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1. INTRODUCTION

The El Niño–Southern Oscillation (ENSO), North
Atlantic Oscillation (NAO), and Arctic Oscillation
(AO) processes represent the leading modes of inter-
annual climate variability for the Earth as a whole and
for the Northern Hemisphere (NH) [1, 2]. The detec-
tion of mechanisms that form these processes is a
problem of great fundamental and practical impor-
tance. The issue of the existence and character of the
mutual influence of the ENSO, NAO, and AO is of
special interest. For its investigation, different analy-
sis methods have been applied, such as the calculation
of cross-correlation functions, Fourier coherence, and
wavelet coherence, with the use of time series of var-
ious ENSO, NAO, and AO indices from sea-surface
temperature (SST) and sea-level pressure data [1–30].
An important indicator of the global processes,
including the influence of the ENSO, NAO, and AO,
may be hydrologic-cycle variations in the Caspian Sea
basin with corresponding changes in its level [16, 17].

The NAO index defined as the normalized sea-
level pressure difference between the Azores (the
Azores High) and Iceland (the Icelandic Low) is
widely used [5, 31]. The NAO can also be character-
ized by different expansion modes of the NH atmo-
spheric fields of pressure, geopotential, and SST, in
particular, throught the use of the empirical orthogo-
nal function (EOF) expansion. In [32], for example,
the NAO is characterized by the first mode of expan-
sion of the NH middle-troposphere 500-hPa geopo-
tential height field on the basis of rotated principal
component analysis (RPCA), described, for example,
in [9]. The NAO index from [32] is thus a hemi-
spheric-scale characteristic (mode), i.e., a larger scale
characteristic than that presented in [5, 31]. The NAO
is closely linked to the Arctic Oscillation, which char-
acterizes a circulation regime of the atmosphere not
only of the high latitudes but also in much of the NH,
except the tropical latitudes (north of 20

 

°

 

 N) [9]. In
[32], the NAO index is defined as the first mode in the
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—On the basis of the nonlinear techniques for the estimation of coupling between oscillatory systems
from time series, we investigate the dynamics of climatic modes characterizing global and Northern Hemi-
sphere (NH) processes. The North Atlantic Oscillation (NAO) and Arctic Oscillation indices and the El Niño–
Southern Oscillation (ENSO) indices are analyzed in terms of the most reliable data from 1950 through 2004
and earlier data since the 19th century. These indices characterize changes in NH atmospheric pressure (specif-
ically, sea-level pressure in the North Atlantic and NH extratropical latitudes as a whole) and in equatorial
Pacific sea-surface temperature and sea-level pressure to which the strongest variations of global surface tem-
perature and global climate on interannual time scales and of regional climatic anomalies in the NH are linked.
The methods used are based on phase-dynamics modeling and nonlinear prediction models (a nonlinear version
of 

 

Granger causality

 

). From both methods and various ENSO indices, the inference about the ENSO effect on
the NAO during the latter half of the 20th century and in the early 21st century is made with confidence prob-
ability of at least 0.95. The influence is characterized by a time delay of about two years. No inverse influence
is found with a similar degree of reliability. Results of estimating the coupling between the ENSO and the NAO
depend on the type of index that is used to describe the NAO. The ENSO effect on the NAO is detected with
sufficient confidence when the NAO index is chosen to be a larger scale characteristic. However, when a more
local index of the NAO is used, no statistically significant coupling to the ENSO is found. Increasing the length
of the analyzed ENSO and NAO series (over more than 100 yr) does not lead to any more reliable detection of
coupling. Analysis of the data for different time intervals during 1950–2004 has revealed a strengthening of the
ENSO effect on the NAO, although this inference is not reliable.
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EOF expansion of the 1000-hPa geopotential height
field in the NH.

The El Niño indices T(Niño3), T(Niño3.4),
T(Niño4), and T(Niño1+2) characterize SST in the
corresponding equatorial regions of the Pacific Ocean
(Niño3, 

 

5° N–5°

 

 S, 

 

150° 

 

 W–

 

90° 

 

 W; Niño3.4, 

 

5° N–
5°

 

 S, 

 

170° W–120° 

 

 W; Niño4, 

 

5° 

 

 N–

 

5° 

 

 S, 

 

160° E–
150° 

 

 W; and Niño1+2, 

 

0°

 

−

 

10°

 

 S, 

 

90° W–80°

 

 W [32]).
The index of the Southern Oscillation (SO) is calcu-
lated as the normalized sea-level pressure difference
in the Pacific basin, between the island of Tahiti and
Darwin (Australia) [31, 32].

It should be noted that the time series with the most
reliable data for characteristics of these processes, in
particular, for the ENSO temperature indices, are
comparatively short, from the second half of the 20th
century and onward (from 1950 through 2004, with a
total of 660 monthly means). The processes are very
complicated, so that it is not easy to draw reliable
inferences about their coupling.

In recent years, new methods for diagnosis of the
coupling between oscillatory systems from time series
have been developed within the framework of nonlin-
ear dynamics. These can be divided into two large
groups [33, 34]: some are based on the estimation of
the interdependence in the reconstructed spaces of
states [35–44], and others are based on analysis of the
phase dynamics of oscillations [45–53]. These meth-
ods are able to identify complicated and rather weak
nonlinear interactions and their “direction.” It is
shown in [34] that nonlinear methods of each group
have their own efficiency conditions, and it is reason-
able to use different methods simultaneously to more
completely extract the information about interactions
that is contained in the observed signals.

The goal of the study is a systematic investigation
of the mutual influence of the ENSO, NAO, and AO
from the time series of their various indices on the
basis of nonlinear methods of coupling diagnosis
(early results of such an investigation were reported
briefly in [54]). Section 2 describes the experimental
data and methods to be used. Section 3 presents the
main results. These are summarized and discussed in
Section 4.

2. EXPERIMENTAL DATA AND METHODS
OF ANALYSIS

 

2.1. Experimental Data

 

For analysis of the ENSO, NOA, and AO processes
in 1950–2004, the following indices were used:

(i) for the NAO process, the NAO indices from [32]
and [31];

(ii) for the AO, the AO index from [32];
(iii) for the ENSO, the temperature indices

T(Niño3), T(Niño3.4), T(Niño4), and T(Niño1+2)
from [32] and the SO index from [32] and [31]. We

considered the indices themselves T(Niño3),
T(Niño3.4), T(Niño4), and T(Niño1+2) as well as
their anomalies, i.e., the signals with the eliminated
annual cycle.

Longer series were analyzed for the NAO index
(1821–2004), T(Niño3) (1871–1997), and SO index
(1866–2004) [31, 32, 18, 19]. Thus, results have been
obtained for short series (since 1950) as well as for
longer series (since 1871 or 1866).

The distinctive feature of the problem is a rela-
tively short duration of analyzed series. For typical
time scales (2 years or more), the maximum number
of characteristic periods in the time series is 24 for
shorter periods and 65 for the longer ones. This makes
it difficult to draw inferences with a high confidence
probability. In estimating the coupling between the
processes, only results with a confidence probability
of at least 0.95, i.e., at the significance level 

 

p

 

 < 0.05,
were considered to be statistically significant.

 

2.2. Phase-Dynamics Approach

 

The main idea of the method is to estimate how
strongly the future evolution of the phase of one sys-
tem depends on the current value of the phase of the
other system. For this purpose, from the original time
series of two systems 

 

{

 

x

 

1

 

(

 

t

 

1

 

), …, 

 

x

 

1

 

(

 

t

 

N

 

)}

 

 and 

 

{

 

x

 

2

 

(

 

t

 

1

 

), …,

 

x

 

2

 

(

 

t

 

N

 

)} (

 

t

 

i

 

 = 

 

i

 

∆

 

t

 

,

 

 with 

 

∆

 

t

 

 being a sampling interval, for
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 = 1 is set for simplicity), one can construct
time series of phases of their oscillations 
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 whereby a mathematical
model can be developed [49, 53].

There are different methods for calculation of
oscillation phases [55–58]. A classical method [55] of
calculating a phase of the signal 

 

X

 

(

 

t

 

)

 

 is to find a com-
plex analytic signal 

 

Z
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) = 

 

X
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) + 

 

jY
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, where 

 

Y

 

 is the

Hilbert conjugate signal: 

 

Y

 

(

 

t

 

) = 

 

P

 

.

 

V

 

. ,

 

where 

 

P

 

.

 

V

 

 is the principal value of the improper inte-
gral. The phase 

 

φ

 

(

 

t

 

)

 

 of the signal 

 

X

 

(

 

t

 

)

 

 is determined as
an argument of 

 

Z

 

(

 

t

 

)

 

, i.e., the angle of rotation of a
radius vector on the complex (Re Z, Im Z) plane. If the
phase is determined in the interval [0, 2

 

π

 

), it is
referred to as wrapped. In what follows, we are deal-
ing only with an unwrapped phase 

 

φ

 

(

 

t

 

)

 

, which
increases by 

 

2

 

π

 

 per each full rotation of the radius vec-
tor. For 

 

X
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) = cos(

 

ω

 

t

 

 + 

 

ϕ
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, for example, the Hilbert
conjugate signal is 

 

Y
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) = sin(
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 and the phase is

 

φ

 

(

 

t

 

) = 

 

ω

 

t

 

 + 

 

ϕ

 

.
This approach, however, has a clear physical

meaning only for the signals with a pronounced main
rhythm (narrowband signals). In this case, the phase
characterizes the repetition in the signal. Roughly
speaking, it varies by 

 

2

 

π

 

 in the interval between two
consecutive minima. If the spectrum of a signal con-
tains many peaks at different frequencies, band-pass
filtering is usually used to isolate a certain rhythm and

X t '( ) t 'd
π t t '–( )
-------------------

–∞
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the approach described is applied to a filtered signal.
It is desirable to justify the choice of a filter band from
a physical point of view. In practice, the Hilbert trans-
form is often performed in a frequency domain, for
which all phases in the Fourier transform of the signal
X are shifted by −π/2 and an inverse Fourier transform
is performed. In any case, the calculated phase values
near the beginning and end of the time series are dis-
torted (edge effect) and phase values should be
rejected for ten characteristic periods from each “end”
of the time series [48].

Since in this study we analyze relatively short time
series of climatic indices, the removal of such a large
amount of data is quite undesirable. For this reason,
another technique was used to construct an analytic
signal [57], which is identical to band-pass filtering
and the subsequent Hilbert transform but suffers less
from edge effects. This is a complex wavelet trans-
form

(1)

where the complex wavelet function is a Morlet trans-
form ψ(η) = π−1/4exp(–jω0η) × exp(–η2/2), the asterisk
means the complex conjugate, and s is a fixed time
scale. The phase is the argument Z. This approach is
equivalent to band-pass filtering of the original signal

around the frequency f ≈ , with a bandwidth deter-

mined by the parameter ω0. When ω0 = 6 [59, 60],
which is also used here, a bandwidth corresponds
roughly to 1/4 of the central frequency f ≈ 1/s. Edge

effects occur in intervals of length  [59], i.e., about
1.4 characteristic periods.

The form of a mathematical model is chosen from
the following considerations. For a wide range of sit-
uations, the phase dynamics of oscillators that exhibit
a pronounced main rhythm is adequately described by
stochastic differential equations, as in [47],

(2)

where ωk represents parameters that determine angular
frequencies of oscillations and ξk(t) are independent
Gaussian white noises with zero mean and autocorrela-
tion functions 〈ξk(t)ξk(t')〉 = 2Dkδ(t – t'). In the treatment
of discrete time series, it is convenient to use a differ-
ence form of equations

(3)

where ∆φk(t) ≡ φk(t + τ) – φk(t) is a phase increment per
finite time τ, εk(t) are zero-mean noises, Fk are trigonomet-
ric polynomials, and ak are vectors of their coefficients.

To construct model (3), it is necessary to specify
the interval τ (usually taken equal to the characteristic
period of oscillations [49]) and orders of the polyno-

Z t( ) 1

s
------ X t '( )ψ* t t '–( )/s( ) t ',d

–∞

∞

∫=

ω0

2πs
---------

2s

dφk/dt ωk Gk φ1 φ2,( ) ξk t( ), k+ + 1 2,,= =

∆φk t( ) Fk φ1 t( ) φ2 t( ) ak, ,( ) εk t( ) k,+ 1 2,,= =

mials Fk (third-order polynomials are further used,
following [49, 50, 53]). The estimates of coefficients

 are determined with a least-squares method
(LSM), i.e., through minimization:

(4)

Next, intensities of influence of the oscillators on
each other are calculated from the coefficient esti-
mates .

If the “true” equations of phase dynamics were
known a priori, the strength of influence of the second
system on the first one, c1, could be determined by the
steepness of the dependence of F1 on φ2, while that of
the first system on the second one, c2, could be deter-
mined in a similar way:

(5)

The directionality index is determined by the dif-
ference of c1 and c2. These would have been the “true”
coupling characteristics. From the time series, how-
ever, one can obtain only the estimates of coefficients

, from which the estimates of c1 and c2 are to be cal-
culated. The most straightforward way is to use for-
mula (5) and substitute  instead of the true values
ak. However, such estimates of 1, 2 appear to be accu-
rate only for very long stationary signals (about 5000
characteristic periods in length for a sampling fre-
quency of 10–20 points per period and a moderate
noise level [49, 53]). For shorter time series with lim-
ited reliable data, these estimates are biased. In [53],

new estimators  for  were presented (see
Appendix A). Formulas for their 95% confidence
intervals were also obtained in the form [  – 1.6 ,

 + 1.8 ], where  are calculated from the same

short series. The estimators  are unbiased and pro-
vide the frequency of erroneous inferences about the
presence of mutual influence of the systems at a level
no higher than 0.025 (see Appendix A) even for rela-
tively short time series but desirably with a length of
at least 50 characteristic periods [53]. According to
additional studies with reference oscillators, the esti-
mators (controlled probability of erroneous conclu-
sions) also remain applicable for shorter series of a
length up to 20 characteristic periods if the phase
coherence coefficient [46] ρ ≡ |〈exp(j(ϕ1(t) – ϕ2(t)))〉t|,
where the angle brackets denote time averaging, cal-
culated from such a short series does not exceed 0.4.
In this case, a near-uniform distribution of the experi-
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mental points in the square [0, 2π] × [0, 2π] on the
plane of wrapped phases (φ1mod2π, φ2mod2π) takes
place.

In analysis of the climatic indices, we used the
method described above, the models being con-
structed with the possible delay in coupling [6] of the
form

(6)

where ∆ is the time shift between series. The negative
value of ∆ means a delayed coupling. The coupling
characteristics (∆) were calculated for ∆ varying
from some negative number large in absolute value to
∆ = τ. The values ∆ > τ have no physical meaning
because they denote the influence of future values on
the current ones. Accordingly, the coefficient ρ was also
calculated depending on ∆: ρ(∆) = |〈exp(jφ1(t) – φ2(t +
∆))〉t|. Only the values of (∆) corresponding to
ρ(∆) < 0.4 were taken into account.

2.3. Method Based on Nonlinear Prediction Models

It is often reasonable to analyze not only phases but
also amplitudes. The traditional and simplest version
is the estimation of cross-correlation functions. To
obtain more complete information, it is possible to use
nonlinear methods based on the analysis of interde-
pendences in the spaces of states. Out of the latter, we
have chosen a method of nonlinear prediction models
[42, 44], which is an extension of the linear approach
to identification of causality proposed by Granger [62]
(see also [63–65)] and lies in the following. From the
available time series {x1(t1), …, x1(tN)} and {x2(t1), …,
x2(tN)}, we construct prediction models, individual
and coupled. If the prediction of the dynamics of the
first system can be substantially improved via incor-
poration of values of the variable of the second system
and such an improvement cannot be achieved via com-
plication of an individual system, the second system
has an influence on the first system. We used the fol-
lowing specific realization.

To estimate the influence of the second system on
the first one, an individual model is constructed

(7)

where f1 is a polynomial of order K and d1 is the dimen-
sion of the model. The coefficient estimates  are
found through the LSM. The unbiased estimate of the
mean square of the prediction error is

(8)

∆φ1 2, t( )
=  F1 2, φ1 2, t( ) φ2 1, t ∆+( ) a1 2,,,( ) ε1 2, t( ),+
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-----------------=
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i i0 1+=

N

∑

where i0 = max(d1, d2), N' = N – i0, and P1 = (d1 +
K)!/d1!K! is the number of coefficients of the model.
Then, using the two time series, we construct a model
of the form

(9)

where d2 is the number of x2 values taken into account,
g1 is a polynomial of order K, and the coefficient esti-
mates  are calculated through the LSM. The predic-
tion error of the coupled model is given by

(10)

where  = (d1 + d2 + K)!/(d1 + d2)!K! is the number of
coefficients of the coupled model.

The improvement of the prediction of the series x1

with consideration for the series x2 is characterized by

the difference of the errors squared  =  –

. To estimate the significance of the error
improvement obtained from the time series, one
should keep in mind that, for uncoupled processes
x1(t) and x2(t) with Gaussian white noise responsible
for the prediction errors, the normalized quantity

 ≡  has

an F-distribution with (P2 – P1, N' – P2) degrees of
freedom. The significance of positive  can then

be tested from  via an F-test [66, 67]. If 
is significant at the level p, we must allow the presence
of the influence of x2 on x1 with the confidence proba-
bility (1 – p). Everything is analogous for the influ-
ence 1  2.

The improvement of the prediction and the model
coefficients were calculated for different time shifts ∆
between the series, i.e., for models of the form

(11)

with allowance for the possible delay ∆ in coupling.
The delay ∆ was changed from a negative integer large
in absolute value to 0. The dimensions of the models
and the order K were allowed to vary.

It is desirable to use multivariate models with high-
order polynomials in order to describe the observed
complicated dynamics more adequately. However,
this method requires enormous volumes of data. In our
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case of relatively short series, we have to restrict our-
selves to low-dimensional models with low-order
polynomials, i.e., to a small number of free parame-
ters, so that the estimates of the latter will be more sta-
ble. We used 

 

d

 

1

 

, 

 

d

 

2

 

,

 

 and 

 

K

 

 in the range from 0 to 3.

Finally, we have analyzed cross-correlation func-
tions and prediction models for time series containing
only average winter values of each index. These time
series are even shorter than those based on the
monthly means and contain only one value per year,
so that the reliability of results can be strongly
reduced because of poor statistics. On the other hand,
since the ENSO, NAO, and AO indices characterize
processes that are most clearly defined during the
Northern Hemisphere winter, there is reason to
assume that the identification of only winter values
may produce an effect analogous to a decrease in the
noise level. This is desirable for a more confident esti-
mation of the mutual influence.

3. RESULTS
 3.1. Analysis of Phase Dynamics 

of ENSO and NAO Processes

 

Among the most adequate and often-used indica-
tors of El Niño events are the indices T(Niño3) and
T(Niño3.4). The calculated individual characteristics
of the NAO index [32] and T(Niño3.4) for the 1950–
2004 period are shown in Figs. 1 and 2 (in Figs. 2a and
2b, the results are given after the reduction to zero
mean).

In the estimation of the autocorrelation function
(ACF) of the NAO index, there are almost no signifi-
cant correlations (Fig. 1c), but a periodic component
with a period of about 30 months can be visually
detected (not confidently). The global wavelet spec-
trum of the NAO index obtained with a Morlet wavelet
is shown in Fig. 1d. The smoothed estimate of the
power spectrum [59] reveals peaks corresponding to
cyclicity with a period of 32 months, 108 months, and
othervalues. One might assume that oscillatory pro-
cesses for which the phase can be adequately deter-
mined are associated precisely with these peaks.

For the T(Niño3.4) index from [32] for the same
1950–2004 period, the ACF drops more slowly and
correlations for delays from 1 to 6 months are signifi-
cant (Fig. 2c). A component with a period of about 60
months is detected visually (with no confidence
either). The wavelet spectrum reveals peaks corre-
sponding to scales of 12 months, 69 months, etc.

In analysis, the values 

 

s

 

 in (1) corresponding to dif-
ferent peaks in both spectra were used to obtain the
NAO and ENSO phases of “different rhythms.” The
interaction among all these rhythms was estimated
pairwise via the phase-dynamics approach. The only
version in which informative inferences about the
presence of coupling were obtained is a “rhythm” with

 

s

 

 = 32 months for both signals. In Figs. 1a and 2a, the
dashed line shows time realizations of the real part of
the wavelet coefficient corresponding to 

 

s

 

 = 32. Tra-
jectories of both processes on a complex plane are
shown in Figs. 1 and 2: the rotation of the radius vec-
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Fig. 1.

 

 Individual characteristics of the NAO index from [32] (short series, 1950–2004): (a) gray color denotes the original time
series and the dashed line represents the real part of the wavelet transform with a time scale 

 

s

 

 = 32 months or a band-pass filtered
signal; (b) histogram, where the solid line is the approximation by a Gaussian; (c) ACF and its 95% pointwise confidence intervals,
with a halfwidth being a double error estimate according to Moran [67]; (d) global wavelet spectrum; and (e) trajectory on a complex
plane for a scale 

 

s

 

 = 32 months.
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tor around the origin of coordinates takes place, so
that the phases of both signals for a given rhythm are
well defined.

Results of constructing models (6) are displayed in
Fig. 3. The dependence of the mean-square errors

 and  of phase-dynamics model (6) on the
method’s parameter 

 

τ

 

 for a fixed 

 

∆ = 0 is shown in
Figs. 3a and 3b. This dependence for moderate τ val-
ues is approximately linear, a result that confirms the
adequacy of the model of type (6) [53]. The value of

 for τ = s = 32 is the effective phase diffusion
coefficient multiplied by 2τ [69]. For the selected
rhythm, it is an order of magnitude greater for
T(Niño3.4); i.e., phase diffusion for T(Niño3.4) is
substantially stronger than that for the NAO from [32].
This means that the probability of detecting the influ-
ence of the NAO on T(Niño3.4), if any, is less because
of a stronger effective noise in the phase dynamics of
T(Niño3.4).

Figure 3 shows experimental points on the plane of
wrapped phases for ∆ = 0. The distribution is approx-
imately uniform, and the phase coherence coefficient
is not large, ρ ≈ 0.25, thus indicating that the phase-
dynamics approach is applicable for ∆ = 0. However,
ρ becomes greater than 0.4 when ∆ < –30, and the val-
ues of coupling estimates cannot be taken into account
(Fig. 3f). The estimate of the strength of the influence
of the El Niño on the NAO is pointwise significant for
the interval –30 < ∆ < 0 and takes a maximum value
when ∆ = –24 months (Fig. 3d). How reliably can one
draw a conclusion about the influence of El Niño on
the NAO? Its confidence probability can be estimated
from the following considerations. The values of

σφ 1,
2 σφ 2,

2

σφ k,
2

(∆) for close ∆ values are strongly correlated. This

is evident in the smoothness of the dependence (∆)

(Fig. 3d). The values of the estimate of (∆) sepa-
rated in ∆ by an interval larger than τ can be consid-
ered statistically independent. In the given case, τ = 32
and the interval of ∆ taken into account includes val-
ues from –30 to 32. Therefore, two groups of estimate
values are independent of each other (with a strong
cross-correlation within each group): for ∆ from the
intervals [–30, 0] and [0, 32]. The probability of a ran-
dom false inference about coupling, based on an indi-
vidually significant  only in one of these groups, is
equal to a pointwise probability of error of 0.025. The
probability of a false inference based on an individu-
ally significant  at least in one of these two groups
(the required total error probability) is approximately
equal to the sum of the probabilities of individual
errors due to the smallness of the latter and amounts
to 0.05. Consequently, the inference about the influ-
ence of El Niño on the NAO can be drawn with a
0.95 confidence probability. The most probable delay
is about 24 months, but this conclusion is not suffi-
ciently reliable. No indications of the inverse influ-
ence of the NAO on ENSO were found from phase-
dynamics modeling results from [32] (Fig. 3e).

It should be noted that large values of the phase
coherence index for ∆ < –30 are not indicative of a
strong coupling with the corresponding delay. For
such short series and close fundamental oscillation
frequencies, the probability that a large value of ρ can
be obtained for uncoupled processes is very high
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(above 0.5, as shown by the results of numerical
experiments with reference oscillators).

During analysis of other rhythms of the NAO and
T(Niño3.4) indices from [32], conclusive inferences
about coupling failed to be made. For example, for 12-
and 32-month rhythms in different combinations, the
values of (∆) were found to be insignificant. For
69- and 108-month rhythms, the time series are too
short for the method to be applied, shorter than 20
characteristic periods.

Using other ENSO indices instead of T(Niño3.4)
leads to roughly the same conclusions as those above.
Global wavelet spectra of the signals are shown in
Fig. 4. They are slightly different from one another, so
that one can expect somewhat “independent” informa-
tion of the analysis of these indices. Nevertheless, in
the frequency band corresponding to 28- to 36-month

γ̂ 1 2,

scales, which gives the most interesting results, the
values of the Fourier coherence among all the ENSO
indices are large, about 0.9–0.95 for all pairs of the
indices except for the pairs with T(Niño1+2), where
the coherence is about 0.85. There are in-phase oscil-
lations of the temperature indices in the indicated fre-
quency band, and the AO index oscillates in antiphase
with them. The plots for the estimates of coupling
with the NAO, in the case of T(Niño 3), T(Niño) 4),
and the SO index from [32], are analogous to Fig. 3
(not shown). The conclusion about the influence of
ENSO on the NAO with the most likely delay of
24 months is drawn with a 0.95 confidence probabil-
ity. No reverse influence is found. When T(Niño1+2)
is used, even the ENSO effect on the NAO is not so
evident: only (∆ = –21) is pointwise significant. The
use of the anomalies of all indices instead of the indi-
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ces results in no change because the anomalies in the
given frequency band do not differ from the indices
themselves. For other rhythms of the NAO and ENSO,
no mutual influence was detected in any of the cases.

A similar analysis was performed with data from
[31] (1821–2004) for the NAO index, defined as the
normalized pressure difference between two points in
the North Atlantic, which is not as large-scale a char-
acteristic as the NAO index from [32]. The length of
this series is sufficient to analyze the coupling
between the NAO and T(Niño3) for the 1971–1997
period, the NAO and SO for 1866–2004, and the NAO
from [31] with the above ENSO indices from [32] for
1950–2004. Figure 5 shows results of coupling analy-
sis for the NAO index from [31] and T(Niño3.4) from
[32] for the 1950–2004 period. The width of the peak
at the frequency corresponding to a 32-month scale is
larger in the NAO spectrum from [31] than in the NAO
spectrum from [32], even for the same 1950–2004
period (thick and thin lines in Fig. 5a). The trajectory
on the complex plane (Fig. 5b) runs rather close to the
origin of coordinates. These two facts indicate that
phase diffusion for the selected NAO rhythm may be
much greater when the data from [31] are used. This
supposition confirmed by Fig. 5c, where it can be seen
that the diffusion coefficient is an order of magnitude
greater (the thick line against the thin line); i.e., it is on
the same order of magnitude as that for the ENSO indi-
ces. As a consequence, no coupling is detected between
the NAO and ENSO processes (Figs. 5d–5f). Analysis

of coupling of the NAO from [31] with the other ENSO
indices for the 1950–2004 period gives similar results.

When the length of time series of the indices of the
NAO [31], SO [31, 32], and T(Niño3) [19, 28, 70] is
increased (i.e., the start of the analyzed time series is
moved to the past), the shape of the power spectrum of
the NAO index changes: the peak corresponding to a
32-month rhythm broadens and, finally, decays
entirely (see the dashed line in Fig. 5a for the 1871–
2004 period). Analysis was made of a greater number
of NAO, SO, and T(Niño3) rhythms, such as a rhythm
with a characteristic 60-month period and others, but
none of them manifested a significant influence of the
NAO on ENSO and vice versa. The influence of ENSO
on the NAO was not found even for a 32-month rhythm
nor was it found for a shorter fragment of the series
(1950–2004). Thus, even the increase in the time series
length does not provide a more reliable detection of
coupling, because the noise level in the phase dynamics
of the NAO from [31] is considerably higher.

Quantitative estimates of changes in the character
of interaction of the ENSO and NAO processes are of
particular interest. For this purpose, a special analysis
was performed for the NAO and T(Niño3.4) indices
[32] in a 47-yr moving time window during previous
decades (1950–2004). Coupling estimates of a
32-month rhythm were obtained for nine positions of
the window (with a 1-yr shift): beginning in
1950−1996 and ending in 1958–2004. The results for
all the analyzed intervals were found to be analogous

0

γ1(ENSO → NAO)

∆, month

3

–96
–1

1

2

–64 –32 0 32

(d)

0.4

S
1.6

0
0

1.2

(‡)

y
4

–4
–4

2

0

4–2 2

(b)

0.03 0.06 0.15
xf, 1/month

0.4

σ2
φ, NAO

1.0

0
0

0.6

(c)

10 20 30
τ, month

0.2

–0.2

γ2(NAO → ENSO)

∆, month

0.6

–96
–0.6

0
0.2

–64 –32 0 32

(e)
ρ

∆, month

0.8

–96
0

0.4

–64 –32 0 32

(f)

0.6

0.09 0.12

0.8

–2

0

0.8

0.2–0.4

0.4

Fig. 5. Results of analysis analogous to those in Fig. 3, with the replacement of the NAO index from [32] by the NAO index from
[31] for the 1950–2004 period: (a) global wavelet spectra (the thick line is the NAO index [31] for 1950–2004, the dashed line is
the NAO index from [31] for 1871–2004, and the thin line is the reconstruction of the spectrum shown in Fig. 1 for the NAO index
[32] for 1950–2004); (b) trajectory on a complex plane for s = 32 months (analogous to Fig. 1e); (c) dependence of the residual
error of phase-dynamics model (6) on the parameter τ for the NAO index [31] (thick line), the error for the NAO from [32] in Fig. 3a
is shown for comparison (thin line); (d–f) the same as in Figs. 3d–3f.

ˆˆ



606

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS      Vol. 42      No. 5      2006

MOKHOV, SMIRNOV

to those in Figs. 3d and 3e and coincided with one
another quantitatively within the estimation error.
Therefore, no changes in the strength of the influence
of ENSO on the NAO over recent years were detected
with the phase-dynamics approach.

3.2. Analysis of Phase Dynamics
of the ENSO and AO Processes

An appropriate analysis was carried out for the
ENSO and AO indices. The AO index, like the NAO
index from [32], is a more integral climatic character-
istic than the NAO index from [31]. It characterizes
variations in the field of sea-level pressure of the
northern extratropics (north of 20° N). From analysis
of the mutual influence of ENSO and AO processes,
other results can be expected, although the NAO and
AO are strongly correlated. The global wavelet spec-
trum of the NAO index from [32] for 1950–2004 is
shown in Fig. 6a. The peak corresponding to a 32-
month rhythm and some others, including the annual
cycle, are distinguished. Figure 6b displays the coher-
ence function for the NAO and AO indices from [32]
for 1950–2004. It nearly reaches a value of 0.8 for a
32-month rhythm. The experimental points on the
plane of wrapped phases of the NAO and AO indices
for this rhythm (Fig. 6c) show that the oscillations are
largely synchronous and occur in phase.

Results from analysis of coupling between the AO
and El Niño (T(Niño3.40) from [32] (1950–2004) for
a rhythm with s = 32 months are shown in Fig. 7.
Phase diffusion for the AO index (Fig. 7a) is weaker
than that for T(Niño 3.4) (Fig. 7b) but twice as strong
as the phase diffusion for the NAO index (Fig. 3a). For
∆ > –40, there is no synchrony between oscillations
(Figs. 7c, 7f) and the phase-dynamics approach is
applicable. The coupling estimates shown in Figs. 7d
and 7e suggest that no reliable conclusions can be
inferred about the influence of the AO and ENSO on
each other. Identical results were obtained for other
rhythms and other ENSO indices (not shown). The
absence of evident indications of the ENSO effect on

the AO, despite the presence of the influence of the
ENSO on the NAO, can be explained by the fact that
the AO process is influenced by a larger number of
factors (since it is more global). This leads to the
enhancement of the effective noise in phase dynamics
(as was noted in analysis of Figs. 3a and 7a). As a
result, the detection of weak coupling from such a
short series becomes difficult.

3.3. Prediction Models 
for the ENSO and NAO Processes

We performed the analysis of coupling, which
takes into account not only the phases but also ampli-
tudes of the signals with the use of cross-correlation
functions and nonlinear prediction models. Results for
the NAO index and T(Niño3.4) from [32] for 1950–
2004 are shown in Fig. 8. Negative shift values for the
cross-correlation function (CCF) in Fig. 8a corre-
spond to the situation where T(Niño3.4) leads. The
CCF is “almost” pointwise significant at the level p <
0.05 for ∆ = –20 and ∆ = –82 months, but no general
confident inference about nonzero correlation
between the analyzed processes can be made.

More realistic results were obtained via construc-
tion of prediction models. Figures 8b and 8c show

 and  for models (11) with d1 = 0, d2 = 1,
and K = 2. The prediction of the NAO is improved by
1.5 to 2% via incorporation of the El Niño
(T(Niño3.4)) with ∆ = –(19–21) and ∆ = –(80–83)
months. This result corresponds to the above delays
for the CCF. Each of these values is significant
according to an F-test at the level p < 0.01. Taking into
account strong correlations of  separated in ∆
by an interval not greater than 4 and considering argu-
ments analogous to those in Section 3.1, one can draw
a general inference about the presence of the influence
of El Niño on the NAO from [32] even for one of the
indicated ∆ values with a confidence probability of at
least 0.95. The values ∆ = –(19–21) are roughly con-
sistent with the results of phase-dynamics modeling,
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so that it is possibly these values that adequately char-
acterize the time delay in the ENSO effect on the
NAO. It is not improbable that both groups of ∆ corre-
spond to a real delayed influence of ENSO on the
NAO.

There is also an improvement of 1–2% in the pre-
diction of T(Niño3.4) achieved via considerstion of
the NAO with ∆ = –(48–49) months, which is individ-
ually significant at the level p < 0.01. However, it does
not allow the confident conclusion that the NAO
affects ENSO. It is only a weak (unreliable) indication
of an effect. However, if this indication is taken into
consideration, one can note that the sum of delays in
the influence of ENSO on the NAO (about 20 months)
and the NAO on ENSO (30 to 50 months) is 50 to
70 months. The rhythm with a typical oscillation
period of some 60 months is well pronounced in the
dynamics of ENSO indices. This rhythm can be
assumed to result from a mutual delayed coupling
between the ENSO and NAO processes. This is not a
reliable inference, but an assumption, and it is unclear
why the same rhythm is not manifested in the dynam-
ics of the NAO.

The inferences made above have been obtained via
the simplest models, in which their own dynamics
(dependence of the current value of a variable on its
past values) was disregarded. Granger causality
requires that the improvement of the prediction be
achieved only by incorporation of a variable of the
other system, not by complication of an individual
model. When d1 (dimension of an individual model) is
changed to 2 inclusive, the results actually remain
unchanged (not shown). This confirms their signifi-
cance. If d1, the polynomial order, and d2 are simulta-

neously increased to 3, 3, and 2, respectively, no reli-
able inferences about coupling can be drawn, because
of the broadening of confidence intervals. The expla-
nation for this circumstance is that the number of esti-
mated parameters in such a complicated model grows
to 56 and, with the length of the time series being con-
stant, the variance of estimates increases. Therefore, for
relatively short series, we have to restrict ourselves to
the results presented for the most “compact” models.

An analogous analysis of coupling for the NAO
indices and T(Niño3.4) anomalies from [32] yields
plots qualitatively similar to those in Figs. 8b and 8c
(not shown), but the inference about the ENSO effect
on the NAO is drawn with somewhat less reliability, at
the level p < 0.1. In regard to the reverse influence of
the NAO on ENSO, only its weak indications can be
discerned, as in the case with the T(Niño3.4) index
itself. Identical results are obtained if T(Niño3) (or its
anomalies), T(Niño4) (or its anomalies), or the SO
index is used instead of the T(Niño3.4) anomaly. If the
T(Niño1+2) index is used, the conclusions are even
less significant.

Analogously to the results of phase-dynamics
modeling (Section 3.1), with the use of the NAO index
from [31] instead of the NAO index from [32], no sig-
nificant influence of ENSO on the NAO was detected
either for the period 1950–2004 or for other periods
since the 19th century. Consequently, the inferences
based on the two methods using different NAO and
ENSO indices are well consistent, so that the confi-
dence in the results obtained increases.

Examination of changes in the character of cou-
pling [32] for the NAO index and T(Niño3.4) in a
moving time window during 1950–2004 (see the end
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of Section 3.1) revealed a strengthening of the ENSO
effect on the NAO over recent years. Qualitatively, the
plots of the prediction-error improvement and the
model coefficients are analogous to Figs. 8b and 8c.
However,  (the improvement of the prediction
of the NAO when the ENSO is taken into account) for
∆ = –(19–20) months increases almost monotonically
by about a factor of 2.5 with a shift of the time interval
(from 1950–1996 to 1958–2004) (Fig. 9). Nearly
identical results are obtained for ∆ = –81 months.

Although the statistical significance of the infer-
ence about the increase in  is hard to estimate,
the monotone pattern of this increase indicates that it
does not resemble the effect of random errors in statis-

PI2 1→

PI2 1→

tical estimation. The oscillation amplitude (standard
deviation) of the NAO index from [32] in a moving
time interval fluctuates within 1% when the interval is
shifted. The amplitude of T(Niño3.4) systematically
grows (by about 7%), with a peak in the 1955–2001
window, and then decreases slightly. Increasing the
amplitude of ENSO, with an interaction held constant,
could have led to an increase in . However, it is
possible to show that a 7% increase in x2 in model (11)
with d1 = 0, d2 = 1, and K = 2 may cause  to
grow by no more than 20%. Therefore, the improve-
ment of the prediction of the NAO by a factor of 2.5
when the ENSO is taken into account cannot be
explained solely by a change in the ENSO amplitude.
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A conclusion is to be made about the recent increase
in the ENSO effect on the NAO. This phenomenon is
precisely due to the strengthening over recent years,
not the weakening of the 1950–1958 period, because
the coupling is more clearly defined for the whole
1950–2004 period than for 1950–1996.

As far as changes in the NAO effect on the ENSO
are concerned, it is hard to say anything about them
because even the presence of this effect cannot be reli-
ably detected.

3.4. Prediction Models for the ENSO and AO

Analysis of the mutual influence of the ENSO and
AO processes with different indices was performed in
a similar way. The results obtained for the AO index
and T(Niño 3.4) anomalies from [32] for 1950–2004
indicate that the presence of influence in either direc-
tion cannot be reliably detected, although pointwise
significant coefficients are obtained for roughly the
same delays as in the case with the NAO (not shown).
The most reliable conclusion to be inferred from this
analysis is the existence of a negative cross correlation
between the AO index and T(Niño3.4) with a 1-month
delay, when ENSO leads. This correlation is pointwise
significant at the level p < 0.02, but no reliable general
inference about coupling can be made. Similar results
were obtained for other temperature ENSO indices.

3.5. Analysis of Winter ENSO, NAO, and AO Regimes

The NAO, AO, and ENSO are most evident during
the NH winter. For this reason, an additional analysis
was performed for the NH winter seasons, from
December through February. The corresponding time
series of the winter means of the indices are 12 times
shorter than the original time series of the monthly
means. Results of the estimation of cross-correlation
functions are shown in Fig. 10.

The CCF of the NAO index and T(Niño3.4) is
pointwise significant at the level p < 0.05 for delays of
−1 year, –3 years, and –8 years (ENSO leads, see
Fig. 10a). No reliable general conclusion about non-
zero correlation can be made.

For the NAO index and T(Niño3), the correlation is
pointwise significant if p < 0.0025 for a delay of
−1 year (Fig. 10b). Then, by multiplying the point-
wise significance level by 21 (the total number of the
shifts considered), one can infer a general conclusion about
nonzero correlation for a significance level p < 0.05.

For the NAO index and T(Niño4), the correlation is
pointwise significant if p < 0.05 with a delay of
−3 years (ENSO leads, see Fig. 10c). No reliable gen-
eral conclusion can be made.

For the NAO index and T(Niño1+2), the correla-
tion is pointwise significant if p < 0.001 with a delay
of –1 year (Fig. 10d). One can draw a general conclu-
sion about nonzero correlation for a significance level
of p < 0.02.

For the NAO and SO indices taken from [32] for
the 1950–2004 period, the correlation is pointwise
significant with delays of –2 years and –8 years (cor-
relation coefficient is negative) (Fig. 10e). No reliable
general inference can be drawn.

For the NAO index from [31] and T(Niño3) in the
analysis of their longer series (1871–1979), there is
only a pointwise significant correlation for p < 0.05
with a delay of –1 year. A reliable conclusion about
coupling cannot be made either, nor can it be made
with the use of other methods for analysis of longer
series.

The nonlinear prediction models provide no other
results (or a more reliable support of the same results).

On the whole in all cases of mutual dynamics of
the ENSO and NAO, a significant correlation is reli-
ably detected for the NH winter seasons (for shorter
T(Niño3) and T(Niño1+2) series), when the ENSO
drives NAO. The opposite situation (when the NAO
drives ENSO) is not detected. Thus, the inference
about the ENSO effect on the NAO is confirmed by the
winter mean values of the indices, with a time delay
being estimated at 1 to 3 years.

For the CCF of the AO index and temperature
ENSO indices, negative values of about –0.1 (insig-
nificant) are obtained for a zero delay. For the AO
index and any of the ENSO indices, no pointwise sig-
nificant correlation is found for any time delay.
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Fig. 9. Improvement of the prediction error of the NAO [32] with consideration for T(Niño3.4) (maximum of the values correspond-
ing to delays of –19 and –20 months) and its pointwise significance level as a function of the position of a moving average (the end
year of a time interval is plotted on the abscissa axis).
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Analysis of changes in cross correlations among
all the indices from [32] for “46-winter” moving time
intervals (see Sections 3.1, 3.3) during 1950–2004
reveals only fluctuations within 1–3%.

4. CONCLUSIONS

From the analysis performed with different linear
and nonlinear methods (including the phase-dynamics

approach, nonlinear prediction models, and estima-
tion of cross-correlation functions), a number of fea-
tures of the interdependence of ENSO, NAO, and AO
events were detected with the use of various climatic
indices characterizing these climatic cycles. In all
cases, the results were shown to be consistent with one
another.

The ENSO effect on the NAO from [32] during the
1950–2004 period was detected with a confidence
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probability of at least 0.95–0.98 for the following
cases:

(i) the phase-dynamics approach with a confidence
probability of at least 0.95 for the NAO and ENSO
indices (T(Niño3.4), T(Niño3), T(Niño4, and the AO
index) in the frequency band corresponding to time
scales of 28–36 months;

(ii) construction of nonlinear prediction models for
the NAO and ENSO indices with a confidence proba-
bility of at least 0.95 for T(Niño3.4) and 0.9 for
T(Niño3), T(Niño4), and AO indices and all anoma-
lies of these indices; and

(iii) correlation analysis of the winter mean (for the
NH) NAO and ENSO indices with a confidence prob-
ability no lower than 0.98 for T(Niño1+2) and 0.95 for
T(Niño3).

The time delay of the ENSO effect on the NAO
from [32] is estimated at 1 to 3 years, with the most
probable value of 20 to 24 months.

Analysis of longer time series (in particular, for the
period 1871–1997) shows no ENSO effect on the
NAO. This outcome is related to specific properties of
the NAO index from [31], which is not as large-scale
a characteristic as the NAO index from [32].

The analysis of data from [32] that is based on the
prediction models has shown that there is a tendency
for the influence of ENSO on the NAO to increase in
recent years. The prediction of the NAO when the
ENSO is taken into account (with a delay of 19 to 20
months) improves by a factor of 2–2.5; however, the
reliability of this inference is difficult to estimate.

Note that a qualitative evolution of climate vari-
ability and predictability may be associated with a
strengthening of the coupling between the NAO and
the ENSO and, in general, with a change of the oscil-
latory properties of the Earth’s climate system (ECS).
In [72, 73], for example, from global surface temper-
ature data over a hundred years from the late 19th cen-
tury to the late 20th century, it is shown that the 4- to
6-year cycles, which are typical of El Niño events and
to which the strongest variations in interannual vari-
ability are interrelated, have a tendency to decrease
during global warming. It is also shown that resonance
properties of the ECS (including parametric reso-
nance) may substantially change in the case of occur-
rence of a similar tendency during a global warming
of about 1 K.

The opposite influence of the NAO on ENSO is not
detected with confidence. There are only weak indica-
tions for such an effect with a delay of 30 to
50 months in the data of [32]. If this influence takes
place, the sum of delays of the ENSO relative to the
NAO and of the NAO relative to the ENSO is close to
the length of a typical 60-month cycle in ENSO
dynamics. This indicates that the presence of such a
cycle can be interpreted as a manifestation of the cor-
responding delayed feedback.

The interaction of the AO with ENSO is not found
with reliability. Only a negative value of the cross-cor-
relation function with a zero delay or a delay of
−1 month (ENSO leads AO) is found, but the infer-
ence is not confident.

Overall in this study, the delay in the influence of
the ENSO process on the NAO in recent decades is
detected with a high degree of reliability. The results
depend heavily on the choice of the NAO index and on
the technique of analysis.
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APPENDIX A

COUPLING ESTIMATORS
IN THE PHASE-DYNAMICS APPROACH

Formulas for coupling estimators  are derived
for a system of linear uncoupled oscillators with nor-
mal white noise [53] and are expressed through coef-
ficient estimates (3), where the functions Fi are trigo-
nometric polynomials

(A1)

and ai = {ai, m, n, bi, m, n}m, n, i = 1, 2, are vectors of their
coefficients. The coefficients of polynomials  and

 are estimated with the LSM (4), and estimates of
their variances are expressed as

(A2)

where  is the estimate of the variance of the noise εi

in difference equations (3)
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with Li being the number of coefficients of the polyno-

mial Fi. For the variances , the expression is anal-
ogous.

An expression for  in terms of estimates of the
coefficients and their variances is

(A4)

An expression for  is written analogously. The

estimate of the variance of  is written as

(A5)

where

(A6)

with a similar expression for  and calculation of

the estimate of the variance of .

Confidence intervals for coupling estimators are
expressed in terms of their variances. For example, a
95% confidence interval was found semiempirically
and is written as [  – 1.6 ,  + 1.8 ] for .
The conclusion about the influence of system 2 on
system 1 is made for  – 1.6  > 0. Likewise, the
influence of system 1 on system 2 is manifested if

 – 1.6  > 0. The probability of a random error in
either of these cases (i.e., the inference about connec-
tion of uncoupled systems) is 0.025 because only erro-
neously positive values of estimates are “dangerous.”
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