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We propose a method for detecting the presence of a synchronization of a self-sustained oscillator by
external driving with linearly varying frequency. The method is based on a continuous wavelet transform of the
signals of the self-sustained oscillator and external force and allows one to distinguish the case of true
synchronization from the case of spurious synchronization caused by linear mixing of the signals. We apply the
method to a driven van der Pol oscillator and to experimental data of human heart rate variability and
respiration.
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I. INTRODUCTION

It is well known that interaction between nonlinear oscil-
latory systems including the ones demonstrating chaotic be-
havior can result in their synchronization. Various types of
synchronization between oscillatory processes have been in-
tensively studied in many physical, chemical, and biological
systems �1–6�. Of particular interest in recent years is the
investigation of synchronization in living organisms whose
activity is determined by interaction of a great number of
complex rhythmic processes. The underlying sources of
these oscillatory processes often cannot be measured sepa-
rately, but only superpositions of their signals are accessible.
For example, in electroencephalography recordings on the
scalp the measured signals are the superpositions of the sig-
nals generated by various interacting sources. As a result,
one can detect spurious synchronization between brain
sources and come to wrong biological conclusions �7�. This
situation is typical for many multichannel measuring de-
vices. One faces a similar problem studying synchronization
between the rhythms of the cardiovascular system �CVS�.
The most significant oscillating processes governing the car-
diovascular dynamics, namely, the main heart rhythm, respi-
ration, and the process of blood pressure slow regulation
with the fundamental frequency close to 0.1 Hz, appear in
various signals: electrocardiogram �ECG�, blood pressure,
blood flow, and heart rate variability �HRV� �8�. This fact
impedes studying their synchronization.

Synchronization between the main rhythmic processes in
the human CVS has been reported in Refs. �5,9–12�. It has
been found that the systems generating the main heart
rhythm and the rhythm of slow regulation of blood pressure
can be treated as self-sustained oscillators and the respiration

can be regarded as an external forcing of these systems
�11,12�. However, at respiration frequencies close to 0.1 Hz
it becomes difficult to distinguish the case of true synchro-
nization between the respiration and the process of blood
pressure regulation from the case of spurious synchroniza-
tion caused by the presence of the respiratory component in
the HRV and blood pressure signals used for the analysis of
the rhythm with the basic frequency of about 0.1 Hz. Actu-
ally, the presence of external forcing can result in linear mix-
ing of the driving signal and the signal of the self-sustained
oscillator without any synchronization. Another possible case
is the simultaneous presence of mixing of the signals and
their synchronization.

In this paper we propose a method for detecting synchro-
nization of a self-sustained oscillator by external driving
with linearly varying frequency. The method is based on a
wavelet transform of both the external signal and the self-
sustained oscillator signal and allows one to distinguish true
synchronization from the spurious one caused by linear mix-
ing of the signals. The principal interest of our approach is
that we vary the frequency of external signal. We verify our
method by applying it to a driven van der Pol oscillator and
to experimental data of human HRV and respiration. It
should be noted that synchronization between the different
rhythmic processes can be detected also from the analysis of
univariate data �10,13–17�. However, in the present paper we
use only bivariate signals for detecting synchronization.

The paper is organized as follows. In Sec. II the models
for studying the effects of synchronization and mixing are
considered. In Sec. III we describe the method for detecting
synchronization using the continuous wavelet transform.
Section IV presents the results of the method application to a
driven asymmetric van der Pol oscillator. In Sec. V the syn-
chronization between the respiration and the process of slow
regulation of blood pressure is studied. In Sec. VI we sum-
marize our results.
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II. MODELS

The universality of the phenomena observed in periodi-
cally driven self-sustained oscillators of physical and physi-
ological nature has been discussed in Refs. �5,10�. It has
been shown there that qualitatively the same features of syn-
chronization are observed in the case of periodic driving of a
van der Pol oscillator and in the case of respiratory forcing of
the heartbeat and the process with the basic frequency of
about 0.1 Hz. Let us consider the asymmetric van der Pol
oscillator under external forcing with linearly increasing fre-
quency as a model for studying interaction between the res-
piration and the process of blood pressure slow regulation.

The periodically driven asymmetric van der Pol oscillator
is described by the following equation:

ẍ − ��1 − �x − x2�ẋ + �2x = K sin ��t� , �1�

where �=1 is the parameter of nonlinearity, �=0.24� is the
natural frequency, and K and ��t� are, respectively, the am-
plitude and phase of the external force. The phase

��t� = 2���a + bt/T��t �2�

defines the linear dependence of the driving frequency �d�t�
on time:

�d�t� =
d��t�

dt
= 2��a + 2bt/T� , �3�

where a=0.03, b=0.17, and T=1800 is the maximal time of
computation. We choose these parameter values to compare
the results of simulation with those obtained in investigation
of experimental signals of respiration and HRV �see Sec. V�.

The case �=0 in Eq. �1� corresponds to the classical van
der Pol oscillator with symmetric limit cycle. As a result of
phase portrait symmetry, the power spectrum of oscillations
has only odd harmonics �2n+1�f0, n=1,2 , . . ., of the basic
frequency f0. Since the second harmonic 2f0 of the process
with the basic frequency close to 0.1 Hz is well pronounced
in the power spectrum, we consider the modified van der Pol
oscillator �1� with �=1.

The difference between the frequency �0 of self-sustained
oscillations and the natural frequency � is due to the effect
of nonlinearity �f0=�0 /2�=0.106 in Fig. 1�a��. In the case
of an asymmetric van der Pol oscillator this difference is
greater �f0=0.098 in Fig. 1�b��.

To compare the case of synchronization of oscillations by
external driving with the case of mixing of the signals we
consider the superposition of the signals

x��t� = x�t� + R sin ��t� , �4�

where x�t� is the signal of the autonomous asymmetric van
der Pol oscillator and R sin ��t� is the additive signal with
amplitude R, phase ��t�, and varying frequency �3�.

III. METHOD OF DETECTING SYNCHRONIZATION
USING CONTINUOUS WAVELET TRANSFORM.

MEASURE OF SYNCHRONIZATION OF OSCILLATIONS

Studying synchronization of chaotic oscillators various
definitions of synchronization have been introduced, namely,

complete synchronization, generalized synchronization, lag
synchronization, and phase synchronization �1�. To investi-
gate phase synchronization one has to choose the method of
phase definition for the chaotic signals �1,19–21�.

We will use the recently proposed approach �22–25� to the
analysis of synchronization based on examination of a con-
tinuous set of phases defined with the help of the continuous
wavelet transform �18,26�

W�s,t0� = �
−�

+�

x�t�	s,t0
* �t�dt �5�

of the signal x�t�, where 	s,t0
�t� is the wavelet function re-

lated to the mother wavelet 	0�t� as

	s,t0
�t� =

1
�s

	0� t − t0

s
� . �6�

The time scale s corresponds to the width of the wavelet
function 	s,t0

�t�, t0 is the shift of the wavelet along the time
axis, and the asterisk denotes complex conjugation.

We use the Morlet wavelet �27�

	0�
� = �1/�4 ��exp�j�
�exp�− 
2/2� �7�

as the mother-wavelet function. The choice of the wavelet
parameter �=2� provides the relation s=1/ f between the
time scale s of the wavelet transform and the frequency f of
the Fourier transform.

FIG. 1. �Color online� Power spectra and phase portraits for van
der Pol oscillator �1� at K=0, �=0.24�, �=1, and �= �a� 0, �b� 1.
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The wavelet spectrum

W�s,t0� = 	W�s,t0�	exp�j�s�t0�� �8�

describes the system dynamics for every time scale s at any
time moment t0. The value of 	W�s , t0�	 determines the pres-
ence and intensity of the time scale s at the moment of time
t0. At the same time, the phase �s�t�=arg W�s , t� is naturally
defined for every time scale s. In other words, it is possible
to describe the behavior of every time scale s using its phase
�s�t�.

If in the signals x1,2�t� there is a range of time scales
s1
s
s2 for which the phase locking condition

	��s�t�	 = 	�s1�t� − �s2�t�	 � const �9�

is satisfied and the part of the wavelet spectrum energy in
this range does not vanish,

Esnhr = �
s1

s2


E�s��ds � 0, �10�

where 
E�s�� is the distribution of integral energy by time
scales defined as 
E�s��= �1/T��t

t+T 	W�s , t0�	2dt0, then the
time scales s� �s1 ;s2� are synchronized and the oscillators
are in the regime of time scale synchronization �22�. In Eq.
�9� �s1,2�t� are the continuous phases of the first and the
second oscillator corresponding to the synchronized time
scales s� �s1 ;s2�.

Using continuous set of time scales s and the phases as-
sociated with these scales we introduce the quantitative mea-
sure of chaotic synchronization �22,25�

� = �
s1

s2


E�s��ds/�
0

�


E�s��ds . �11�

This measure defines the part of the wavelet spectrum energy
falling into the synchronized time scales. The increase of �
from 0 to 1 points to the increase of the part of the wavelet
spectrum energy falling into the synchronous time scales s.

IV. INVESTIGATION OF DRIVEN ASYMMETRIC
VAN DER POL OSCILLATOR

A. Amplitude dynamics of wavelet spectra of driven oscillator
and superimposed signal

Let us consider the wavelet power spectra 	W�s , t�	 of the
external signal K sin ��t� with linearly varying frequency, the
signal x�t� generated by Eq. �1�, and the superimposed signal
x
�t� �4�. Typical wavelet power spectra of these signals are
presented in Fig. 2.

The analysis of the wavelet power spectrum of the signal
a x�t� of a driven van der Pol oscillator �Fig. 2�b�� reveals the
classical picture of oscillator frequency locking by the exter-
nal driving. As a result of this locking, the breaks appear
close to the time moments ts and t2s denoted by arrows,
when the driving frequency is close to the frequency of the
autonomous oscillator or to its second harmonic. These
breaks represent the entrainment of oscillator frequency and
its harmonic by external driving. In the region of frequency

entrainment the amplitude of the respective coefficients
of the wavelet spectrum increases. This fact agrees well
with the known effect of the oscillation amplitude increase
in the synchronization �Arnold� tongue. If the detuning
�= ��d−2�f0� is great enough, the frequency of oscillations
returns to the natural frequency of the autonomous oscillator.

It should be noted that besides the break at the main time
scale s0 of the spectrum, a break at the scale s0 /2 corre-
sponding to the second harmonic 2f0 takes place. In this
region the wavelet surface has no maxima associated with
the driving signal since the intensity of the corresponding
spectral component is low.

FIG. 2. �Color online� �a� Shaded plot of the wavelet power
spectra 	W�s , t0�	 for the external signal with the frequency varying
in accordance with Eq. �3�; �b� the signal generated by oscillator
�1�; and �c� the superimposed signal �4�. Time is shown on the
abscissa and time scale is shown on the ordinate. The color intensity
is proportional to the absolute value of the wavelet transform coef-
ficients. The scales from the right side of the figure show the values
of the coefficients. The dashed lines indicate the time scale sd�t�
corresponding to the linearly increasing frequency �d�t� �3�.
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The wavelet power spectrum of the superimposed signal
x
�t� is shown in Fig. 2�c�. In contrast to the previous case,
the dynamics of both the van der Pol oscillator and the ex-
ternal force with varying frequency are well pronounced in
the spectrum. The absence of a break in the neighborhood of
the time moment ts indicates the absence of entrainment of
the oscillator frequency. One can see only slight distortion of
the wavelet surface caused by the increase of the wavelet
coefficients amplitude 	W	 at time moments close to ts. This
effect is the result of the addition of two signals with com-
parable amplitudes and close frequencies. Furthermore, the
surface distortion in the region of the main scale s0 is not
followed by any change in the wavelet spectrum at the scale
s0 /2 corresponding to the second harmonic of the signal x�t�.
Similarly, the coincidence of the frequencies �d and 4�f0 at
the time moment t2s is not followed by any changes of the
dynamics at the main scale s0.

Thus, it is possible to distinguish the cases of synchroni-
zation and mixing of the signals by analyzing the dynamics
of time scales corresponding to the basic frequency and its
harmonics in the wavelet power spectrum. In the case of
mixing the changes in the dynamics of the scale having a
frequency that is close to the driving frequency do not lead to
any change in the dynamics of other time scales. In the case
of synchronization the typical break in the wavelet power
spectrum is observed at all characteristic time scales.

B. Phase dynamics of driven oscillator and superimposed signal

Let us consider the phase difference between the x�t� sig-
nal produced by Eq. �1� and the external signal with linearly
increasing frequency and the phase difference between the
x
�t� signal produced by Eq. �4� and the external signal. The
phase differences ��s�t� are calculated along the scale sd�t�,
corresponding to the linearly increasing frequency �3�, i.e.,
along the dashed lines in Fig. 2. Typical dependencies ��s�t�
are presented in Fig. 3.

First, we consider the case of linear mixing of the signals
and analyze the phase dynamics in the vicinity of t= ts, where
the driving frequency is close to the basic frequency of the
van der Pol oscillator: �d�ts��2�f0. The phase dynamics at
the main scale s0=1/ f0 of the van der Pol oscillator can be
written as �s0�t�=2�f0t+�0, where �0 is the initial phase.
The phase �s�t� of the driving signal is determined by Eq.
�2�. Under the assumption that the amplitude of the external
signal is significantly smaller than the amplitude of oscilla-
tions of the van der Pol oscillator, the temporal behavior of
the phase difference between the components of the super-
imposed signal x
�t� takes the form

��s�t� = �s0�t� − �s�t� = 2���f0 − a�t − �b/T�t2� + �0.

�12�

It follows from Eq. �12� that the phase difference varies un-
der a parabolic law and the parabola has an extremum at
t= ts. In the neighborhood of this moment of time the depen-
dence ��s�t� is symmetric with respect to t= ts. A similar
situation takes place at the scale s0 /2=1/ �2f0� corresponding
to the second harmonic.

Such behavior of ��s�t� is illustrated by curves 1 and 2 in
Fig. 3. The curve 1 is plotted for small amplitude of the
external force and has a parabolic shape in the neighborhood
of ts and t2s. The curve 2 plotted for a greater amplitude R
also has an extremum at t= ts. However, this extremum is less
pronounced and has a shape different from a quadratic one.
This is explained by a great influence of the external signal
having amplitude comparable with the amplitude of the sig-
nal generated by the van der Pol oscillator. This case is char-
acterized by an almost constant phase difference which is
close to zero at t far from ts. For large R values the part of the
external signal in the mixture x
�t� is sufficiently large. As a
result, a phase difference is calculated between the phases of
practically the same signals. Therefore, if the part of the
driving signal is large enough in the superimposed signal,
one can detect spurious synchronization using conventional
methods of synchronization investigation.

Let us consider now the case of synchronization of an
asymmetric van der Pol oscillator by external driving with
linearly increasing frequency. This case is illustrated by the
curve S in Fig. 3.

We analyze the behavior of the phase difference ��s�t�
using the method of slowly varying amplitudes under the
assumption that the external driving does not change signifi-
cantly the amplitude of nonautonomous oscillations but
mainly has an influence on the phase relationships. It can be
shown that ��s�t� is governed by the Adler equation �28�

FIG. 3. �Color online� Phase differences between the superim-
posed signal �4� and the external signal with linearly increasing
frequency �curves 1 and 2� and between the signal of the driven van
der Pol oscillator �1� and the driving signal �curve S�. R=0.2 for the
curve 1 and 1.0 for the curve 2, and K=0.2 for the curve S. The
phase differences are calculated at the scale sd=2� /�d. The frag-
ment marked in �a� is enlarged in �b�.
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d���s�t��
dt

+ � sin ��s�t� − �2�f0 − �d�t�� = 0, �13�

where � is the coefficient defined by the oscillator param-
eters. It follows from the Adler equation that in the region of
synchronization defined by the condition �2�f0−�d�t��
�
the phase difference ��s�t� monotonically decreases by �
under driving frequency variation. By this is meant that in
the case of the synchronization of the oscillator by external
driving with linearly varying frequency we will observe in
the vicinity of time moments ts and t2s the regions where the
phase difference varies over �. This situation is illustrated by
the curve S in Fig. 3.

A special feature of our approach for detecting synchro-
nization is the application of external driving with varying
frequency. Another important feature of our method is the
analysis of the phase difference between the signals at dif-
ferent time scales s �22,29�. We consider the behavior of the
phase difference ��s�t� at the scales s�t�=sd�t�+�s, where
�s is the detuning of the scale with respect to the basic scale
sd�t�.

In Fig. 4�a� the phase differences at various scales are
presented for the case when �0 is close to �d. It can be seen
from the figure that for �s� �−1,2� the phase dynamics is
qualitatively similar to the case of accurate adjustment to the
basic scale sd�t�. At greater �s values the duration of epochs
of synchronous behavior becomes shorter and beginning
from some values of detuning there is no synchronization at
all. The presence of a range of scales �s within which syn-
chronous dynamics is observed allows one to investigate the
system behavior without accurate adjustment of the scale to
the basic scale sd�t� varying in time. It can be useful for the
analysis of experimental data.

Figure 4�b� illustrates the dependence of the measure of
synchronization � defined by Eq. �11� on time. At t�300 the
system quickly comes to the regime of time scale synchro-
nization. The part of the wavelet spectrum energy falling into
the synchronized time scales is more than 80%. With further
increase of time the value of � decreases and at t�540 it
becomes equal to zero. The last case corresponds to the ab-
sence of synchronization.

C. Dynamics of nonautonomous system in the simultaneous
presence of mixing and synchronization

Let us consider now the situation when the effects of mix-
ing and synchronization of the signals of the self-sustained
oscillator and external driving are simultaneously present.
Figure 5�a� shows the amplitude spectrum 	W�s , t0�	 of the
wavelet transform for the signal being the superposition of
the driven oscillator �1� signal synchronized by external driv-
ing with the amplitude K=0.125 and the driving signal itself
with R=1. This spectrum has features inherent to both the
cases of synchronization and mixing and gives no definite
answer to the question about the nature of the underlying
dynamics. The analysis of phase dynamics appears to be
more informative.

Figure 5�b� shows the dynamics of phase differences
��s�t� for R=1 and various amplitudes K. At small K values
the situation is qualitatively similar to the case of mixing

FIG. 4. �Color online� �a� Phase differences ��s�t� between the
driven asymmetric van der Pol oscillator and the driving signal at
scales sd�t�+�s. �b� Measure of synchronization �.

FIG. 5. �Color online� �a� Wavelet power spectrum 	W�s , t0�	 for
the superposition of the signal of driven oscillator �1� with
K=0.125 and the external forcing with R=1. �b� Phase difference at
the scale sd�t� between the external forcing with R=1 and the su-
perposition of the external forcing and the driven oscillator �1� sig-
nal with different K values.
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without synchronization considered above. The regime of
synchronization appears in a certain range of frequencies as
the amplitude K increases. The variation of the phase differ-
ence in the synchronization tongue takes the form of an in-
clined line. The boundaries of this line correspond to the loss
of synchronization. Note that the variation of the phase dif-
ference in the synchronization region in Fig. 5�b� is smaller
than in the case of R=0.

V. INVESTIGATION OF SYNCHRONIZATION BETWEEN
THE RESPIRATION AND THE PROCESS OF BLOOD

PRESSURE SLOW REGULATION

This section contains the results of physiological data
analysis. We studied eight healthy young male subjects hav-
ing average levels of physical activity. The signals of ECG
and respiration were simultaneously recorded in the sitting
position with the sampling frequency 250 Hz and 16-bit
resolution. The experiments were carried out under paced
respiration with the breathing frequency linearly increasing
from 0.05 to 0.3 Hz. The rate of breathing was set by sound
pulses. The duration of experiments was 30 min.

Figure 6�a� shows a typical respiratory signal with lin-
early increasing frequency and its wavelet power spectrum
�Fig. 6�b��. Extracting from the ECG signals the sequence of
R-R intervals, i.e., the series of the time intervals between
the two successive R peaks, we obtain information about the
heart rate variability. A typical sequence of R-R intervals for
breathing at linearly increasing frequency is shown in Fig.
6�c�. Since the sequence of R-R intervals is not equidistant,
we developed a technique for applying the continuous wave-
let transform to nonequidistant data. Figure 6�d� shows the
wavelet spectrum 	W�s , t0�	 for the sequence of R-R intervals
presented in Fig. 6�c�. This wavelet spectrum demonstrates
the high-amplitude component denoted as 1 corresponding to
the varying respiratory frequency manifesting itself in the
HRV data. The second harmonic of the respiration is ob-
served at a twice higher frequency. The power of the rhythm
with the basic frequency of about 0.1 Hz is rather small and
this frequency is not pronounced in the spectrum. The am-
plitude of the respiratory rhythm in R-R intervals is much
higher than the amplitude of the rhythm with the frequency
0.1 Hz.Comparing the wavelet spectrum of R-R intervals un-
der linearly increasing frequency of respiration with the
wavelet spectra presented in Secs. III and IV one can come
to the conclusion that a significant mixing of the considered
physiological signals takes place without synchronization.
However, the investigations performed in Ref. �11� with the
same experimental data have clearly shown the presence of
1:1 synchronization between the process of blood pressure
slow regulation and respiration at breathing frequencies close
to 0.1 Hz. This synchronization has been observed within the
time interval 200–600 s for each of the subject studied. The
wavelet spectrum in Fig. 6�d� does not allow us to detect the
presence of synchronization. The increase of HRV amplitude
at frequencies close to 0.1 Hz can be regarded only as an
indirect indication of the presence of synchronization.

In Fig. 7�a� the phase difference between the R-R inter-
vals and respiration is presented. Between 200 and 600 s the

phase varies on average almost linearly at the scale s=sb�t�
=1/ fb�t�, where fb is the linearly increasing frequency of
breathing. In this time interval the phase variation is close to
� indicating the presence of synchronization. Outside of the

FIG. 6. �Color online� Typical time series of breathing with
linearly increasing frequency �a� and its wavelet power spectrum
�b�. The respiratory signal is in arbitrary units. Sequence of R-R
intervals for the case of respiration with linearly increasing fre-
quency �c� and its wavelet power spectrum �d�. The dashed lines
indicate the time scale corresponding to linearly increasing fre-
quency of respiration.
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synchronization region the phase difference fluctuates around
a constant value. From the result obtained it may be con-
cluded that the respiratory dynamics manifested in the R-R
intervals affects the rhythm of blood pressure regulation
within the time interval 200–600 s. Outside of this interval
the respiratory component is observed in R-R intervals as a
result of mixing of the signals without their interaction.

A similar behavior of the phase difference is observed at
neighboring time scales. Figure 7�b� shows phase differences
at the scales s=sb�t�+�s. For small detuning ��s= ±0.75�
the phase dynamics is qualitatively similar to the dynamics at
the scale s=sb. Hence, a small error in determining the re-
quired scale will not result in qualitative changes in the plot.
If the mismatch of the scale of observation and the scale of
respiration sb is large, the amplitude of the corresponding
rhythm decreases and its phase cannot be defined confi-
dently. This is the case �s=−2 in Fig. 7�b�. As a result, the
phase difference is no longer constant.

VI. CONCLUSION

We have shown that applying external driving with vary-
ing frequency to the self-sustained oscillator and using a

method based on wavelet transform one can distinguish the
case of synchronization of an oscillator by this driving signal
from the case of absence of synchronization. The method
allows one to detect the presence of synchronization between
signals with close frequencies even in the case when the
effect of mixing of the signals is present. The use of a driving
signal with varying frequency is crucial for the proposed
method, since calculation of the phase difference between
the superimposed signals at a fixed time scale gives no an-
swer to the question of whether the system response is the
result of active interaction of the oscillating processes or the
result of their mixing without changes of the underlying dy-
namics. The proposed method does not require accurate ad-
justment of the scale of observation to the time scale associ-
ated with the varying frequency of the external driving. The
efficiency of the continuous wavelet transform for estimation
of the signal phase is demonstrated with experimental physi-
ological data characterized by high level of noise.

The proposed technique is applicable to a situation with
superimposed signals being at our disposal, and it is neces-
sary to define whether system 1 with adjustable frequency
affects system 2 and can synchronize it. Such information
can be useful, for example, for the diagnostics of the cardio-
vascular system state. Synchronization between the rhythmic
processes in the human cardiovascular system under paced
respiration is less effective in patients than in healthy sub-
jects, and this effect correlates with the seriousness of the
heart failure �30�. Using a small variation of the relative
phase or high values of the phase synchronization index as
criteria of synchronization, one can come to wrong biologi-
cal conclusions due to the mixing of the analyzed signals.

The proposed method can be used for detecting synchro-
nization in different systems if it is possible to vary the fre-
quency of the external driving in the experiment.
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