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PAbstract

We address the problem of estimating parameters of chaotic dynamical systems from a time series in a situation
when some of state variables are not observed and/or the data are very noisy. Using specially developed quantitative
criteria, we compare performance of the original multiple shooting approach (Bock�s algorithm) and its modified ver-
sion. The latter is shown to be significantly superior for long chaotic time series. In particular, it allows to obtain accu-
rate estimates for much worse starting guesses for the estimated parameters.
� 2005 Published by Elsevier Ltd.
R
E
C1. Introduction

The problem of mathematical modeling of complex systems from experimental observables is well-known in different
fields of science and practice and has multiple names such as ‘‘reconstruction of dynamical systems’’ in nonlinear science
[1] and ‘‘system identification’’ in statistics and control theory [2]. It has different aspects and can be formulated in dif-
ferent ways. Here, we consider the case when the structure of model equations is known a priori from ‘‘the first prin-
ciples’’. It reads
0960-0
doi:10.

* Co
E-m
Rdy=dt ¼ fðy; cÞ; ð1Þ
N
C

Owhere y is D-dimensional state vector, c is P-dimensional parameter vector. The task is to estimate the unknown param-
eters c1, . . . ,cP from a time series—discrete sequence of values observed at subsequent time instants {g1, . . . ,gN}, where
an observable g is assumed to be a function of state vector y (possibly corrupted with measurement noise), N is a time
series length. Let us consider the case when g is a scalar, which is quite typical and the most complicated. Such a for-
mulation has been considered in a number of works not only for differential equations [3–6], but also for maps [7–15]. In
practice, it is encountered in chemical kinetics (rate constants estimation) [16], laser physics (rates of transition between
energy levels) [17], electric engineering (ferroelectric and semiconductor nonlinearities) [18,19], cell biology (description
of signaling pathways [20], neuron modelling [21]), etc.
U
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Construction of the so-called standard models [22] demands the time series of state vectors y to be at hand, i.e., one
must reconstruct all D components from a scalar time series {gi}. For example, the observable itself can serve as one of
model variables, while others may be obtained via differentiation or integration. However, for a model structure spec-
ified from the first principles, some of state variables cannot often be measured or reconstructed from observed data.
Such variables are usually called ‘‘hidden’’. The presence of hidden variables makes reconstruction a much more com-
plex problem, because deficit of information about hidden variables (which have also to be included into the set of esti-
mated quantities) requires more sophisticated approaches for parameter estimation. Usually, maximal likelihood
principle is appealed to, but practically it reduces to a version of the least-squares method. In the case considered here,
the problem is formalised as follows. One searches for initial conditions s and parameters c which provide the smallest
least-squares difference between the appropriate components of a model orbit y(t) and observed data �yl. The sum of
errors (2) involves only l non-hidden variables:
OSðs; cÞ ¼
XN

i¼1
ylðti; s; cÞ � �yli
� �2 ¼ min; ð2Þ
T
E
D

P
R

Owhere �yli are observed vectors, y
l(ti, s,c) are l-dimensional vectors consisting of the corresponding model state variables.

Minimisation of (2) is performed with the aid of iterative algorithms for some ‘‘starting guesses’’ for s and c.
In the case of a chaotic time series, a model trajectory is very sensitive to initial conditions. Therefore, ‘‘relief’’ of the

cost function (2) is very complex for large N and exhibits a lot of local minima. Thus, the ‘‘attracting area’’ of global
minimum is very narrow, so that it is unlikely to find it with arbitrary starting guesses. In order to overcome this dif-
ficulty, a special method—multiple shooting approach (Bock�s algorithm)—was proposed [16,23]. Later, it was noticed
[24] that it also encounters significant difficulties and additional efforts are necessary to succeed, although systematic
investigation of this problem is still lacking. In this work, we develop special measures to quantify the performance
of different parameter estimation techniques. With their aid, we compare different versions of multiple shooting ap-
proach (Section 2). By considering noisy time series of exemplary chaotic systems, we demonstrate that a modified
Bock�s algorithm allowing discontinuity of a model trajectory is the most efficient.

Chaotic dynamics and deficit of a priori information about system parameter values are typical in practice. There-
fore, the task considered here is of significant practical interest. We note also that the methods analysed here give pos-
sibility not only to estimate parameters, but also to reconstruct the time courses of hidden variables, which cannot be
measured by other means. So, the identification (reconstruction, parameter estimation) procedure acts as a universal
indirect ‘‘measuring device’’.
U
N
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O

R
R

E
C

2. Parameter estimation methods for hidden variable case

2.1. Initial value approach

This ‘‘naive’’ method consists in minimisation of (2) directly, where N is the length of the entire original time series.
In practice, N should be large enough to allow one to extract necessary information from noisy data. Furthermore, the
time series should involve all relevant time scales of the modeled dynamics. But for a chaotic time series, exponential
sensitivity of model orbits to initial conditions s makes the attracting area of the global minimum of (2) very narrow.
Therefore, the initial value approach encounters great difficulties. The disadvantages of this approach are clearly shown,
e.g., in [27,19], so we do not pay significant attention to it here.

2.2. ‘‘Multiple shooting based’’ approaches

The name takes its origin from an analogy with well-known numerical methods for solution of a boundary-value
problem in ordinary differential equations. Since the multiple shooting approach accepts a number of variations, we
call all of them ‘‘multiple shooting based’’ approaches while the original one [16] just Bock�s algorithm.

2.2.1. Original Bock�s algorithm
It is a modification of initial value approach which allows an increase in the time series length N and the use of start-

ing guesses for parameters not so close to their true values. This is possible since the entire time series is divided into L
segments (n is the length of a segment, N = Ln) and initial conditions for each of them s1, s2, . . . , sL are considered as
additional arguments of S (as quantities to be estimated):
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Sðs1; . . . ; sL; cÞ ¼
XL

i¼1

Xn

j¼1
ylðtj; si; cÞ � �ylði� 1Þnþ j
� �2 ¼ min; ð3Þ
Time moments si = t(i�1)n+1 correspond to si. In order to avoid a great number of free estimated quantities, that in-
creases variances of the estimates, one imposes a constraint of model trajectory continuity over the entire observed
interval:
yðsiþ1; si; cÞ ¼ siþ1; i ¼ 1; . . . ; L� 1. ð4Þ
R
E
C

T
E
D

P
R

O
O

FMinimisation of (3) under the constraints (4) is the problem of constrained multidimensional optimisation. For arbi-
trarily chosen starting guesses for parameters and initial conditions, the model trajectory consists of L ‘‘disconnected’’
pieces. However, it becomes ‘‘more continuous’’ gradually, after each iteration of the minimisation procedure. Bock�s
algorithm coincides with the initial value approach for L = 1 and n = N.

It was claimed [23] that Bock�s algorithm does not require ‘‘genuine’’ starting guesses. Meanwhile, experience shows
that this is not typically the case. The algorithm extends the modelling capabilities only in part, since the condition (4) is
very strong. Therefore, often only local minima of (3) can be found.

2.2.2. Segmentation technique

In order to estimate parameters more accurately from a longer time series (where original Bock�s algorithm cannot
be applied due to local minima problem), it is divided into l shorter segments and parameters are estimated from each
segment independently without any constraints. The estimates obtained are averaged: �c ¼ 1

l

Pl
i¼1ci. Such an approach is

called ‘‘piecewise’’ or ‘‘segmentation’’ technique [24]. If Bock�s algorithm is used for each segment, it is reasonable to
call it ‘‘segmentation Bock�s algorithm’’. The disadvantage of this method is that the parameter estimators may be
strongly biased (even asymptotically) since an estimate from each short segment may be biased, which is not eliminated
via averaging. Therefore, the segmentation technique gives low accuracy of estimates as compared to the original Bock�s
algorithm if the global minimum can be easily found for both methods.

2.2.3. Modified Bock�s algorithm
It is known from statistical theory, e.g., [28], that the use of the entire time series in maximum likelihood estimation

is preferable for obtaining unbiased estimators than segmentation approach. So, we suggest to pay attention to a mod-
ification of Bock�s algorithm that has been already applied in [17,25,26] for non-chaotic signals consisting of a number
of independent shot realisations as a technique for ‘‘multiple experiment approach’’ problem solution. It was also
briefly mentioned in [24]. The idea is to refuse the constraints (4) for several (m � 1) time instants holding the same
parameter values c for the entire time series. So, the initial conditions for the m time instants, including the first one,
become independent quantities to be estimated. We choose these instants equidistantly within the time series. Such
an approach involves two adjustable parameters: the number of segments m and the number of subsegments within each
segment L (N = mLn). Subsegments are required to apply Bock�s algorithm within each of the m segments.

The modified approach is not widely applied so far, even though it should have a number of advantages. The fact
that a final model trajectory is discontinuous is not an indication that the model is ‘‘bad’’ but weakening of the con-
straints (4) may help to find global minimum and reasonable model when ‘‘strict’’ Bock�s algorithm is not feasible.
R
U
N

C
O3. Comparative study in numerical experiment

3.1. Comparison technique

We compare the methods using gray-scale ‘‘convergence diagrams’’ on the planes of starting guesses for parameters
ci1 , ci2 (Fig. 1). White points denote starting guesses for which the global minimum is achieved, i.e., quite accurate esti-
mates are obtained. Gray colour means starting guesses from which minimisation procedure converges to a number of
local minima, darker colour corresponds to stopping at local minima situated further from the true values. We normal-
ise starting guesses so that the centre of a diagram corresponds to genuine guesses, i.e., to the true values of parameters
c0i . The normalised starting guesses are denoted bi ¼ ðci � c0i Þ=c0i . The size of white area on the diagrams quantifies the
estimation method�s performance. The broader this area, the better the method. Such areas typically have a very com-
plex structure (e.g., Fig. 1a), therefore we suggest an integral measure which is relative number l of white points within
a circle of radius r. The larger l (for a given r), the better the method. We denote rl the maximum value of the circle
radius corresponding to the relative ratio of white points equal to l. Here, we use mainly the value of r100, which is the
radius of ‘‘100% convergence’’ to global minimum.
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Fig. 1. The plane of normalised starting guesses for parameters of the Lorenz system (section with the plane b1 = 0). (a) Bock�s
algorithm with L = 30, n = 35; (b) is a magnification of (a); (c) the modified method with L = 15, n = 35, m = 2; (d) the dependence l(r)
for Bock�s algorithm (black) and the modified method (gray) at different noise levels.

4 B.P. Bezruchko et al. / Chaos, Solitons and Fractals xxx (2005) xxx–xxx

CHAOS 4077 No. of Pages 9, DTD = 5.0.1

4 October 2005 Disk Used
ARTICLE IN PRESS
R
E
CBelow, we consider the case of three unknown parameters. So, three-dimensional diagrams for all three starting

guesses for parameters would contain complete information about the method�s performance. Nevertheless, we use
two-dimensional projections for simplicity of illustration taking into account that they lead to the same qualitative con-
clusions about the methods� inferiority/superiority.

3.2. Identification of the Lorenz system

As the first test system for investigation of the performance of different parameter estimation techniques in case of
long chaotic time series and different starting guesses, we choose the Lorenz system
R

_y1 ¼ c1ðy2 � y1Þ; _y2 ¼ �y2 þ y1ðc3 � y3Þ; _y3 ¼ �c2y3 þ y1y2; ð5Þ
U
N

C
Owith parameters c1 = 10, c2 = 8/3, c3 = 46 corresponding to a chaotic regime, and initial conditions y1 = �7.60,

y2 = �12.37, y3 = 38.66 chosen arbitrarily on the chaotic attractor. The largest Lyapunov exponent is equal here to
k1 = 1.23 [23]. The equations are integrated with the fourth-order Runge–Kutta technique with stepsize 0.001 and sam-
pling interval 0.002 to generate a time series. An observed scalar time series is a realisation of the variable y1 corrupted
with additive Gaussian white noise: g = y1 + n. The variables y2 and y3 are regarded hidden.

Since the choice of genuine starting guesses for the values of y2 and y3 is unrealistic, we use the observable values as
starting guesses for all state variables s1, s2, . . . , sL, . . . , smL. Even though such a choice is not the best possible, it is simple
and sometimes efficient [23]. To minimise the function (3) the generalised Gauss–Newton method is used [23].

Convergence of the original Bock�s algorithm and the modified method to global minimum is illustrated in Fig. 1a
and b. These results correspond to the time series length for which the Bock�s approach exhibits the best performance
(the broadest convergence region). Only the section of starting guesses space with the plane b1 = 0 is shown since un-
lucky choice of b1 is not so crucial as the choice of b2, b3. It can be seen that the area of 100% convergence of Bock�s
algorithm is broad and the radius r100 is greater than 1.0, so relative deviations of starting guesses from true values (let
us call them errors in starting guesses) may exceed 100%. There is also a wide area which is very distant from global
minimum but allows to find global minimum (Fig. 1a). However, the modified method allows larger errors in starting
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guesses as it can be seen from comparison of Fig. 1b and c. The values of r100, r90, and r80 are greater for the modified
method and the white area is wider.

The value of l(r) for different noise levels is shown in Fig. 1d. The performance of both methods remains almost
unchanged for moderate noise. The horizontal line of 100% convergence (l = 1) becomes shorter but not significantly:
in a noise-free setting its length is 1.2 for the modified approach and 1.1 for Bock�s method, while for 20% noise-to-
signal ratio (ratio of rms amplitudes) it is 0.9 and 0.7, respectively. Similar conclusions can be drawn from Fig. 3c,
where the dependencies r100(N) (for m = 1 and m = 4) are shown with black for noise-free setting and with gray for noisy
case.

The dependence r100(L,n) shown in Fig. 2 also demonstrates the advantage of the modified method. Darker colour
corresponds to smaller values of r100 (they are indicated on the contour lines) at given starting guesses. For the modified
method, not only the area with r100 P 1 is larger, but also there is an area where r100 P 1.2 inside of it. This advantage
takes place for longer times series that is revealed by white hyperboles N = constant which are the lines of constant time
series length.

This conclusion is confirmed by Fig. 3a where the 100% convergence radius is shown versus time series length N for
different number of segments m. The number of subsegments L has been selected to make r100 as large as possible by the
use of hyperboles (Fig. 2) and choice of points from lighter areas. Hill-like shape of plots r100(N) is determined by two
factors. For small N, the amount of data is insufficient to ‘‘average out’’ the noise influence, while for large N, the expo-
nential sensitivity to initial conditions takes place (small initial perturbations reaches the magnitude comparable to the
size of the attractor during time interval sK = 1/k1) that leads to complication of the cost function ‘‘relief’’. The curves
for larger m attain larger values of r100, i.e., the modified method is more efficient than the original Bock�s algorithm.
Those curves correspond also to larger values of N, therefore they are located closer to the right-hand side of the panel.
Furthermore, the range of time lengths within which the modified method is ‘‘100% convergent’’ increases with the
number of discontinuity points m, so the curves for greater m are ‘‘wider’’.

The investigation reveals (Fig. 3b) that the optimal value of segment length Ln is connected with Lyapunov time sK.
Optimal time series lengths correspond to 1–2 Lyapunov times, see the upper horizontal axis in Fig. 3b. It is explained
as follows. The success of estimation depends on the segment length Ln (over which small initial perturbations of the
model orbit should not increase too strongly, so Ln should not be very large) and also on the number P + mD of free
parameters to be estimated (this number should not be very large since in very high-dimensional space relief of the cost
function may become very complicated also, i.e., Ln should not be very small). As a consequence, there exists some
intermediate optimal value of Ln related via a certain proportionality constant to the characteristic time scale sK of
the divergence of nearby model trajectories.

Fig. 3d shows the dependence of r100 on L, given a certain Ln. At that, there is also an optimal value of L as usually
for Bock�s algorithm within each segment. The greatest r100 is achieved here for m = 2 since greater m correspond just to
longer time series.

Similar results have been obtained from time series generated at different initial conditions, from time series of the
variable y2, and from time series of y1 generated at a different set of ‘‘true’’ parameter values c1 = 10, c2 = 8/3, c3 = 28
that is known as a ‘‘classical’’ chaotical set for the Lorenz system.

We also had studied the jumps allowed by modified approach in points of discontinuity and we showed that these
jumps are small in comparison with attractor size: they are about 10�3 from signal standard deviation even if 1% noise
U
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Fig. 2. The dependence r100(L,n): (a) for Bock�s algorithm, (b) for the modified method with m = 2. Darker areas correspond to less
radius r100. The values of r100 are shown on the border lines. The white hyperboles are the lines of constant time series length
N = constant.
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Eis added to the observable. Though the jumps due to original Bock�s approach are greatly smaller: 10�10–10�12 from

signal standard deviation. It also has to be noticed that these ‘‘original’’ jumps decrease than discontinuity is allowed
so it can be said that the model imperfection is concentrated from the whole set of nodes to the nodes between the
segments.

3.3. Identification of Rössler system

In order to check whether our results hold for other systems, we perform the same investigation for the Rössler�s
system.
_y1 ¼ �y2 � y3; _y2 ¼ y1 þ c1y2; _y3 ¼ c2 þ y3ðy1 � c3Þ; ð6Þ
U
N

Cwith parameters c1 = 0.2, c2 = 0.15, c3 = 10, that corresponds to a chaotic regime and initial conditions y1 = 0.21,
y2 = 6.5, y3 = 0.022. The basic ‘‘period’’ of oscillations is 6.0, the largest Lyapunov exponent is k1 = 0.1. The equations
(6) are integrated with fourth-order Runge–Kutta technique with stepsize 0.0002 and sampling interval 0.01. The var-
iable y1 is used as an observable both in a noise free setting and corrupted with additive Gaussian white noise.

We have chosen this system as an object since the ‘‘shape’’ of its attractor differs from the Lorenz one. The Lorenz
system oscillates near one of the two unstable fixed points in turn with irregular switchings between them. The simul-
taneous values of its y1 and y2 variables are relatively close to each other. Their ‘‘shift by a quarter of rotation period’’ is
a relatively small effect in absolute value as compared to the switchings between the two wings. The dynamics on the
Rössler attractor is a rotation about a single unstable fixed point (in projection onto the plane y3 = 0). So that the vari-
ables y1 and y2 are shifted in time by a quarter of the rotation period which is the main time scale here.
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Fig. 4. The plane of normalised starting guesses for parameters of the Rössler system (section with the plane b2 = 0) illustrating
convergence of the original Bock�s algorithm: (a) all starting guesses for the hidden variables are equal to simultaneous observable
values; (b) genuine starting guesses; (c) starting guesses are obtained via the time shift of the observed time series by a quarter of basic
period.

Fig. 5. The plane of normalised starting guesses for parameters of the Rössler system (section with the plane b2 = 0): (a) Bock�s
algorithm; (b) the modified method. (c) The dependance of r100 on the entire time series length N for the best choice of L. (d) The
dependance of r100 on the segment length Ln for the best choice of L.
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Due to such relationships between the state variables, the choice of starting guesses for the hidden variables equal to
the simultaneous observable value is more or less appropriate for the Lorenz system (as we have shown above) but leads
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to unsuccessful results of parameter estimation in the Rössler system using any of the estimation techniques considered.
In Fig. 4a it is shown that r100 = 0, i.e., one cannot find the global minimum for such a choice of starting guesses for the
hidden variables at all. Quite good results are achieved if one uses genuine starting guesses for the hidden variables
(Fig. 4b). To develop ‘‘good’’ and realistic starting guesses is also possible if one takes into account the knowledge
about character of the original dynamics which can be gained by studying model dynamics. Namely, for the Rössler
system it is relevant to take the observed time series shifted by a quarter of basic period as a starting guess for the var-
iable y2 and zero as a starting guess for y3 because due to attractor features this variable is close to zero most of the time
(Fig. 4c).

For starting guesses we proposed, the results of investigation are similar to that presented above for the Lorenz sys-
tem and are shown in Fig. 5. They indicate that the modified method is successful in finding global minimum given
starting guesses for parameters very far from the true values (Fig. 5b) while the original Bock�s algorithm demands more
lucky starting guesses (Fig. 5a). Fig. 5c shows the dependence on the time series length N analogously to Figs. 3a and 5d
shows the dependence on the segment length Ln analogously to Fig. 3b. The curves corresponding to larger m are
‘‘wider’’ and shifted to the right, i.e., the range of time series length allowing accurate estimation is greater for them.
This advantage is observed for relatively long series that is similar to the results obtained for the Lorenz system.
O
R
R

E
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R4. Conclusions

We compared performance of different methods for estimation of parameters (identification) of dynamical systems
from chaotic time series in the case of hidden variables. All the methods rely upon the multiple shooting idea. The com-
parison is done by using specially developed quantitative measure and considering exemplary chaotic systems. The ori-
ginal Bock�s algorithm is shown to be less efficient than its modified version, which allows a model orbit to be
discontinuous in several points within an observation interval.

The length of a time series and the number of its segments are shown to have significant influence upon the estima-
tion results, and the choice of starting guesses for the hidden variables is quite important too. The chances for accurate
estimation rise with time series length if the number of allowable points of model trajectory discontinuity is also in-
creased. The optimal length of a continuity segment is close to Lyapunov time for long chaotic time series.

The modified method has a number of advantages as compared to the original Bock�s algorithm since it is not so
demanding with respect to starting guesses for the hidden variables. This is due to weakening the model orbit continuity
constraint. Therefore, longer time series can be processed with the modified method that allows to increase accuracy of
the estimates. Moreover, the modified method is not so demanding with respect to starting guesses for parameters also,
sometimes providing an opportunity to get accurate estimates when the original Bock�s algorithm fails.

The effect of measurement noise is shown to be not dramatical for both methods, even if noise-to-signal ratio is as
high as 20% in rms amplitude. Note that if the time series length is fixed and the global minimum can be easily found for
any estimation method then the accuracy of parameter estimates is the best for the original Bock�s algorithm, a bit
worse for the modified method, and the worst for the segmentation technique. However, since global minimum can
never be equally easily found for any method, the modified method should be considered as the best one from practical
point of view. Finally, one should be careful when using the modified method, since specifying too small length of a
model orbit continuity segments may lead to the situation where even a model with ‘‘incorrect’’, ‘‘alien’’ structure is
successfully fitted to observed data and erroneous conclusion about model adequacy is drawn.
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