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The construction of mathematical models from experimental data is a topical
field in mathematical statistics and nonlinear dynamics. It has a long history and
still attracts increasing attention. We briefly discuss key problems in nonlinear
modeling for typical problem settings (“white,” “gray,” and “black boxes”) and
illustrate several contemporary approaches to their solution with simple exam-
ples. Finally, we describe a technique for the determination of weak directional
coupling between oscillatory systems from short time series based on empirical
modeling of their phase dynamics and present its applications to climatic and
neurophysiological data.

8.1 Introduction

Ubiquitous use of analog-to-digital converters and fast development of comput-
ing power have stimulated considerable interest in methods for modeling dis-
crete sequences of experimental data. The construction of mathematical models
from “the first principles” is not always possible. In practice, available informa-
tion about an object dynamics is often represented in the form of experimental
measurements of a scalar or vector quantity η, which is called “observable,” at
discrete time instants. Such a data set is called “a time series” and denoted by
{ηi}

N
i=1 ≡ {η1, η2, . . . , ηN} where ηi = η(ti), ti = i∆t, ∆t is a sampling interval, N

is a time series length. Modeling from experimental time series is known as “sys-
tem identification” in mathematical statistics and automatic control theory [1] or
“reconstruction of dynamical systems” in nonlinear dynamics [2].

Dynamical systems’ reconstruction has its roots in the problems of approx-
imation and statistical investigation of dependences. Initially, observed processes
were modeled as explicit functions of time which approximated experimental
dependences on the plane (t, η). The purpose of modeling was either predict-
ing the future evolution (via extrapolation) or smoothing the data. A significant
advance in empirical modeling of complex processes was achieved in the begin-
ning of the twentieth century when linear stochastic autoregressive models were
introduced [3]. It gave an origin to ARIMA models technology which became
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a predominant approach for half a century (1920s–1970s) and found numerous
applications, especially in automatic control [1, 4]. Subsequently, birth of the con-
cept of “deterministic chaos” and fast progress of computational power led to
the appearance of a different framework. Currently, empirical modeling is of-
ten performed with the use of nonlinear difference and differential equations, see
pioneering works [5–10]. Such empirical models are demanded in many fields
of science and practice such as physics, meteorology, seismology, economy, bio-
medicine, etc. [11].

In this chapter a brief overview of the problems and techniques for the con-
struction of dynamical models from noisy chaotic time series is given. It supple-
ments existing surveys [12–18] due to the use of a special systematization of the
variety of problem settings and methods. Also, we try to provide a clear explana-
tion of the key points with simple examples and illustrate some specific problems
with our own results. For the most part, we examine finite-dimensional models
in the form of difference equations (maps)

xn+1 = f(xn, c) (8.1)

or ordinary differential equations (ODEs)

dx/ dt = f(x, c) , (8.2)

where x is a D-dimensional state vector, f is a vector-valued function, c is a
P-dimensional parameter vector, n is the discrete time, and t is the continuous
time.

We expose the problems “from simple to complex,” as the amount of a priori
information about an object decreases. We start from a situation where only con-
crete values of model parameters are to be found (“transparent box” or “white
box,” Section 8.3). Then, we go via the case where a model structure is partly
known (“gray box,” Section 8.4) to the case of no a priori information (“black
box,” Section 8.5). Throughout the chapter, we refer to a unified scheme of the
empirical modeling process outlined in Section 8.2. Some applications of empiri-
cal modeling, in particular, to climatic and neurophysiological data are described
in Section 8.6.

8.2 Scheme of the Modeling Process

Despite an infinite number of specific situations, objects, and purposes of model-
ing, one can single out basic stages of the modeling process and present them us-
ing a scheme shown in Fig. 8.1 which generalizes similar schemes given in [1, 4].
It starts with the consideration of available a priori information about an object
under investigation, formulation of the goals of modeling, acquisition and pre-
liminary analysis of experimental data (stage 1). It ends with a desired applica-
tion of a constructed model. However, the modeling process typically involves
multiple reiterations and a step-by-step approach to a “good” model.
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1) Acquisition of time series
and its preliminary analysis

A priori
information

2) Model structure selection

type of
equations

function
form observables - variables

relationships

3) Model fitting
(parameter estimation)

4) Model validation

Application of the model

model is satisfactory unsatisfactory

Fig. 8.1: A general scheme of the process of modeling from time series.

At the second stage, a model structure is specified. One chooses the type
and number of model equations, the form of functions entering their right-hand
sides (components of the function f), and dynamical variables (components of the
vector x). As for the latter, one can use just the observable quantities as model
variables, but in general the relationship among the observables and dynamical
variables may be specified separately. Usually, it takes the form η = h(x), where
h is called “measurement function.” Moreover, the observable values may be
corrupted with noise. Stage 2 is often called “structural identification.”

At the third stage, the values of the model parameters c are to be determined.
One often speaks of parameter estimation or model fitting. In the theory of system
identification this is a stage of “parametric or nonparametric identification.” To
perform the estimation, one usually looks for a global extremum of an appro-
priate cost function. For example, the sum of squared deviations of a model time
realization from the observed data is often minimized.

Finally, the quality of a model is checked, as a rule, based on a specially
reserved test part of a time series. In respect of the final goal of modeling, one can
distinguish between two settings: “cognitive identification” (the goal is to obtain
an adequate model and to understand better the object behavior) and “practical
identification” (a practical goal is to be achieved with the aid of the model, e.g., a
forecast). Depending on the setting, one checks either model adequacy in respect
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of some properties (this step is also called model validation or verification) or
model efficiency in respect of the practical goal. If a model is found satisfactory
(adequate or efficient) then it may be exploited. Otherwise, one must return to
one of the previous stages of the scheme.

The background colors in (Fig. 8.1) change from black to white reflecting the
degree of a priori uncertainty. The worst situation is called “black box” problem:
information about an appropriate model structure is completely lacking and one
must start the modeling process from the very top of the scheme. The more infor-
mation about a possible model structure is available, the more probable is the suc-
cess of modeling: the “box” becomes “gray” and even “transparent” (“white”). In
any case, one cannot avoid the stage of parameter estimation. Therefore, we start
our consideration with the simplest situation when one knows everything about
an object, except for the concrete values of the model parameters. It corresponds
to white background color in Fig. 8.1.

8.3 “White Box” Problems

If a model structure is completely known, the problem reduces to the estimation
of model parameters c from the observed data. Such a setting is encountered
in different applications and, therefore, attracts considerable attention. There are
two basic tasks:

1. to obtain parameter estimates with a desired accuracy; this is especially impor-
tant if the parameters cannot be measured directly under the conditions of ex-
periment, i.e., the modeling procedure acts as “a measurement device” [19–24];

2. to obtain reasonable parameter estimates when time courses of some model
state variables xk can neither be measured directly nor calculated from the
available time series of the observable η, i.e., some model variables are “hid-
den” [25, 26].

Let us discuss both points in turn.

8.3.1 Parameter Estimates and Their Accuracy

As a basic test example, we consider parameter estimation in a nonlinear map
from its time series. The object is a quadratic map in a chaotic regime

xn+1 = f(xn, c) + ξn, ηn = xn + ζn , (8.3)

where f(xn, c) = 1 − cx2
n, the only parameter c is considered unknown, ξn, ζn

are random processes. The process ξn is called “dynamical noise” since it affects
the evolution of the system, while ζn is referred to as “measurement noise” since
it corrupts only the observations. In the absence of any noise, one has ηn =

xn so that all experimental data points on the plane (ηn, ηn+1) lie exactly on
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Fig. 8.2: Parameter estimation in the quadratic map (8.3); the true value is c = 1.85.
Open circles denote observed data. (a) Noise-free case, the dashed line is an orig-
inal parabola. (b) Uniformly distributed dynamical noise. The dashed line is a
model parabola obtained via minimization of the vertical distances. (c) Gaussian
measurement noise. The dashed line is a model parabola obtained via minimiza-
tion of the orthogonal distances. (d) Gaussian measurement noise. Rhombs indi-
cate a model time realization which is the closest one to the observed data in the
least-squares sense.

the quadratic parabola (Fig. 8.2(a)). The value of c can be determined from an
algebraic equation whose solution takes the form ĉ = (1−ηn+1)/η2

n (throughout
the paper, a “hat” denotes quantities calculated from a time series). It is sufficient
to use any pair of successive observed values with ηn �= 0. As a result, the model
is practically ideal.

In the presence of any noise, one must speak of statistical estimates instead
of precise calculation of the parameter value. There are various estimation tech-
niques [27]. Below, we describe several of them, which are most widespread.

Maximum Likelihood Approach

The maximum likelihood (ML) approach is the most efficient under
quite general conditions [27]. It is most often announced as a method of

choice. However, additional assumptions about the properties of an object and
noise are typically accepted in practice reducing the ML approach to a version of
the least-squares (LS) technique.

Let us start with the simplest situation when only dynamical noise is present
in the system, Eq. (8.3). Let ξn be a sequence of independent identically dis-
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tributed random values whose one-dimensional probability density function is
pξ(z). Then, an ML estimate is such a value of c which maximizes logarithmic
likelihood function

ln L(c) ≡ ln p(η1, . . . , ηN|c) ≈
N−1∑
n=1

ln pξ

(
ηn+1 − f(ηn, c)

)
, (8.4)

which is, roughly speaking, a logarithm of a conditional probability to observe
the available time series {η1, . . . , ηN} at a given c. To apply the ML method, one
needs to know the distribution law pξ(z) a priori. This is rarely the case, therefore,
Gaussian distribution is often assumed. It is not always the best idea but it is
reasonable both from theoretical (central limit theorem) and practical (successful
results) points of view.

Dynamical Noise: Ordinary Least-Squares Technique

For Gaussian noise, the ML estimation, Eq. (8.4), reduces to the “ordinary” LS (OLS)
technique. The LS method is the most popular estimation technique due to the
relative simplicity of implementation, bulk of available theoretical knowledge
about the properties of the LS estimates, and many satisfactory practical results.
The OLS technique consists in the minimization of the sum of squared deviations

S(c) =

N−1∑
n=1

(ηn+1 − f
(
ηn, c)

)2 → min . (8.5)

Geometrically, it means that a curve of a specified functional form is drawn on the
plane (ηn, ηn+1) in such a way that the sum of squared vertical distances from ex-
perimental data points to this curve is minimized (Fig. 8.2(b)). The OLS technique
often gives acceptable accuracy of the estimates even if noise is not Gaussian,
which is justified by the robust estimation theory, see e.g., [28]. Therefore, it is
valuable on its own, apart from being a particular case of the ML approach.

A technical problem in the application of the ML and the OLS estimation
arises if a “relief” of the cost function to be optimized exhibits multiple local
extrema. It may be the case for the problem, Eq. (8.5), if f is nonlinear in pa-
rameter c. Then, the optimization problem is solved with the aid of iterative
techniques which require a starting guess for the estimated parameter. Whether
a global extremum will be found depends typically on the closeness of the start-
ing guess to the true value of the parameter. The function f is linear in c for the
example, Eq. (8.3), therefore the cost function S is quadratic in c and has the only
minimum which is easily found via the solution of a linear algebraic equation.
Such a simplicity of the LS problem solution is a reason for the widespread use
of the models which are linear in parameters, the so-called pseudo-linear models,
see also Section 8.5.

The error in the estimate ĉ decreases with the time series length. Namely,
for the dynamical noise case, both ML and OLS techniques give asymptotically
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unbiased and consistent estimates, i.e., error in the estimate vanishes as N → ∞.
Moreover, it can be shown that the variance of the estimates decreases as N−1 [27,
28].

Measurement Noise: Monotonically the Total Least-Squares
Technique and Others

If only measurement noise is present, the estimation problem becomes more dif-
ficult. The OLS technique, Eq. (8.5), provides biased estimates for arbitrary long
time series, since it is developed under the assumption of the dynamical noise.
However, it is simple in implementation and still may be used sometimes to
get a crude approximation. Roughly speaking, if the measurement noise level is
not high, namely up to 1%, then the OLS estimates are reasonably good [20].
Throughout the chapter, we define the noise level as the ratio of the noise root-
mean-squared value to the signal root-mean-squared value.

At a higher noise level, to enhance the accuracy of the estimates is partly pos-
sible with the aid of the total LS (TLS) method [19] where the sum of squared
orthogonal distances is minimized, see Fig. 8.2(c). But this is only a partial solution
since the bias in the estimates is not completely eliminated. A more radical ap-
proach is to write the “honest” likelihood function taking into account the effect
of measurement noise. To accomplish it, one must include an initial condition of
a model map into the set of estimated quantities. Thus, for Gaussian measure-
ment noise the problem reduces to a version of the LS technique where a model
time realization is made as close to the observed time series as possible (Fig. 8.2(d))

S(c, x1) =

N−1∑
n=0

(
ηn+1 − f(n)(x1, c)

)2 → min , (8.6)

where f(n) stands for the nth iteration of the map xn+1 = f(xn, c), f(0)(x, c) ≡ x.
As an orbit of a chaotic system is highly sensitive to initial conditions and

parameters, the variance of such an estimate decreases very quickly with time
series length N, even exponentially for specific examples [22, 23]. But it holds true
only if a global minimum of the cost function, Eq. (8.6), is guaranteed to be found.
However, the graph of the cost function S becomes so “jagged” for a large N

that it appears practically impossible to find its global minimum (see Fig. 8.3(a))
because it would require unrealistically lucky starting guesses for c and x1. It
is also difficult to speak of the asymptotic properties of such estimates since
the cost function, Eq. (8.6), is no longer smooth in the limit N → ∞. Therefore,
modifications of the direct ML approach have been developed for this problem
setting [20, 21, 23, 24].

In particular, it was suggested to divide an original time series into segments
of moderate length L, minimize Eq. (8.6) for each segment separately, and aver-
age the segment estimates (a piecewise approach). This is a practically reasonable
technique but the resulting estimate may remain asymptotically biased. Its vari-



200 8 Nonlinear Dynamical Models from Chaotic Time Series: Methods and Applications

Fig. 8.3: Cost functions for the example of the quadratic map (8.3) at N = 20 and
true values c = 1.85, x1 = 0.3. (a) for the forward iteration approach, Eq. (8.6),
(b) for the backward iterations, Eq. (8.7). Trial values of x1 and xN are kept equal
to their true values for illustration purposes.

ance decreases again only as N−1. Several tricks to enhance the accuracy of the
estimates are described below (Section 8.3.2). Here, we would like to note a spe-
cific version of the LS technique suggested in [24] for one-dimensional maps. It
relies upon the property that the only Lyapunov exponent of a one-dimensional
map becomes negative under the time reversal so that a “reverse-time” orbit is
no longer highly sensitive to parameters and an “initial” condition. Therefore,
one minimizes

S(c, xN) =

N−1∑
n=0

(
ηN−n − f(−n)(xN, c)

)2 → min , (8.7)

where f(−n) is the nth backward iteration of the map. The graph of this cost
function looks rather smooth and gradually changing (as in Fig. 8.3(b)) even for
arbitrary long time series so that its global minimum can be readily found. At low
and moderate noise levels (up to 5–15 %), the error in the estimates obtained via
Eq. (8.7) turns out less than for the piecewise approach. Moreover, for sufficiently
low noise levels the backward iteration technique gives asymptotically unbiased
estimates whose variance decreases generically as N−2. The latter property is
determined by close returns of the map orbit to an arbitrary small vicinity of the
extrema of the function f [24].

8.3.2 Hidden Variables

If the measurement noise level is considerable, the state variable x can be treated
as “hidden” since its true values are not known. But even “more hidden” are
those variables whose values can neither be measured directly nor calculated
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from the observed time series. The latter case is encountered in practice very
often. To estimate model parameters is much more problematic in such a situa-
tion than for the settings considered in Section 8.3.1. However, if one succeeds,
there appears a possibility of getting time courses of the hidden variables as a
by-product of the estimation procedure. Hence, a modeling procedure acts as a
measurement device in respect of dynamical variables.

Let us briefly mention available techniques. To a significant extent, all of them
rely on the idea, Eq. (8.6), i.e., one looks for initial conditions and parameters of a
model which provide the least deviation of a model time realization from the ob-
served data. The naive solution of the problem, Eq. (8.6), directly is called “initial
value approach” [18]. As we already mentioned, such a method is inapplicable
already for moderately long chaotic time series, while simple division of the time
series into segments decreases the accuracy of the estimates and the backward
iterations are not appropriate for multidimensional dissipative systems.

To overcome the difficulties and exploit longer time series (than allowed
by the initial value approach) is partly possible with the aid of Bock’s algo-
rithm [18, 25]. It is often called “multiple shooting approach” since it replaces
the Cauchy problem with a set of boundary-value problems to get a model orbit.
Namely, the idea is to divide the time series into shorter segments of the length L

and consider “initial conditions” of the model on each of them as additional
quantities to be estimated. Optimization problems, Eq. (8.6), are solved for each
segment while keeping model parameter values c the same for all segments and im-
posing constraints of “sewing the segments together” to finally obtain a model
orbit which is continuous over the entire observation period. Thus, the number of
free parameters (“independent” estimated quantities) remain the same as in the
initial value approach but intermediate trial values for all estimated quantities
may pass through a domain which corresponds to a discontinuous model orbit
and is, therefore, forbidden for the initial value approach. The latter property
provides higher flexibility of Bock’s algorithm [25].

The multiple shooting approach softens the demands to the choice of starting
guesses for the estimated quantities. However, for a longer time series it can also
become inefficient since the requirement of closeness of a chaotic model orbit
to the observed time series over the entire observation interval can appear very
strict. One can overcome some difficulties if final discontinuity of a model orbit
at some fixed time instants within the observation period is allowed. It increases
the number of free parameters and, hence, leads to the growth of the variance of
their estimates, but simultaneously the probability of finding a global minimum
of the cost function increases. Such a modification allows the use of arbitrary long
chaotic time series. The undesirable “side effect” is that a model with inadequate
structure can sometimes be regarded “good” due to its ability to reproduce only
short segments of a time series. Therefore, one must avoid the use of too short
continuity segments [18].

We note that there exist and are currently developed several methods for
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parameters and hidden variables’ estimation which are suitable even for the case
of simultaneous presence of dynamical and measurement noise. They are based
on the Bayesian approach [29] and Kalman filtering [18, 30]. But that broad field
of research is beyond the scope of this chapter.

Model validation for the “white box” problems can be performed via one of
the two basic lines: (1) analysis of residual model errors, i.e., checking the agree-
ment among their statistical properties and expected theoretical properties of the
noise (typically, Gaussianity and temporal uncorrelatedness) [4]; (2) comparison
of dynamical, geometrical, and topological characteristics of a model attractor
with the corresponding properties of an object [2].

8.3.3 What Do We Get from Successful and Unsuccessful Modeling
Attempts?

Success of the methods described above provides both estimates of model pa-
rameters and time courses of hidden variables. It promises exciting applications
such as validation of the “physical” ideas underlying a specified model structure,
“indirect measurement” of quantities inaccessible for a device of an experimen-
talist, and restoration of the lost or distorted segments of an observed time real-
ization. However, unsuccessful modeling attempts also give useful information.
Let us elaborate.

In practice, one never encounters a purely “white box” problem. A researcher
may only have faith that a trial model structure is adequate to an object. There-
fore, the result of modeling may well appear negative, i.e., reveal an impossibility
to get an adequate model with the specified structure. In such a case, a researcher
has to claim falseness of his/her ideas about underlying mechanisms of the in-
vestigated process and return to the stage of structural identification.

If there are several alternative model structures, then the results of time se-
ries modeling may reveal the most adequate among them. In other words, a
modeling procedure provides opportunity to falsify or verify (or, possibly, make
more accurate) substantial notions about the dynamics of an object. An impres-
sive example of such a modeling process and substantial conclusions about the
mechanism underlying a biochemical signaling process in cells is given in [31].
In a similar way, Horbelt and co-authors validated concepts about a gas laser be-
havior and reconstructed interdependences among transition rates and pumping
current which are difficult to measure directly [32]. However, despite these and
some other successful practical attempts, an estimation problem can often appear
technically unsolvable: the more hidden variables and unknown parameters in-
volved, the weaker are the chances for the success and the lower is the accuracy
of the obtained estimates.
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8.4 “Gray Box” Problems

From our point of view, the most promising line of research in the field of dy-
namical systems’ reconstruction is related to the “gray box” problems when one
knows a lot about an appropriate model structure except for some components of
the function f in Eqs. (8.1) or (8.2). These components are, in general, nonlinear
functions which can often be meaningfully interpreted as equivalent characteristics
of certain elements of an object under investigation.

One has to choose some approximating functions for the characteristics. In
this section we focus on the approximation of univariate dependences. Such a
case is much simpler than multivariate approximation addressed in Section (8.5).
Despite models deduced from physical considerations most often take the form
of differential equations, let us consider a model map as the first illustration for
the sake of clarity.

8.4.1 Approximation and “Overlearning” Problem

Let the object be a one-dimensional map xn+1 = F(xn). We pretend that the form
of the function F is unknown. Let the observable coincide with the dynamical
variable x: ηn = xn. One has to build a one-dimensional model map xn+1 =

f(xn, c). The problem reduces to the selection of a model function f(x, c) and its
parameters c so that it could approximate F to the best possible accuracy. It is
the matter of agreement to attribute this problem setting to the “gray box” class.
We do so since the knowledge that one-dimensional model is appropriate can be
considered as an important a priori information.

Usually, the OLS technique, Eq. (8.5), is used to calculate parameter values.
However, the interpretation of the results differs. Now, one speaks of approxi-
mation and its mean-squared error rather than of the estimates and noise. Typi-
cally, an individual model parameter is not physically meaningful, only the entire
model function f(x, ĉ) can make sense as a nonlinear characteristic. A key ques-
tion is how to choose the form of the model function f.

One may choose it intuitively via looking at the experimental data points
on the plane (ηn, ηn+1). However, this way is not always possible. Thus, it is
practically excluded if an unknown univariate function is only a component of
a multidimensional model. A more general and widespread approach is to use
a functional basis for approximation. For example, the celebrated Weierstrass
theorems state that any continuous function over a finite interval can be uni-
formly approximated to arbitrary high accuracy with an algebraic polynomial (or
a trigonometric polynomial under an additional condition). An algebraic poly-
nomial f(x, c) = c1 + c2x + · · ·+ cK+1xK is one of the most efficient constructions
for approximation of smooth univariate dependences. Therefore, we use it below
for illustration.

Theoretically, any smooth function can be accurately approximated with a
polynomial of sufficiently high order K. What value of the order must be chosen
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Fig. 8.4: Approximation based on the noisy quadratic map data. (a) Observed data
points are shown with circles. Graphs of model polynomials of different orders K

are presented. The dashed line for K = 2, the thin line for K = 1, and the thick
line corresponds to K = 15. (b) Different cost functions (Eq. (8.8)) versus model
size: Circles for the Akaike criterion and triangles for the Schwartz criterion. Both
cost functions indicate an optimal model size P = 3 corresponding to the true
polynomial order K = 2.

in practice given a time series of the finite length N, i.e., N − 1 data points on
the plane (ηn, ηn+1)? It is a bad idea to specify a very small polynomial order
since a model function could not reasonably reproduce an observed nonlinearity
(Fig. 8.4(a), the thin line). It is a bad idea to choose very big order as well: e.g., at
K = N − 2 the graph of the model polynomial on the plane (ηn, ηn+1) can pass
through all the experimental data points exactly, but typically it would extremely
badly predict additional (test) observations. In the latter case, the model is said to
be overlearned or overtrained [28]. It does not generalize, rather it just reproduces
the observed N − 1 data points (Fig. 8.4(a), the thick line).

In practice, one often tries different polynomial orders, starting from a very
small one and successively increasing it. One stops when a model gives more
or less satisfactory description of an object dynamics and/or the results of ap-
proximation saturate. This is a subjective criterion, but it is the only one which
is generally applicable, since any “automatic” approach to the order selection is
based on a specific well-formalized practical requirement and may not recognize
the most adequate model. Such automatic criteria were developed, e.g., in the
framework of the information theory. They are obtained from different consider-
ations, but formally reduce to the minimization of a cost function

Φ(P) = (model error) + (model size) → min . (8.8)

Here, the model error rises monotonically with the mean-squared approximation
error ε2 = S/(N − 1). The model size is an increasing function of the number of
model parameters P. Thus, the first term in the sum, Eq. (8.8), may be very large
for small polynomial orders, while the second term dominates for big orders.
One often observes a minimum of the cost function, Eq. (8.8), for an intermediate
K. The minimum corresponds to an optimal model size. The cost function Φ(P) =

(N/2) ln ε2(ĉ) + P is called the Akaike criterion, Φ(P) = (N/2) ln ε2(ĉ) + P ln N/2
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is the Schwartz criterion, and Φ(P) = ln ε2(ĉ) + P is a model entropy [5]. More
“cumbersome” is a formula for a cost function named description length [33]. De-
scription length minimization is currently the most widely used approach to the
model size selection, e.g., [34]. It is based on the ideas of optimal information
compression, the Schwartz criterion is an asymptotic expression for the descrip-
tion length. In Fig. 8.4(b) we present an example of a polynomial order selection
for approximation of quadratic function from a short time series of the quadratic
map, Eq. (8.3), with dynamical noise.

If an approximating function is defined in a closed form for the entire range
of the argument (e.g., an algebraic polynomial) then the approximation and
the model are called global [9]. An alternative approach is a local (piecewise)
approximation where a model function is defined through a simple formula
whose parameters’ values differ for different small domains within the range
of the argument [7, 9]. The most popular examples of the latter approach are
piecewise-constant functions, piecewise-linear functions, and cubic splines. Local
models are superior for the description of “complicated” nonlinear dependences
(strongly fluctuating dependences, dependences with knees and discontinuities,
etc.), but they are less robust to noise influence and require larger amount of data
than global models of moderate size.

8.4.2 Model Structure Selection

As a rule, one needs to supplement a procedure for model size selection with
a technique to search for an optimal model of a specified size. Thus, according
to the technique described above the polynomial order is increased starting from
zero and the procedure is stopped at a certain value of K, i.e., the terms are added
to a model structure in a predefined order. Therefore, a final model inevitably
comprises all power of x up to K, inclusively. However, some of the low-order
terms might be “superfluous.” Hence, it would be much better to exclude them
from the model. Different approaches have been suggested to realize a more
flexible way of the model structure selection. They are based either on successive
selective complication of a model [34] or its selective simplification starting from
the biggest size [16, 35–37], see also [38]. Let us describe briefly a version of the
latter strategy [36].

One of the efficient principles to recognize “superfluous” model terms is to
look at the behavior of the corresponding coefficient estimates when reconstruc-
tion is performed from different segments of a time series, i.e., from the sets of
data points occupying different domains in the model state space. Typically, it
is realized in the most efficient way of a time series corresponding to a tran-
sient process is used. The idea is that the parameter values of an adequate global
model of a dynamically stationary system must not depend on the reconstruction
segment. However, the estimates of parameters corresponding to superfluous
terms may exhibit significant changes when a reconstruction segment is moved
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along a time series. A procedure for model structure selection can be based on
successive removal of the terms whose coefficients are the least stable being es-
timated from different segments. In [36] the degree of instability of a coefficient
is defined as the ratio of its standard deviation to its empirical mean. Removal
is stopped, e.g., when model ability to reproduce an object behavior in a wide
domain of state space starts to worsen.

8.4.3 Reconstruction of Regularly Driven Systems

In many cases uncertainty in a model structure can be reduced if a priori knowl-
edge about object properties is taken into account. We illustrate it with an exam-
ple of systems under regular (periodic or quasiperiodic) driving. Indication to
the presence of external driving can be often seen in the power spectrum which
typically exhibits pronounced discrete peaks for regularly driven systems, even
though it is neither a necessary nor a sufficient sign. Having the hypothesis about
the presence of external regular driving, one can incorporate functions explicitly
depending on time into the model structure to describe the assumed driving.
For the first time, it was done for nonlinear two-dimensional oscillators under
sinusoidal driving in [39]. In the same work, the successful reconstruction of
nonlinear dynamical characteristics of a capacitor with ferroelectric was demon-
strated.

In a more general setting, the reconstruction of regularly driven systems was
considered in [40, 41]. For harmonical additive driving, it is reasonable to con-
struct a model in the form

dD
x/ dtD = f(x, dx/ dt, . . . , dD−1

x/ dtD−1, c) + a cos ωt + b sin ωt , (8.9)

where f is an algebraic polynomial and the number of variables D is less than for
a corresponding standard model by 2 (see Section 8.5 about the standard struc-
ture).

In the case of arbitrary additive regular driving (either complex periodic or
quasiperiodic one), it is convenient to use the model form

dD
x/ dtD = f(x, dx/ dt, . . . , dD−1

x/ dtD−1, c) + g(t, c) , (8.10)

where the function g describes driving and also depends on unknown parame-
ters. It may take the form of a sum of trigonometric polynomials [41]

g(t, c) =

k∑
i=1

Ki∑
j=1

ci,j cos(jωit + ϕi,j) . (8.11)

We note that adequate models with trigonometric polynomials can be obtained
even for a very large number of involved harmonics (Ki of the order of hundreds),
while the use of a high-order algebraic polynomial K leads typically to model
orbits diverging to infinity.
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Fig. 8.5: The reconstruction of the driven Toda oscillator d2
x/ dt2 = −0.45 dx/ dt+

(5+4 cos t)(e−x −1)+7 sin t. (a) an attractor of the original system; (b) an attractor
of a model of the type, Eq. (8.9), with D = 2, K = 9, and sinusoidal dependence
of time introduced into all polynomial coefficients, (c) a diverging phase orbit of a
standard model, Eqs. (8.13) and (8.14) with D = 4, K = 6.

Besides, the explicit time dependence can be introduced into all the coeffi-
cients of the algebraic polynomial f to allow the description of not just additive
driving [40], Fig. 8.5. Efficiency of all these approaches was shown in numerical
experiments with the reconstruction of equations of exemplary oscillators from
their noise-corrupted chaotic time series for pulse periodic, periodic with sub-
harmonics, and quasiperiodic driving.

8.5 “Black Box” Problems

If nothing is known about an appropriate model structure, one must appeal to
universal constructions. They usually involve huge number of parameters that
do not allow the use of majority of the estimation techniques described in Sec-
tion 8.3. In particular, the hidden variables problem is unsolvable in such a case.
Therefore, time series of all dynamical variables must be either measured directly
or calculated from the observed data. The latter is called “reconstruction of state
vectors.” Then, one constructs a multidimensional model of the form, Eq. (8.1) or
Eq. (8.2), where the multivariate function f takes one of the universal forms com-
prising many parameters. In practice, to estimate these parameters is reasonable
with the aid of the OLS technique. To simplify the problem further, it is desirable
to choose functions f which are linear in parameters c (pseudo-linear models).
Considerable efforts of many researchers were devoted to the development of
such techniques.

8.5.1 Universal Structures of Model Equations

A theoretical background for different approaches to the reconstruction of model
state variables from a scalar observable time realization is the celebrated Takens
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theorem [42]. One of them states that for almost any deterministic dynamical
system of the form, Eq. (8.1) or (8.2), with a sufficiently smooth function on
the right-hand side, its dynamics on an m-dimensional smooth manifold can
be topologically equivalently described in terms of vectors constructed as D-
plets of successive values of almost any observable η = h(x) separated with
an almost arbitrary fixed time interval τ. The equivalent description is (almost)
guaranteed if dimensionality of these vectors is high enough, namely, D > 2m.
One says that the original manifold is embedded into the new state space which
is often called “embedding space.” Rigorous formulations, detailed discussions,
and generalizations of the theorems can be found in [43–45].

Thus, the vectors (ηn, ηn+τ, . . . , ηn+(D−1)τ), where τ is a time delay, can serve
as state vectors. This approach is very popular since it does not involve any trans-
formation of the observed time series. It is usually employed for the construction
of model maps in the form

ηn = f(ηn−τ, . . . , ηn−Dτ, c) . (8.12)

Theoretically, the value of τ may be almost arbitrary. However, in practice it is
undesirable to use both very small delays (to avoid strong correlations among
the state vector components) and very big ones (to avoid complication of the
structure of the reconstructed attractor). Therefore, an optimal choice of τ is pos-
sible. There are several recipes such as to take the first zero of the autocorrelation
function of the time series [46], the first minimum of the mutual information
function [47], etc. [48]. It was also suggested to use a nonuniform embedding
where time intervals separating successive components of a state vector are not
the same [49, 50]. Finally, a variable embedding is possible where the set of time
delays and even dimensionality of a state vector depends on the location in state
space [50].

Since the value of m is not known a priori, it is not clear what value of model
dimension to specify. There are several approaches which can give a hint: false
nearest neighbors technique [51], correlation dimension estimation [52], or prin-
cipal component analysis [53]. However, in practice one usually tries different
model dimensions, starting from a very small value and successively increasing
it until a satisfactory model is obtained or the results saturate. Therefore, the
choice of the model dimension and even of the time delays may become an inte-
gral part of a monolithic modeling process, rather than a separate first stage.

Different approaches have been suggested to choose the form of the function
f in Eq. (8.12). Algebraic polynomials perform extremely badly already for the
approximation of bivariate functions [16, 40], while for the “black box” problem
one must often exploit the value of D in the range 5 ÷ 10. Therefore, algebraicAuthor: Do you mean

5–10 instead of 5÷10? polynomials are rarely used in practice. They represent an example of weak ap-
proximation technique [34] since their number of parameters and errors rise very
quickly with model dimension D. Weak approximation techniques also involve
trigonometric polynomials and wavelets.
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Much attention has been paid to the search for strong approximation tech-
niques which behave almost equally well for small and rather big model di-
mensions. They involve, in particular, local methods [7, 9, 10, 54]. Strong global
approximation can be achieved using radial, cylindrical, and elliptic basis func-
tions [34, 50, 55], and artificial neural networks [8]. See also [56] for examples
of different approaches. We do not discuss them in details but note that these
constructions involve many parameters and the problem of model structure se-
lection (Section 8.4.2) is especially important here.

Another Takens theorem considers continuous-time dynamical systems, Eq. (8.2),
with much smoother functions on their right-hand side. It states that one can per-
form embedding into the space of successive derivatives of the observable, i.e.,
state vectors can be constructed as η, dη/ dt, . . . , dD−1

η/ dtD−1. This approach
does not involve a parameter τ which is an advantage. However, it is more diffi-
cult to realize in practice since even weak measurement noise is a serious obsta-
cle in the calculation of high-order derivatives. Sometimes, this problem can be
solved with the aid of filtering, e.g., Savitsky–Golay filter, but for a sufficiently
strong noise it becomes unsolvable. In practice, it is realistic to use the values of
D = 2÷ 3, ; rare successes are reported for D = 5 [16]. In combination with these Author: Do you mean

2–3 instead of 2 ÷ 3?state vectors, one constructs usually a model ODE in the form

dD
η/ dtD = f(η, dη/ dt, . . . , dD−1

η/ dtD−1, c) . (8.13)

The situation with the choice of approximating function is the same as discussed
above for the model, Eq. (8.12). However, when using the successive derivatives,
there are more chances to observe a gradually varying experimental dependence,
Eq. (8.13). Therefore, additional reasons to use algebraic polynomials appear. So,
in Eq. (8.13) f often takes the form

f(x1, x2, . . . , xD, c) =

K∑
l1,l2,...,lD=0

cl1,l2,...,lD

D∏
j=1

x
lj

j ,

D∑
j=1

lj � K . (8.14)

The structure, Eq. (8.13), with algebraic polynomial, Eq. (8.14), or rational func-
tion on the right-hand side is even called standard [57] since, theoretically, any
smooth dynamical system can be transformed into such a form for a sufficiently
large D and K. The values of coefficients in both Eq. (8.12) and Eq. (8.13) are
estimated with the aid of the OLS technique. This is valid for a sufficiently low
measurement noise level.

Successful results of constructing a model in the form (8.12) can be found,
e.g., in [50, 54, 56]. Examples of successful modeling with the aid of Eq. (8.13),
we are aware of, are even more rare [16]. As a rule, the structure, Eqs. (8.13) and
(8.14), leads to very cumbersome equations tending to exhibit orbits diverging
to infinity. It is especially inefficient in the case of multidimensional models. We
stress that all the approaches described in this section are rigorously justified
only in the case of absence of both measurement and dynamical noise. Their
generalizations to the noisy cases are quite problematic [58].
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8.5.2 Choice of Dynamical Variables

Let us pay more attention to the important problem of the choice of dynami-
cal (state) variables, i.e., components of the state vectors x. There are very many
techniques to obtain time series of state variables from an observable η. Hav-
ing only a scalar observable, one can use either successive differentiation or time
delay embedding (Section 8.5.1). Besides, there are techniques of weighted sum-
mation [59] and integration [60] appropriate for strongly nonuniform signals.
Further, one can restore a phase of the signal as an additional variable using
the analytic signal approach implemented either via the Hilbert transform or the
complex wavelet transform [61]. It is also possible to use combinations of all the
techniques, e.g., to obtain several variables with the time-delay embedding, sev-
eral others with integration, and the rest with differentiation [59]. If one observes
more than one quantity characterizing a process under investigation, then it is
possible to obtain dynamical variables from a time realization of each observ-
able using any combination of the mentioned techniques so that the number of
variants rises extremely quickly, see also [62]. It may appear possible that some
of the observables should better be ignored in modeling. For example, it may
well happen that a better model can be constructed with successive derivatives
of the only observable if it turns out easy to find an appropriate approximating
function f in Eq. (8.13) for such a choice.

After the reconstruction of state vectors {x(ti)}, an experimental time series
of “left-hand sides” of model equations {y(ti)} is obtained from the time series
{x(ti)} via the numerical differentiation of {x(ti)} for model ODEs, Eq. (8.2), or
the time shift of {x(ti)} for model maps, Eq. (8.1). “Unlucky” choice of dynamical
variables can make the approximation of the model dependence y(x) with a
smooth function more difficult, or even impossible if the relationship among y

and x appears nonunique.
Taking into account the importance of the stage of the state variables selec-

tion [63, 64] and multiple alternatives available, an actual problem is to look
for the best (or, at least, for a reasonable) set of state variables. It is, of course,
possible just to try different variants and look for the best model in each case.
However, this procedure would be too time consuming. Moreover, it may remain
unclear why a good model is not achieved for a given set of dynamical variables:
Whether it is due to inappropriate model function or due to inappropriate state
variables.

A procedure suggested in [65] allows us to test different sets of dynamical
variables and select variants which are more promising for the global modeling
purposes. It is based on the ideas of [66, 67] and consists in a nonparametric test
of an approximated dependence y(x) for uniqueness and continuity. A domain V

comprising the set of vectors {x(ti)} is divided into “hypercubic” boxes of the size
δ (Fig. 8.6(a)). Then, all the boxes s1, s2, . . . , sM comprising at least two vectors
are selected. The difference between maximal and minimal values of the “left-
hand side” variable y within a box sk is called a local variation εk. Maximal local
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Fig. 8.6: (a) An illustration for the technique of testing a dependence y(x) for
uniqueness and continuity, D = 2. (b) The plots εmax(δ) for different sets of dy-
namical variables. The thick line corresponds to the best variant, the dashed line
to the worst one (nonuniqueness).

variation εmax = max{ε1, ε2, . . . , εM} and the plot εmax(δ) are used as the main
characteristics of the investigated dependence y(x). Suitability of the considered
quantities x and y for global modeling is estimated as follows. One must choose
the variables so that the plot εmax(δ) tend to the origin gradually, without “knees”
(Fig. 8.6(b), the lowest curve) for each of the approximated dependences y(x).

8.6 Applications of Empirical Models

Probably, the most famous application is a forecast of the future evolution based
on the available time series. This intriguing task is considered, e.g., in [4, 7, 9–
11, 54–56]. Weather and climate forecasts, prediction of earthquakes, currency
exchange rates and stock prices are often in the center of attention. Up to now,
empirical models of the type described here are rarely useful to predict such
complex processes due to “the curse of dimensionality” (difficulties in modeling
quickly grow with dimensionality of the investigated dynamics), deficit of

experimental data, and noise. But chances for a successful forecast are higher
in simpler situations.

An adequate empirical model may provide a deeper insight into mechanisms
underlying the process under investigation [5, 16]. A positive result of model
construction (high model quality) may validate physical ideas underlying the
model structure. Such a conclusion is of an all-sufficient basic value and may
inspire later practical applications.

Below, we consider other applications of empirical models. Namely, we focus
on the problem of determination of a directional coupling between oscillators
from short time series (Section 8.6.1) and present its applications to climatic sig-
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nals (Section 8.6.2) and electroencephalograms (Section 8.6.3). Finally, we men-
tion different practical applications and give references for further reading (Sec-
tion 8.6.4).

8.6.1 Method to Reveal Weak Directional Coupling
Between Oscillatory Systems from Short Time Series

One can extract different useful information from the estimates of model parame-
ters. Thus, a sensitive approach to the determination of directionality of coupling
between two oscillatory systems solely from their bivariate time series, a problem
which is important in many practical and scientific fields, was suggested recently
in [68]. It is based on the construction of model equations for the phase dynamics of
the systems. Its main idea is to estimate how strong future evolution of the first
system’s phase depends on the second system’s phase and vice versa. A detailed
discussion can be found in the chapter written by M. Rosenblum (Chap. 7 in this
volume). We describe only several points necessary to explain our modification
of the method for the case of short time series and its applications.

First, one restores time series of the oscillations phases {φ1(t1), φ1(t2), . . . ,
φ1(tN)} and {φ2(t1), φ2(t2), . . . , φ2(tN)} from the original signals {x1(t1), x1(t2),
. . . , x1(tN)} and {x2(t1), x2(t2), . . . , x2(tN)}. We do it below with the analytic
signal approach implemented via complex wavelet transform [61]. Given a signal
X(t), one defines signal W(t) as

W(t) =
1√
s

∫∞
−∞ X(t′)ψ∗((t − t′)/s

)
dt′ , (8.15)

where ψ(η) = π−1/4 exp(−jω0η) exp(−η2/2) is Morlet wavelet, s is a fixed time
scale. For ω0 = 6 used below, ReW(t) can be regarded as X(t) band-pass filtered
around the frequency f ≈ 1/s with the relative bandwidth of 1/8. The phase is
defined as φ(t) = arg W(t). It is the angle of rotation of the radius vector on the
plane (ReW, ImW) which increases by 2π after each complete evolution. To avoid
edge effects while estimating Eq. (8.15) from a time series, we ignore segments of
the length 1.4 s at each edge after the phase calculation.

Second, one constructs a global model relating phase increments over a time
interval τ to the phases. Similarly to [37, 68], we use the form

φ1(t + τ) − φ1(t) = F1

(
φ1(t), φ2(t + ∆1)

)
+ ξ1(t) ,

φ2(t + τ) − φ2(t) = F2

(
φ2(t), φ1(t + ∆2)

)
+ ξ2(t) ,

(8.16)

where ξ1,2 are zero-mean random processes, ∆1,2 stand for possible time delays
in coupling, F1 is a trigonometric polynomial

F1 =
∑
m,n

[am,n cos(mφ1 + nφ2) + bm,n sin(mφ1 + nφ2)] , (8.17)
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F2 is defined analogously. The strength of the influence of system 2 on system 1
(2 → 1) is quantified as

c2
1 =

1

2π2

∫2π

0

∫2π

0

(∂F1/∂φ2)
2 dφ1 dφ2

=
∑
m,n

n2
(
a2

m,n + b2
m,n

)
.

(8.18)

The influence 1 → 2 is quantified “symmetrically” (c2
2). We use the third-order

polynomials for F1,2 and set τ equal to a basic oscillation period.
Given a time series, one estimates the coefficients am,n, bm,n via the OLS

technique. Then, one can get the estimate of ĉ2
1 by replacing the true values of

am,n, bm,n in Eq. (8.18) with their estimates. A reliable detection of the weak
directional coupling can only be achieved in nonsynchronous regimes. The latter
can be diagnosed if the mean phase coherence

ρ(∆) =

√
〈cos

(
φ1(t) − φ2(t + ∆)

)
〉2t + 〈sin

(
φ1(t) − φ2(t + ∆)

)
〉2t (8.19)

[69] is much less than 1.
The estimators ĉ1 and ĉ2 are quite precise only for long signals (about 1000 ba-

sic periods for moderate noise levels). However, in practice one must often deal
with much shorter signals of about several dozens of basic periods. Thus, to an-
alyze a nonstationary time series (e.g., in physiology) one must divide it into
relatively short segments and estimate coupling characteristics from each seg-
ment separately. An attempt to apply the technique without modifications to such
short series leads to biased estimates. Unbiased estimators γ1 and γ2 have been
proposed in [70] instead of ĉ2

1 and ĉ2
2, respectively, and an index δ = γ2 − γ1 is

used to characterize coupling directionality. Expressions for their 95% confidence
bands have also been derived. The latter allows us to trace significance of the es-
timates obtained from each short segment. (We do not show the formulas here
since they are rather cumbersome.) For moderate coupling strength and phase
nonlinearity, γ1 and γ2 guarantee the probability of erroneous conclusions about
the presence of coupling less than 0.025 [71]. Additional tests with exemplary
oscillators show that γ1(∆1) and γ2(∆2) are applicable for a time series as short
as 20 basic periods if ρ(∆) < 0.4. The latter condition excludes synchronous-like
signals. Other available techniques for coupling direction identification and con-
ditions for superiority of the described technique are reported in [72].

8.6.2 Application to Climatic Data

Using the above technique, we investigated the dynamics of the North Atlantic
oscillation (NAO) and El Niño/Southern oscillation (ENSO) processes for the sec-
ond half of the twentieth century. ENSO and NAO represent the leading modes
of interannual climate variability for the globe and Northern Hemisphere (NH),
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Fig. 8.7: Individual characteristics of the NAO index and T(Niño-3,4). (a) NAO
index (the gray line) and ReW for s = 32 months (the dashed line). (b) Global
wavelet spectrum of the NAO index. (c) An orbit W(t) for the NAO index, s =

32 months. (d)–(f) The same as (a)–(c), but for T(Niño-3,4).

respectively [73, 74]. Different tools have been used for the analysis of their in-
teraction, in particular, cross-correlation function and Fourier and wavelet coher-
ence, e.g., [75]. However, all the climatic signals are rather short that has made
confident inference about the character of interaction between those processes
difficult.

Here, we present the results only for a specific pair of climatic indices. The
first one is NAO index http://www.ncep.noaa.gov defined as the leading de-
composition mode of the field of 500 hPa geopotential height in NH based on the
“rotated principal component analysis” [76]. The second one is T(Niño-3,4) which
characterizes sea surface temperature in an equatorial region of the Pacific Ocean
(5°N–5°S, 170°W–120°W) [77]. These time series cover the period 1950–2004 (660
monthly values).

Figure 8.7 demonstrates individual characteristics of the NAO index (Fig. 8.7(a))
and T(Niño-3,4) (Fig. 8.7(d)). Global wavelet spectra of the NAO index and T(Niño-
3,4) exhibit several peaks (Figs. 8.7(b)and (e)). One can assume that the peaks
correspond to some oscillatory processes for which the phase can be adequately
introduced. To extract phases of “different rhythms” in NAO and ENSO, we tried
several values of s in Eq. (8.15) corresponding to the different spectral peaks. We
estimated coupling between all the rhythms pairwise. The only case when sub-
stantial conclusions about the presence of coupling are inferred is the “rhythm”
with s = 32 months for both signals, see the dashed lines in Figs. 8.7(a) and 8.7(d).
The phases of 32-month rhythms in both signals are well defined since clear rota-
tion of the orbits around the origin on the complex plane takes place (Figs. 8.7(c)
and 8.7(f)).

The results of the phase dynamics modeling are shown in Fig. 8.8 for s = 32



8.6 Applications of Empirical Models 215

and model, Eq. (8.16), with τ = 32. Figure 8.8(a) shows that the technique is
applicable only for ∆1 > −30 where ρ < 0.4. The influence ENSO → NAO is
pointwise significant for −30 � ∆1 � 0 and maximal for ∆1 = −24 months
(Fig. 8.8(b)). Apart from the pointwise p-level, one can infer the presence of the
influence ENSO → NAO as follows. Probability of a random erroneous con-
clusion about coupling presence based only on a pointwise significant γ1 for a
specific ∆1 is 0.025. Taking into account that the values of γ1(∆1) separated with
∆1 less than τ are strongly correlated, one can consider as “statistically indepen-
dent” the values of γ1 from the two groups: −30 � ∆1 � 0 and 0 < ∆1 � 32.
Then, the probability of erroneous conclusion based on pointwise significant γ1

at least in one of the two groups as observed in Fig. 8.8(b) is approximately twice
as large and, hence, equal to 0.05. Thus, we conclude with confidence probability
of 0.95 that the influence ENSO → NAO is present. Most probably, it is delayed
by 24 months. However, the latter conclusion is not so reliable. No signs of the
influence NAO → ENSO are detected (Fig. 8.8(c)).

We note that large ρ for ∆ < −30 do not indicate strong coupling. For such
short time series and close basic frequencies of oscillators, the probability to get
ρ > 0.4 for uncoupled processes is greater than 0.5 as observed in numerical
experiments with exemplary oscillators. More details can be found in [78].

We stress that the conclusion about the presence of the influence ENSO →
NAO is quite reliable here. Confidence probability 0.95 was not accessible for
traditional techniques. It can be attributed to high sensitivity of the phases to
weak coupling.

8.6.3 Application to Electroencephalogram Data

Here, we present an application of the estimators to analyze a two-channel hu-
man intracranial epileptic electroencephalogram (EEG) recording with the pur-
pose of epileptic focus localization.

The data were recorded from intracranial depth electrodes implanted in a
patient with medically refractory temporal lobe epilepsy as part of routine clin-
ical investigations to determine candidacy for epilepsy surgery (provided by
Dr. Richard Wennberg, Toronto Western Hospital). The recordings included sev-
eral left temporal neocortical → hippocampal seizures that occurred over the
course of a long partial status epilepticus, see an example in Figs. 8.9(a) and
(b). Two channels were analyzed: the first channel situated in the left hippocam-
pus, and the second channel in the left temporal neocortex, where the “interictal”
activity between seizures at the time comprised pseudoperiodic epileptiform dis-
charges. The visual analysis of the interictal–ictal transitions (shown with vertical
dashed lines) determined that the seizures all started first in the neocortex, with
an independent seizure subsequently beginning at the ipsilateral hippocampus.
We analyzed four recordings, but here we present the results for only one of
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Fig. 8.8: Analysis of coupling from the NAO index and T(Niño-3,4). (a) Mean
phase coherence. (b, c) The estimators of the strength of the influence ENSO →
NAO (∆ means ∆1) and NAO → ENSO (∆ means ∆2), respectively, with their 95%
confidence bands.

them for the sake of brevity, as an illustration of application of the method to a
nonstationary real-world system.

The time series of Figs. 8.9(a) and (b) contains 4.5 min of depth electrode EEG
(referential recording to scalp vertex electrode) recorded at a sampling frequency
of 250 Hz. There are more or less significant peaks in power spectra for both chan-
nels (not shown). For the hippocampal channel: at frequency 3.2 Hz before the
seizure (starting approximately at the 100th second and finishing approximately
at the 220th second), 2.3 Hz after the seizure, and 7.1 Hz during the seizure. For
the neocortex channel: at frequency 1.4 Hz before the seizure, 1.6 Hz after the
seizure, and 7.1 Hz during the seizure. We have computed coupling character-
istics in a running window. The length of running window was changed from
N = 103 data points to N = 104 data points. Time delays ∆1,2 were set equal
to zero. The phases were determined using Eq. (8.15) with ω0 = 2 and different
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Fig. 8.9: Intracranial EEG recordings: (a) from the hippocampus, (b) from the tem-
poral lobe of the neocortex. (c) Coupling directionality index δ with its 95% con-
fidence band (the gray train), t is the starting time instant of a running window
of the length of 8 s. Negative values of δ indicate influence of the neocortex on the
hippocampus. The vertical dashed lines indicate a seizure onset and offset. Index δ

is significantly less than zero during a period of 25–55 s before the seizure.

time scales s. In particular, we tried the time scales corresponding to the main
peak of the scalogram for each signal which is s = 0.14 s for the hippocampal
signal, and s = 0.19 s for the neocortex signal, see Fig. 8.9(c) (where τ = 33∆t).

We present only one set of results in Fig. 8.9(c) (gray tail denotes 95% con-
fidence bands) obtained for N = 6000. Coupling is regarded as significant if
the confidence band does not include zero, e.g., gray tail does not intersect the
abscissa axis. The preliminary results seem promising for the localization of the
epileptic focus, because a long interval (30 s length for the example shown) of sig-
nificant predominant coupling direction neocortex → hippocampus is observed
before the seizure. It can be considered as an indication that epileptic focus is
located near the neocortex channel that agrees with a priori clinical information.
Despite we presented only one example, we note that the results are sufficiently
robust and are observed for a significant range of values of the above-mentioned
window lengths and parameters.

Similar results are observed for the three of the four analyzed recordings and
not observed for one of them. Right now, we do not draw any definite conclusions
about the applicability of the method to localize epileptic focus. This is only
the first attempt and, of course, more EEG recordings should be processed to
quantify the method’s sensitivity and specificity. This is a subject of ongoing
research. Therefore, the results presented here should not be overestimated, being
rather an illustration of the way how to apply the method in practice and what
kind of information one can expect from it.

8.6.4 Other Applications

We should mention several other useful applications of the reconstruction meth-
ods. They include detection of quasistationary segments in nonstationary sig-
nals [79–82], prediction of bifurcations in weakly nonautonomous systems [83],
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multichannel confidential transmission of information [84, 85], signal classifica-
tion [86], testing for nonlinearity and determinism [87], and adaptive nonlinear
noise reduction [88–90]. Among the very interesting applications, we stress again
on the reconstruction of characteristics of nonlinear elements in electric circuits
and other systems with the aid of a modeling procedure in the “gray box” set-
ting when such characteristics may not be accessible to direct measurements.
This approach is successfully brought about during the investigation of dynami-
cal properties of a ferroelectric [39], semiconductor diodes [91], and optical fiber
ring [92].

8.7 Conclusions

Seemingly, mathematical modeling will always remain an art to a significant ex-
tent. However, there may be developed some general principles and particular
recipes increasing our chances to obtain a “good” model. Some results of this
type related to the time series modeling are discussed in this chapter. Besides, we
systematized many available techniques based on the scheme of Fig. 8.1 whose
different items were illustrated with different problem settings: from “white box”
via “gray box” to “black box” problems. We outlined different techniques which
were tested in numerical experiments with the reconstruction of exemplary equa-
tions from their noise-corrupted solutions. Many of the techniques were already
successfully applied to the investigation of laboratory and real-world systems
such as nonlinear electric circuits, climatic processes, functional systems of living
organisms, etc. In particular, we reported the results of the analysis of the inter-
action between complex processes in climatology and neurophysiology based on
their empirical modeling.

We have not discussed modeling of spatially distributed systems, even though
it attracts considerable attention [93–97]. As well, we have omitted discussion of
time-delay systems [92, 98, 99] and only briefly touched on stochastic nonlinear
models [29, 100]. Many methods for the construction of finite-dimensional de-
terministic models are also just mentioned. Instead, we have tried to give simple
illustrations of some key points and provide multiple references to the works
comprising more detailed discussion for the further reading. Therefore, this sur-
vey is only an “excursus into . . . ,” rather than an irrefragable treatment of the
empirical modeling problems.
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least median of squares, 154, 164
level 2 statistics, 428
level shift, 144–147, 149, 150, 154–158,

160, 161, 163, 164
limit cycle, 174
linear filter, 143, 145, 147, 152, 390
linear least-square regression, 180
local embedding dimension, 17
Local Modeling, 51
LWR, 393
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Lyapunov exponent, 175
Lyapunov exponents, 18, 31, 35, 36

m-separation, 359
magnetoencephalography, 235
Markov chain, 89
Markov process, 89
Markov property, 363, 364
mathematical modeling, 193, 218
MDL, 117
melanoma incidence, 440
membrane voltage, 18, 19, 21, 23, 41, 44
mesial temporal lobe epilepsy, 442
Minimum Description Length, 117
modeling, 17, 40, 41
models, global nonlinear, 84
modified trimmed means filter, 149, 155
modulation, 175, 178
Morlet, or Gabor, wavelet, 177
moving average, 143, 145, 149, 150, 390
moving window, 145, 156
multichannel measurements, 87
multiple coherence, 394
multiple shooting, 45
multivariate autoregressive model, 425
multivariate autoregressive models, 390
mutual entrainment, 174
Mutual Information, 279, 280
mutual information, 17
mutual predictability, 185

nearest neighbors prediction, 17
neural synchronization, 226
neuron time series, 40
Noise, 104
non-phase-coherent oscillators, 248
nonautonomous systems, 217
normalized Directed Transfer Function,

395
North Atlantic Oscillation, 214

online, 145–147, 153, 155, 156, 165
order statistic filter, 148, 149, 151, 165
outlier, 143–147, 149, 154–156, 158, 160,

164
Overfitting, 53
overfitting, 40, 42, 43, 45
oversampling, 81

parametric models, 387
partial coherence, 393
Partial coherence (PC), 427
Partial directed coherence, 353, 367
Partial directed coherence (PDC), 427
partial directed coherence (PDC), 395
Partial directed correlation, 367
Partial spectral coherency, 360
Path diagram, 354
– bivariate —, 357
PDC, 395
periodically forced systems, 231
permutation procedure, 472
phase, 174
phase and frequency locking, 174, 178
Phase correlation, 280
phase diffusion, 264
phase dynamics, 175
phase resampling, 432
phase shift, 172
phase slips, 247
phase synchronization, 175, 261, 264,

268, 280
phase-locking index, 233
Poincaré section, 184
point process, 177
predictability improvement, 186
Prediction, 52
prediction error, 186
prediction errors, 85, 91
prediction: Markov chain, 90
predictions, more step, 86
predictor, locally constant, 83
predictor, locally linear, 83
Principal Component Analysis, 312
Principal Component Regression, 60
probabilistic prediction, 95
probability of recurrence, 249

Rössler in funnel regime, 252
Rössler system, 284
radial basis functions, 42
Randomness, 102, 104
randomness, 101
reconstruction, 193, 206
recurrence plot, 248
recursive filter, 145, 148, 159
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regularization, 43
reliability test, 95
repeated median, 154–157, 159, 163–165
repeated median filter, 155–157, 159,

165
residue resampling, 431
respiratory sinus arrhythmia, 178
Ridge regression, 60
robust filter, 143, 144, 156
robust regression, 143, 153, 155, 156,

163, 165
ROC statistics, 94, 96
root signal, 148, 152, 159, 164
running median, 143, 145–152, 158, 159,

161, 162, 164

sampling rate, 81
second order statistics, 434
seizure focus, 442
self-sustained oscillator, 172, 173
semi-nonparametric identification, 305
shift detection, 161–163
shift-dependent synchronization index,

188
signal extraction, 143, 146, 153, 164
signal processing, 101
Spatial Granger Causality, 480
Spatially Constrained Models, 328
spectral distribution function, 297
spectral matrix, 390, 463
Spectral representation, 352
speech, 101
spike, 143–147, 149, 151, 153, 158,

160–163
STARMAX model, 321, 329, 331
State Space Model, 324

state space reconstruction, 30
state space systems, 301
stationary processes, 296
Stochastic, 277
Stochastic resonance, 106
strange attractor, 174
strength of coupling, 184
stroboscopic approach, 184
stroboscopic synchronization index, 184
surrogate hypothesis testing, 182
synchrogram, 184
synchronization, 174
synchronization index, 183, 188
Synchrony, 277
system identification, 193

time delay embedding, 82
time scale synchronization, 232
time series, 193
transfer matrix, 390
trend, 143–148, 150, 153, 155, 157–161,

163–165
twin surrogates, 265

Uncertainty, 105
update algorithm, 155, 156, 159, 165

Vector autoregressive model
– graphical —, 369
Visual Evoked Potentials, 131

Wölfer sunspot data, 440
weather prediction, 79
weighted median filter, 151, 152, 156
Wold decomposition, 298

Yule–Walker algorithm, 392


