase
synchrony is high �see also Tables I and II, the first row�. The
value of �̂2←1 becomes nonzero for excitatory coupling
strength k�0.0008 and inhibitory coupling strength k
�−0.0007 �Fig. 2�c��. In what follows we call such a mini-
mal reliably detected coupling strength the “sensitivity
threshold.” Thus, the PDM technique works well in the in-
tervals �−0.002,−0.0007� and �0.0008,0.004�. For the PDC
corresponding intervals are �−0.003,−0.002� and
�0.002,0.005� �Figs. 2�d� and 2�e��.

We note that an “intuitively nonsignificant” small value
of �̂2←1�0.0001 for k=0.0008 �Fig. 2�c�� is indeed signifi-
cant. Moreover, this result is intuitively understandable. �̂2←1

FIG. 2. Analysis of unidirectional linear coupling Eq. �3� between classical
FHN oscillators in a stochastically perturbed periodic regimes with similar
spiking frequencies. �a� Mean phase coherence. �b�,�c� PDM coupling esti-
mators �bold lines� and their significance level �dashed lines�. True value of
c1

2 is zero. �d�,�e� PDC estimates �bold lines� with 5% significance level
�dashed lines�.

TABLE I. Numerical results for excitatory coupling. We present the values of coupling coefficient for which:
�1� true coupling is reliably detected, k�1�; �2� presence of response-drive influence is erroneously detected for
unidirectional scheme, k�2�; �3� R exceeds the value of 0.75, k�3�. The first value of k�1� and k�2� corresponds to
the PDM technique, the second value to PDC.

Systems k�1� k�2� k�3�

1. FHN, unidir. coupling Eq. �3�,
�1=0.01, �2=0.0095, D=0.02

0.0008, 0.002 0.004, 0.005 0.004

2. FHN, unidir. coupling Eq. �3�,
�1=0.01, �2=0.05, D=0.02

0.003, 0.005 0.08, 0.08 0.08

3. FHN, unidir. coupling Eq. �18�,
�1=0.01, �2=0.0095, D=0.02

0.003, 0.005 0.007, 0.01 0.007

4. FHN, bidir. coupling Eq. �1�,
�1=0.01, �2=0.0095, D=0.02

0.0006, 0.003 0.002, 0.005 0.002

5. MFHN, unidir. coupling Eq. �3�, D=0.02 0.0004, 0.002 0.02, 0.03 0.02
6. MFHN, unidir. coupling Eq. �18�, D=0.02 0.001, 0.002 �0.1, 0.1 �0.1
7. ML, unidir. coupling Eq. �18�, D=0.005 0.004, 0.01 0.01, 0.1 �0.1
8. HR, Eq. �7�,
I1=3.04, I2=3.14, D=0.02

0.001, 0.002 0.006, �0.01 �0.01

9. HR, Eq. �7�,
I1=3.04, I2=3.14, D=0

0.0006, 0.0006 0.005, �0.01 �0.01

10. HR, Eq. �7�,
I1=2.7, I2=2.5, D=0.02

0.0001, never 0.001,− 0.001
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is, roughly speaking, the estimate of the squared “coupling
intensity” in the difference equation �8�. Thus, such a cou-
pling intensity is about �̂2←1�0.01. If one divides this
value by 2 �mean value of the phase increment on the left-
hand side of Eq. �8��, one gets “relative coupling intensity”
of the order 10−3 in correspondence with the order of k
=0.0008 �the latter can also be considered as relative cou-
pling intensity since the oscillation amplitude is of the order
of 1; see Fig. 1�a��.

The PDM technique turns out to be more sensitive in this
example. This is not surprising since phase is well defined
for these almost periodic spiking signals and the phases of
coupled systems with similar frequencies interact
efficiently.14 However, the sensitivity thresholds of both
techniques become closer to each other with increasing noise
level. For lower noise levels, the PDM becomes more and
more superior in terms of sensitivity. Finally, for the deter-
ministic case D=0, the PDM can detect almost arbitrary
weak coupling, while the PDC cannot reveal coupling at all,
indicating that no conclusion about coupling presence can be
drawn. The latter holds true for all noise-free settings
throughout Sec. IV. Besides, one can observe in Fig. 2 that
the PDC loses its efficiency for a stronger coupling than the
PDM. In other words, the PDC can correctly reveal coupling
character for regimes closer to phase synchronization when
the PDM already fails. A possible explanation is that the
former also extracts information from oscillation amplitudes,
not only phases.

To consider the case of significantly different spiking
frequencies, we specify �1=0.01 and �2=0.05 providing the
ratio of frequencies f1 / f2�1.35. The results are qualitatively
similar to Fig. 2 �not shown�. However, quantitative differ-
ences are present �see Table I, second row�. For the excita-
tory coupling, sensitivity threshold of the PDM technique
becomes k�0.003; i.e., much higher than for the previous
case. This is in agreement with theoretical results14 stating
that the phase dynamics become effectively less interdepen-
dent for different spiking frequencies. The sensitivity thresh-
old of the PDC is k�0.005. Both PDM and PDC fail for k
�0.08 due to high R-values �R�0.99; R starts to exceed
0.75 for some k in the range 0.07–0.08�.

For the similar spiking frequencies and unidirectional
threshold coupling,

f�x2,x1� = ��x1��1/�1 + e−x1/0.1� − 0.5��3.0 − x2� �18�

instead of the linear one, the results are again qualitatively
similar to Fig. 2 �not shown�. Coupling of this type is also
reliably detected by both techniques. However, their sensi-
tivity is a bit worse since they catch only “the first moments”
of the highly nonlinear coupling term �see Table I, third row,
and Table II, second row�. The PDM technique works well in
the ranges of coupling �−0.005,−0.002� and �0.003,0.007�.
The PDC detects coupling reliably in the ranges �−0.007,
−0.003� and �0.005,0.01�. It is surprising that the PDC per-
formance does not worsen strongly: PDC can describe only
linear components of coupling, while this type of coupling is
highly nonlinear.

Finally, diffusive coupling equation �1� �k1=k2=k, D
=0.02, similar frequencies� is detected by both techniques,
the domains of their applicability moving to weaker cou-
pling. We considered only positive k, the results are similar
to Fig. 2 �not shown; see Table I, fourth row�. The PDM
technique works in the range �0.0006,0.002�, while the PDC
does in �0.003,0.005�. Note that the PDC starts to detect
coupling when the PDM already fails. Moreover, mean phase
coherence reaches the values of R=0.98 at k=0.003 that cor-
responds practically to phase synchronization. Therefore, in
this example, PDC extracts useful information only from
amplitudes.

B. Modified FitzHugh-Nagumo oscillators

The system equation �5� represents a different kind of
bifurcation leading to periodic spiking behavior and, hence,
may exhibit different phase dynamics properties. We specify
I1= I2=0.23, �1=0.2, and �2=0.3 that provides individual pe-
riodic spiking regimes.40 We investigate unidirectional cou-
pling �k1=0, k2=k� and moderate noise D=0.02. The sam-
pling interval is equal to 1.0, which corresponds again to 20
data points per interspike interval.

For the linear coupling equation �3�, we obtained quali-
tatively the same results as in Fig. 2 �not shown; see Table I,

TABLE II. Numerical results for inhibitory coupling. Notation is the same as in Table I.

Systems k�1� k�2� k�3�

1. FHN, unidir. coupling Eq. �3�,
�1=0.01, �2=0.0095, D=0.02

−0.0007,−0.002 −0.002,−0.004 −0.002

2. FHN, unidir. coupling Eq. �18�,
�1=0.01, �2=0.0095, D=0.02

−0.002,−0.003 −0.005,−0.007 −0.005

3. MFHN, unidir. coupling Eq. �3�, D=0.02 −0.0003,−0.002 −0.04,−0.04 −0.04
4. MFHN, unidir. coupling Eq. �18�, D=0.02 −0.001,−0.002 −0.02,−0.04 −0.02
5. ML, unidir. coupling Eq. �18�, D=0.005 −0.005,−0.01 −0.008,−0.1 �−0.1
6. HR, unidir. coupling Eq. �7�,
I1=3.04, I2=3.14, D=0.02

−0.001,−0.005 −0.007, �−0.01 �−0.01

7. HR, unidir. coupling Eq. �7�,
I1=3.04, I2=3.14, D=0

−0.0006,−0.0006 −0.005, �−0.01 �−0.01

8. HR, unidir. coupling Eq. �7�,
I1=2.7, I2=2.5, D=0.02

−0.0001, never −0.001,− −0.001
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fifth row, and Table II, third row�. The PDM is efficient for
coupling ranges �−0.04,−0.0003� and �0.0004,0.02�. The
sensitivity threshold for the PDM technique coincides with
the classical FHN oscillators case by the order of magnitude;
e.g., k�0.0004 here and k�0.0008 in the previous case for
the excitatory coupling. Such a comparison makes sense
since the amplitudes of the oscillations in both examples are
approximately the same. The PDC is efficient in the ranges
�−0.04,−0.002� and �0.002,0.03�. Thus, it is again less sen-
sitive, but applicable for stronger couplings than the PDM
technique.

The results for unidirectional threshold coupling Eq. �18�
are again similar �not shown; see Table I, sixth row, and
Table II, fourth row�. Only quantitative differences are ob-
served: the sensitivity thresholds increase. Thus, the PDM
works in the ranges �−0.02,−0.001� and �0.001,0.1�, and 0.1
is just the last value of the interval checked. PDC is efficient
in the ranges �−0.04,−0.002� and �0.002,0.1�. Here, not so
typical superiority of the PDM for strong excitatory coupling
is explained by low R-values for k�0.1; e.g., R=0.5 for
k=0.1. Synchronization takes place only for stronger
coupling.

C. Morris-Lecar systems

This system represents Class 1 excitability at the values
of parameters specified in Sec. II. Coupled identical systems
of this type are difficult to synchronize despite the presence
of interaction between their phases. Due to the absence of
synchronization, it can be expected that coupling can be eas-
ily detected here.

We specify coupling of the form Eq. �18�, I1= I2=0.075,
and the noise level D=0.005. The noise level in absolute
units is less than for the above examples, but oscillation am-
plitude in Morris-Lecar systems is also smaller so that the
comparison of sensitivity thresholds by the order of magni-
tude makes sense. The sampling interval is equal to 1.0,
which corresponds to approximately 25 data points per ISI
�see Table I, seventh row, and Table II, fifth row�. Results
similar to Fig. 2 show that the PDM performs well in the
ranges �−0.008,−0.005� and �0.004,0.01�, while the PDC is
applicable in the ranges �−0.1,−0.01� and �0.01,0.1�. Thus,
sensitivity of both techniques is not worse than for the pre-
vious examples of Class 2 excitability. Only in this particular
case, PDM and PDC start to give erroneous conclusions
when R is sufficiently low; i.e., PDM for R�0.2 and PDC
for R�0.5. This exclusion should probably be ascribed to a
specific nonlinearity of the system and coupling.

As an intermediate summary, we state that in the ex-
amples of periodic spiking including the cases of moderate
stochastic perturbation �nonzero values of D�, the PDM tech-
nique is applicable except for the situations corresponding to
a considerable degree of phase synchrony, typically for R
�0.75. It is not surprising since it was developed for the
dynamics close to a limit-cycle behavior. PDC is efficient
only in noisy cases as it was developed for linear stochastic
processes and imply mixing property of the investigated sys-
tem. PDC is less sensitive for weak noise, but often performs
well up to stronger coupling. However, it requires relatively

long time series to give reliable results. For example, PDC
cannot reveal coupling at all for the time series length N
=3000 and the same other settings, while the sensitivity
threshold of the PDM just becomes approximately three
times as big as for N=30 000 �the sensitivity threshold of
PDM is known to be inversely proportional to N�.46

D. Noise-induced spiking

Let us consider noise-induced spiking of excitable sys-
tems. Interspike intervals are usually rather irregular in such
a case. However, for an intermediate noise level the ISI-
values can exhibit the least variance �coherence resonance�
so that the dynamical regime looks similar to stochastically
perturbed periodic spiking. We use the classical FHN oscil-
lator equation �4� with a1=a2=1.05, �1=0.01, and �2

=0.0095. Noise levels D=0.02, D=0.07, and D=0.25 are
examined. The second one corresponds to the coherence
resonance regime33 where the coefficient of variation of in-
terspike intervals is minimal. Nonetheless, it is rather high as
compared to weakly perturbed periodic spiking. In other
words, phase diffusion is very strong.

Due to strong effect of noise for the fixed time series
length used here, it is not meaningful to consider only single-
trial experiments since the results are not similar to mono-
tone plots of Fig. 1. The values of the estimates fluctuate
strongly for different realizations of the same stochastic pro-
cess. Therefore, we present the results averaged over an en-
semble of 50 time series for each coupling value in Fig. 3.
We consider unidirectional threshold coupling Eq. �18�, k1

=0, k2=k. The sampling interval is equal to 0.1. For the noise
level D=0.07 it corresponds approximately to 40 data points
per mean interspike interval.

The PDM technique performs relatively well only in a
narrow range of coupling values 0.01�k�0.02 and −0.02
�k�−0.01, where the number of wrong conclusions about
the presence of influence 2→1 is below 5% in agreement
with the expected theoretical properties of the estimator. The

FIG. 3. Analysis of noise-induced spiking of FHN oscillators �4� in the
coherence resonance regime �D=0.07� over the ensemble of 50 realizations.
�a� Relative numbers of conclusions about the presence of influence 2→1
�N1←2�, 1→2 �N2←1� for the PDM technique. The dashed lines indicate the
level of 0.05, which is a theoretically expected rate of erroneous conclusions
if the technique works properly. �b� Relative numbers of different conclu-
sions for PDC.
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number of correct conclusions is 5%–30% in that range �Fig.
3�b��. Weaker coupling cannot be detected, stronger coupling
leads to erroneously significant �̂1←2. The errors cannot be
recognized using mean phase coherence which is always be-
low 0.3 in this example. This is a quite undesirable feature of
the PDM technique for analysis of such dynamics. PDC per-
forms quite well as it does not give erroneous conclusions
almost for the entire range of coupling examined and is more
sensitive than the PDM technique. For example, the number
of correct conclusions exceeds 5% for k�−0.01 and k
�0.006. It reaches 100% for k�0.035. The unidirectional
linear coupling equation �3� gives approximately the same
results: All the plots are just a bit compressed along the k
axis �not shown�.

Different noise levels lead to more irregular interspike
intervals.33 Thus, for D=0.02, the PDM is not applicable
since it often gives erroneous conclusions and almost never
determines the coupling character correctly. For a stronger
noise D=0.25, the PDM technique does not lead to errors but
gives only an indefinite answer such that it is impossible to
say anything about coupling. PDC is always applicable. Its
sensitivity threshold decreases with noise level. Thus, the
number of correct conclusions crosses 5% level at about k
=0.004 for D=0.02 and k=0.03 for D=0.25.

The results can be explained intuitively. In essence, we
consider the case that is not close to the limit-cycle behavior.
It is a stochastic process with some nonlinear structure.
Therefore, it is difficult to expect efficiency of the PDM
technique. The situation is closer to a linear stochastic pro-
cess than to a limit-cycle behavior; therefore, PDC should be
suitable.

E. Bursting regimes

We analyze both periodic and chaotic bursting in
Hindmarsh-Rose oscillator equation �7�. The spiking phase,
which can be defined here for a threshold value of the mem-
brane potential equal, e.g., to 0.5, does not allow one to
reveal coupling character using PDM either in chaotic or
slightly perturbed periodic bursting regimes due to a strong
phase diffusion. It takes place since there are alternating in-
tervals of large and small spiking frequency. For spiking
phase analysis, the PDM technique faces serious difficulties
similar to the case of noise-induced spiking �Sec. IV D�. Be-
low, we define bursting phase using the threshold value of
−1.0 �Figs. 1�e� and 1�f��.

The results for oscillators, which would individually ex-
hibit chaotic bursting in a noise-free setting, are shown in
Fig. 4, Table I, eighth row, and Table II, sixth row. The
parameters values are I1=3.04, I2=3.14, and D=0.02. The
sampling interval is 2.0. There are approximately 200 data
points per mean IBI. To analyze the bursting phase, we
down-sampled the time series with sampling interval 20.0
providing 20 data points per a mean IBI. The results are
shown in Fig. 4. The PDM technique works well in the
ranges �−0.007,−0.001� and �0.001,0.006�. It starts to give
spurious conclusions for R=0.5 �at k=−0.007 and k=0.006�
in this example. PDC is a bit less sensitive; its domains of
efficiency are k�−0.005 and k�0.002.

By varying I1 and I2 in the range �3.04, 3.14�, we ob-
served quite similar results except for some quantitative dif-
ferences. In the noise-free case, both PDM and PDC become
more sensitive, for I1=3.04, I2=3.14 their thresholds are ap-
proximately the same and equal to −0.0006 and 0.0006, re-
spectively. Again, the PDM technique starts to give spurious
conclusions for R=0.5 �at k=−0.005 and k=0.005; see Table
I, ninth row, and Table II, seventh row.

Stochastically perturbed periodic bursting is investigated
for I1=2.7, I2=2.5, and D=0.02. The PDM technique is very
sensitive; it performs well in the ranges �−0.001,−0.0001�
and �0.0001,0.001�; see Table I, tenth row, and Table II,
eighth row. PDC is not applicable. Mixing is not strong
enough so that even more IBIs �longer time series� is re-
quired in order that the PDC would have chances to reveal
coupling correctly.

Thus, we showed that the PDM technique works well for
bursting oscillators if the phase is related to IBIs. The PDM
technique is more sensitive than the PDC for �stochastically
perturbed� periodic bursting. For the time series length speci-
fied, the PDC is applicable only for chaotic bursting where
stronger mixing takes place.

We should note that there are also more difficult cases
when the isolated neuron oscillator demonstrates continuous
chaotic spiking. In such a case, a weak interaction is not
detectable with the PDM for a reasonable time series length
since the phase diffusion is rather high; approximately as
high as for the noise-induced dynamics of the classical FHN
oscillator in the coherence resonance regime considered
above. Stronger coupling may induce chaotic bursting re-
gime in a driven oscillator.41 In the latter case, it becomes
even more difficult to analyze interactions between the oscil-
lators. For instance, the use of the spiking phase for the driv-
ing oscillator and the bursting phase for the driven one may
lead to biased estimators due to essentially different time

FIG. 4. Analysis of bursting dynamics in unidirectionally coupled
Hindmarsh-Rose oscillator equation �7� individually exhibiting a stochasti-
cally perturbed chaotic bursting. �a� Mean phase coherence. �b�,�c� PDM
coupling estimators �bold lines� and their values corresponding to p=0.05
�dashed lines� estimated from the same single time series. The true value of
c1

2 is zero. The phase is defined via IBIs. �d�,�e� PDC estimators �bold lines�
with 5% significance level �dashed lines�.
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scales of the spiking and bursting dynamics. However, we
would guess that it is efficient to use spiking phase only
within simultaneous bursts. In this case, intervals of slow
increase in spiking phase are ignored and phase dynamics are
uniform as desirable for the PDM technique. If bursting neu-
rons under investigation would represent Class 2 excitability
and Class 2 spiking, then such spiking phase should be sen-
sitive to weak coupling since spike synchronization is easily
achieved for such systems.14

V. CONCLUSIONS

We have shown that both the nonlinear phase dynamics
modeling technique and the linear partial directed coherence
are able to detect directional couplings between neuronal os-
cillators reliably in various situations. However, both analy-
sis techniques have different conditions of applicability since
they are based on extraction of different features of the dy-
namics. For instance, partial directed coherence does not suit
well for analysis of short time series where phase dynamics
modeling can be easily applied.

The phase dynamics modeling technique is very efficient
for periodic spiking or slightly perturbed periodic spiking. It
faces serious difficulties for noise-induced spiking; analo-
gous problems arise for the analysis of bursting regimes, if
the phase is defined via interspike intervals. However, the
technique appears applicable and very sensitive in the latter
case if the phase can be defined via interburst intervals.

The partial directed coherence is not applicable in the
case of individually periodic neuron dynamics. It is less sen-
sitive than the phase dynamics modeling technique for
weakly perturbed periodic spiking. Sensitivity thresholds for
both techniques becomes closer to each other with increasing
noise level. Partial directed coherence is efficient in cases of
essential noise level or deterministic chaos since it is devel-
oped for linear stochastic processes and requires mixing
property.

An interesting observation is that both techniques detect
threshold coupling almost as easily as linear coupling.

The phase dynamics modeling technique is relatively
tolerant to time series length and can be applied for time
series as short as about 100 spikes. Partial directed coherence
requires longer time series �about 1000 spikes� to give reli-
able results since it implies the use of high-order VAR mod-
els to reproduce power spectra of pulse signals and, hence,
considerable amount of data is needed to estimate their co-
efficients reliably.

Both techniques cannot correctly reveal very strong cou-
pling which induces synchronous regime. They become less
efficient as “the degree of phase synchrony” increases. We
note that partial directed coherence often performs well up to
stronger coupling than the phase dynamics modeling tech-
nique. It is explained by the fact that partial directed coher-
ence extracts some information from amplitudes, not only
from phases. Note that both techniques can give false posi-
tive detection of influence of one oscillator on another one
for strong unidirectional coupling �see Figs. 2–4�. This situ-
ation can be diagnosed, e.g., by calculation of mean phase
coherence. Roughly, if one gets R�0.75 then the results of

coupling estimation cannot be considered as reliable �how-
ever, sometimes a value of R=0.5 suggests the possibility of
difficulties�.

It might seem that both techniques work well only in a
very narrow region of coupling intensities. However, the no-
tions of weak and strong coupling are relative. In the ex-
amples considered here, synchronization takes place already
for quite small absolute values of coupling coefficients. Both
techniques work well typically for weaker couplings only.
This is inevitable since directional coupling information is
lost in the �nearly complete� synchronous regime. We call
coupling strength leading to synchronization “strong cou-
pling.” Hence, the regions of applicability of both techniques
are “almost up to strong coupling.” What can be done in case
of considerable phase synchrony when both techniques are
erroneous will be investigated in the future work.

The other difficult situation for the PDM technique is the
case of noise-induced spiking where R�0.3 and the tech-
nique gives erroneous conclusions. To apply PDM in prac-
tice, the origin of spiking �perturbed limit-cycle or noise-
induced behavior� should be assumed in advance. What can
be done if one cannot state it with confidence will be inves-
tigated in the future as well. We believe that at this stage, it
is useful just to take into account this difficulty.

We note, that generalization of the PDM technique to the
case multiple interacting neurons is straightforward. One
must just construct a phase dynamics model like Eq. �8�,
which involves phases of all those neurons. PDC is suitable
for analysis of multiple systems by construction. Thus, we
expect that our results concerning relative sensitivity of the
techniques for the case of two neurons extends to bigger
ensembles as well.

To summarize, the phase dynamics modeling technique
is extremely sensitive when the neuronal dynamics are close
to a limit-cycle behavior and the phase diffusion is not too
high. Partial directed coherence is superior when nonlinear
oscillatory structure of the dynamics is distorted to a signifi-
cant extent by the dynamical noise. Both situations are wide-
spread in applications to neuronal oscillators. In practice, it is
reasonable to apply both techniques in combination to get
more complete information about the character of the cou-
pling scheme in neuronal systems.
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APPENDIX: FORMULAS FOR THE PDM ESTIMATORS

Bias in, and variance of, �̂1←2 as the estimator of c1
2 are

related to variances of the least-squares coefficients estima-

tors âm,n , b̂m,n. Under some simplifying assumptions of mod-
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erate coupling and phase nonlinearity,25 analytic expressions
for them were derived.24 Thus, the variance of the estimator
âm,n �except for â0,0� corresponding to the first equation in
the set Eq. �8� is given by

�̂âm,n

2 =
2�̂�1

2

N �1 + 2 �
j=1

�/�t−1 �1 −
j�t

�
�cos��mâ0,0

�1� + nâ0,0
�2��

j�t

�
�

�e−j�m2�̂�1

2 +n2�̂�2

2 �/2�� , �A1�

where â0,0
�k� stands for the estimates of the intercept in the kth

equation �k=1,2� of the set �8�. Everything is analogous for

b̂m,n and for the second equation in Eq. �8�.
Next, the estimator of �âm,n

2
2 reads

�̂âm,n
2

2 =�2�̂âm,n

4 + 4�âm,n
2 − �̂âm,n

2 ��̂âm,n

2 , âm,n
2 − �̂âm,n

2 � 0,

2�̂âm,n

4 , otherwise.

�A2�

Finally, the expressions for �̂1←2 and the estimator of its
variance are as follows:

�̂1←2 = ĉ1
2 − �

m,n
n2��̂âm,n

2 + �̂
b̂m,n

2 � , �A3�

�̂�̂1←2

2

= ��
m,n

n4��̂âm,n
2

2 + �̂
b̂m,n

2
2 �, �̂1←2 � 5��

m,n
n4��̂âm,n

2
2 + �̂

b̂m,n
2

2 �� ,

1
2�

m,n
n4��̂âm,n

2
2 + �̂

b̂m,n
2

2 �, otherwise. �
�A4�

Everything is analogous for �̂2←1 as the estimator of c2
2.
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