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[1] Based on the nonlinear techniques for estimation of
coupling between oscillatory systems, we investigate the
dynamics of climatic modes characterizing global and
the Northern Hemisphere (NH) processes. In particular,
indices of the North Atlantic Oscillation (NAO) and
El Niño–Southern Oscillation (ENSO) for 1950–2004 are
analyzed. The methods based on phase dynamics
modeling and nonlinear ‘‘Granger causality’’ are used.
We infer that ENSO affects NAO during the last half a
century with confidence probability higher than 0.95. The
influence is characterized with time delay in the range
from a couple of months up to three years and increases
during the last decade. Citation: Mokhov, I. I., and D. A.

Smirnov (2006), El Niño–Southern Oscillation drives North

Atlantic Oscillation as revealed with nonlinear techniques from

climatic indices, Geophys. Res. Lett., 33 , L03708, doi:10.1029/
2005GL024557.

1. Introduction

[2] ENSO and NAO represent the leading modes of
interannual climate variability for the globe and NH,
respectively [Trenberth et al., 1998; Intergovernmental
Panel on Climate Change, 2001]. Different tools have been
used for the analysis of their interaction, in particular, cross-
correlation function (CCF) and Fourier and wavelet
coherence for the sea surface temperature (SST) and sea
level pressure (SLP) indices [Wallace and Gutzler, 1981;
Rogers, 1984; Pozo-Vazquez et al., 2001; Jevrejeva et al.,
2003].
[3] One often considers a NAO index defined as the

normalized SLP difference between Azores and Iceland
[Rogers, 1984] (http://www.cru.uea.ac.uk). We denote it
NAOIcru. Alternatively, NAO is characterized in [http://
www.ncep.noaa.gov] as the leading decomposition mode
of the field of 500 hPa geopotential height in the NH based on
the ‘‘Rotated Principal Component Analysis’’ [Barnston and
Livezey, 1987]. We denote it NAOIncep. Hence, NAOIncep is
a more global characteristic than NAOIcru. ENSO indices
T(Niño-3), T(Niño-3,4), T(Niño-4), T(Niño-1+2) character-
ize SST in the corresponding equatorial regions of the
Pacific Ocean [e.g., Mokhov et al., 2004]. Southern Oscil-
lation Index (SOI) is defined as the normalized SLP differ-
ence between Tahiti and Darwin. All the signals are rather

short that has made confident inference about the character
of interaction difficult.
[4] New techniques for diagnostics of coupling between

oscillatory systems have been developed in nonlinear dyna-
mics during the last years to reveal complex and sufficiently
weak nonlinear interactions as well as their ‘‘direction’’.
They can be divided into two families: Estimation of inter-
dependencies in reconstructed state spaces, [e.g., Arnhold
et al., 1999], and analysis of the phase dynamics [e.g.,
Rosenblum and Pikovsky, 2001]. Nonlinear methods from
each family have their own conditions of superiority
[Smirnov and Andrzejak, 2005], so that in practice it is
reasonable to apply both ideas. Here, we investigate inter-
action between ENSO and NAO with two nonlinear techni-
ques using several climatic indices.

2. Data and Methods

2.1. Data

[5] Mainly, we analyze the period 1950 – 2004
(660 monthly values). We use the indices NAOIcru and
NAOIncep for NAO and T(Niño-3,4), T(Niño-3), T(Niño-4),
T(Niño-1+2), and SOI for ENSO. Longer time series for
NAOIcru (1821–2004), T(Niño-3) (1871–1997), and SOI
(1866–2004) are also considered.

2.2. Phase Dynamics Modeling

[6] The main idea is to estimate how strong future
evolution of one system’s phase depends on the other
system’s phase.
[7] First, one restores time series of the phases

{f1(t1), . . ., f1(tN)} and {f2(t1), . . ., f2(tN)} from the
original signals {x1(t1), . . ., x1(tN)} and {x2(t1), . . ., x2(tN)}
[Boccaletti et al., 2002], where N is a time series length,
ti = iDt, Dt = 1 month in our case. We perform it with
the analytic signal approach implemented via complex
wavelet transform [Lachaux et al., 2000]. Given a signal
X(t), one defines a complex analytic signal W(t) as

W tð Þ ¼ 1ffiffi
s

p
Z1

�1

X t0ð Þy* t � t0ð Þ=sð Þdt0; ð1Þ

where y(h) = p�1/4 exp (�jw0h) exp (�h2/2) is Morlet
wavelet, s is a fixed time scale. Re W(t) can be regarded as
X(t) band-pass filtered with the central frequency f � 1/s
and relative bandwidth of 1/4 for w0 = 6 used below. The
phase is defined as f (t) = argW(t). It is the angle of rotation
of the radius-vector on the plane (Re W, Im W) which
increases by 2p after each complete revolution. To avoid
edge effects while estimating (1) from a time series, we
ignore segments of the length 1.4 s at each edge after the
phase calculation.
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[8] Second, one constructs a global model relating phase
increments over a time interval t to the phases [Rosenblum
and Pikovsky, 2001; Cimponeriu et al., 2004]

f1 t þ tð Þ � f1 tð Þ ¼ F1 f1 tð Þ;f2 t þ Dð Þð Þ þ x1 tð Þ;

f2 t þ tð Þ � f2 tð Þ ¼ F2 f2 tð Þ;f1 t þ Dð Þð Þ þ x2 tð Þ;
ð2Þ

where x1,2 are zero-mean random processes, D stands for
a possible time delay, F1 is a trigonometric polynomial
F1 =

P
m;n

[am,ncos(mf1 + nf2) + bm,nsin(mf1 + nf2)], F2 is

defined analogously. The strength of the influence of the
system 2 on the system 1 (2 ! 1) is quantified as

c21 ¼
1

2p2

Z2p

0

Z2p

0

@F1=@f2ð Þ2df1 df2

¼
X
m;n

n2 a2m;n þ b2m;n

� �
: ð3Þ

The influence 1 ! 2 is quantified ‘‘symmetrically’’ (c2
2).

We use the third-order polynomials for F1,2 and set t
equal to a basic oscillation period.
[9] Given a time series, one estimates the coefficients

am,n,bm,n via the least-squares routine (LSR). Then, one
can get the estimate ĉ1

2 by replacing the true values of
am,n, bm,n in (3) with their estimates. A reliable detec-
tion of directional coupling can only be achieved in
non-synchronous regimes. Such a situation can be
diagnosed if the mean phase coherence r(D) =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hcos f1 tð Þ � f2 t þ Dð Þð Þi2t þ hsin f1 tð Þ � f2 t þ Dð Þð Þi2t
q
is much less than 1. So, the approach is complementary
to the synchronization analysis performed [e.g., Maraun
and Kurths, 2005].
[10] The estimators ĉ1 and ĉ2 are significantly biased for

short signals. Unbiased estimators g1 and g2 supplied with
95% confidence bands have been obtained by Smirnov and
Bezruchko [2003] by introducing corrections to ĉ1

2 and ĉ2
2.

For moderate coupling strength and phase nonlinearity, g1
and g2 guarantee that the probability of erroneously
detected coupling is less than 0.025. Additional tests
with exemplary oscillators show that g1(D) and g2(D) are
applicable for a time series as short as 20 basic periods if
r(D) < 0.4. The latter condition excludes synchronous-like
signals.

2.3. Nonlinear Granger Causality

[11] The technique is based on the construction of
‘‘individual’’ and ‘‘joint’’ predictors without ignoring the
amplitudes of oscillations [Feldmann and Bhattacharya,
2004]. If the accuracy of prediction of the x1-dynamics
can be improved when some x2-values are taken into
account and not via the sophistication of an individual
model then the presence of influence 2 ! 1 is inferred.
In terms of linear models, the idea was formulated
already by Granger [1969].
[12] We normalize time series to zero mean and unit

variance and construct models

x1 tnð Þ ¼ f1 x1 tn�1ð Þ; . . . ; x1 tn�d1ð Þ;ð
x2 tn�1þDð Þ; . . . ; x2 tn�d2þDð Þ; aÞ; ð4Þ

where f1 is an algebraic polynomial of the order K, D is a
time delay, d1 is individual model dimension; d2 = 0 for an
individual model, d2 > 0 for a joint one. Coefficient
estimates â are found via the LSR. Unbiased estimates
of mean-squared prediction errors of the individual and joint
models are s1

2 and s2!1
2 , respectively. Prediction improve-

ment (PI) of the x1-dynamics is quantified as PI2!1 = s1
2 �

s2!1
2 . Significance of the PI estimates is assessed via F-test

for an appropriate statistic [e.g., Granger, 1969]. Every-
thing is ‘‘symmetric’’ for PI1!2. We vary d1, d2, K in the
range 0 
 3.

3. Results

3.1. Phase Dynamics Modeling

[13] Figure 1 demonstrates individual characteristics of
the indices NAOIncep (Figure 1a) and T(Niño-3,4)
(Figure 1d). Global wavelet spectra exhibit several peaks
(Figures 1b and 1e). One can assume that they correspond to
oscillatory processes for which the phase can be adequately
introduced. To extract phases of ‘‘different rhythms’’
in NAO and ENSO, we tried several values of s in
(1) corresponding to different spectral peaks. We estimated
coupling between all the rhythms pairwise. The only case
when substantial conclusions about the presence of
coupling are inferred is the ‘‘rhythm’’ with s = 32 months
for both signals, see Figures 1a and 1d. The phases are
well-defined since clear rotation around the origin takes
place on the complex plane shown in Figures 1c and 1f.
[14] The results of the phase dynamics modeling are

shown in Figure 2 for s = 32 and model (2) with t = 32.
Figure 2a shows that the technique is applicable only for
D > �30 where r(D) < 0.4. The influence ENSO ! NAO is
pointwise significant for �30 � D � 0 and maximal for D =
�24 months (Figure 2b). One can infer the presence of the
influence ENSO ! NAO as follows. Probability of a
random erroneous conclusion about coupling presence
based only on a pointwise significant g1 for a specific D

is 0.025. Taking into account that the values of g1(D)
separated with D less than t are strongly correlated, one
can consider as statistically independent the values of g1
from the two groups: �30 � D � 0 and 0 < D � 32. Then,
the probability of erroneous conclusion based on pointwise
significant g1 in any of the two groups is approximately
twice as large, i.e., 0.05. So, from Figure 2b we conclude
with confidence probability of 0.95 that the influence
ENSO ! NAO is present. Most probably, it is delayed by
24 months. However, the latter conclusion is not so reliable.
No signs of the influence NAO ! ENSO are detected
(Figure 2c).
[15] Large r for D < �30 does not imply strong coupling.

For such short time series and close basic frequencies of
oscillators, the probability to get r > 0.4 for uncoupled
processes is greater than 0.5 as observed in numerical
experiments with exemplary oscillators.
[16] All the reported results remain the same for any s in

the range 29 
 34 months and relative bandwidth 0.2 
 0.4.
Phase calculation based on band-pass filtering and Hilbert
transform leads to similar results, for example, for the 2-nd
order Butterworth filter and the same bandwidth.
[17] The use of other ENSO indices instead of

T(Niño-3,4) gives almost the same results as in Figure 2.
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Only for T(Niño-1+2), coupling is not so pronounced.
Analysis of other rhythms in NAOIncep and T(Niño-3,4)
does not lead to significant conclusions about the presence
of interaction.
[18] For NAOIcru the width of the peak corresponding to

s = 32 months is greater than for NAOIncep, Figure 1b.
It leads to stronger phase diffusion of the 32-month rhythm
as quantified by mean-squared residual errors in the esti-
mation of equation (2) [Smirnov and Andrzejak, 2005]. As a
result, we have not observed significant coupling between
NAOIcru and any of the ENSO indices for the period 1950–
2004 as well as for the longer recordings (1871–1997,
1866–2004).

3.2. Nonlinear Granger Causality

[19] CCF values for the pair NAOIncep – T(Niño-3,4)
are not pointwise significant at p < 0.05. Analysis of the
nonlinear Granger causality for the models (4) with d2 = 1,

K = 2 gives more interesting results. For the simplest
case of d1 = 0 Figure 3a shows that PI of NAO is
about 1.5–2% for the time delays D = � (19 
 21) or
D = � (80 
 83) months. Each of those PI-values is
pointwise significant at p < 0.01. Taking into account
strong correlations of PIENSO! NAO separated with D less
than 4, one can infer that the influence ENSO ! NAO is
present at p < 0.05. Single pointwise significant PI of
ENSO for D = � (48 
 49) months (Figure 3b) does not
allow confident conclusion about the presence of the
influence NAO ! ENSO.
[20] For d1 and d2 increased up to 2, no changes in PI

values presented in Figure 3 are observed. So, the reported
PI is not achieved via complication of the individual model.
Simultaneous increase in d1 up to 3, K up to 3, and d2 up to
2 leads to the absence of any confident conclusions due to
large variance of the estimators.
[21] Similar results are observed if T(Niño-3,4) is

replaced with T(Niño-3), T(Niño-4), or SOI. However,
the conclusion about the presence of the influence
ENSO ! NAO becomes less confident (p < 0.1). The
use of T(Niño-1+2) leads to even less significant results.
Analogously to phase dynamics modeling, replacement of
NAOIncep with NAOIcru does not lead to reliable coupling
detection neither for the period 1950–2004 nor for longer
periods.
[22] Finally, to reveal trends in coupling during the last

decade, we estimated coupling between NAOIncep and
T(Niño-3,4) in a moving window of the length of 47 years.
We started with the interval 1950–1996 and finished with
1958–2004. PI-values reveal increase in the strength of the
influence ENSO ! NAO. The value of PIENSO!NAO for
D = � (19 
 20) months rises almost monotonously by
150% (Figure 4). Although it is difficult to assess statistical
significance of the conclusion, the monotone character of
the increase indicates that it can hardly be an effect of

Figure 1. Characteristics of NAOIncep and T(Niño-3,4).
(a) NAOIncep (gray line) and Re W for s = 32 months
(dashed line). (b) Global wavelet spectrum of NAOIncep
(solid line) and NAOIcru for the period 1950–2004
(dashed line). (c) An orbitW(t) for NAOIncep, s = 32 months.
(d)–(f) The same as Figures 1a–1c for T(Niño-3,4).

Figure 2. Coupling between NAOIncep and T(Niño-3,4)
(1950–2004) in terms of the phase dynamics. (a) Mean
phase coherence. (b) and (c) Strengths of the influence
ENSO! NAO and NAO! ENSO, respectively, with their
95% confidence bands.

Figure 3. Coupling between NAOIncep and T(Niño-3,4)
(1950–2004) in terms of the nonlinear Granger causality.
(a) PI of NAOIncep, (b) PI of T(Niño-3,4). Pointwise p-level
is shown below each panel.
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random fluctuations. To a certain extent, it can be attributed
to the strong 1997–98 ENSO event.

4. Conclusions

[23] The presence of coupling between ENSO and NAO
is revealed with the use of two nonlinear techniques and
different climatic indices. Consistent results are observed in
all cases. The influence ENSO ! NAO is detected with
confidence probability of 0.95 with the use of NAOIncep
(1950–2004). Estimates of the time delay in the influence
range from a couple of months up to three years with the
most probable value of 20–24 months. Besides, increase
in the strength of the influence during the last decade
is observed. Possible physical mechanisms underlying
oscillations and interactions as slow and even slower
than reported here are considered [e.g., Latif, 2001; Pozo-
Vazquez et al., 2001; Jevrejeva et al., 2003].
[24] The influence ENSO ! NAO is not detected with

the use of NAOIcru due to different properties of this ‘‘more
local’’ than NAOIncep index.
[25] Backward influence NAO ! ENSO is not detected

with confidence for any indices.
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Figure 4. Influence ENSO ! NAO for NAOIncep
and T(Niño-3,4) in a 47-year moving window.
Max{PIENSO!NAO(D = �19), PIENSO!NAO(D = �20)} is
shown versus the last year of the moving window.
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