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Introduction.

 

 In recent years, the problem of recon-
struction of the equations of nonlinear dynamical sys-
tems with time-delay feedback (time-delay systems)
from their time series has received much attention [1–7].
The importance of this problem is related to the fact
that time-delay systems are frequently encountered in
nature [8]. The behavior of such systems is not entirely
determined by the present state, but depends on the pre-
ceding states as well. Accordingly, the time-delay sys-
tems are usually described in terms of differential equa-
tions with a delayed argument. Such models are suc-
cessfully used in various fields of physics, biology,
physiology, and chemistry.

In some practically important cases, we are dealing
with time-delay systems interacting with one another.
In particular, such coupled systems are used in descrip-
tion of the dynamics of interacting populations [9–11]
and in simulations of processes occurring in the human
cardiovascular system [12, 13]. There are good pros-
pects for using such models in the analysis of communi-
cation systems for secure data transmission [14], includ-
ing those based on optical-feedback lasers [15–17].
However, the problem of reconstruction of the model
equations of coupled time-delay system from their time
series remains practically unstudied, although this situ-
ation is encountered in solving many important practi-
cal problems.

In this Letter, we describe a method capable of
reconstructing the equations of coupled systems from
their chaotic time series, determining the character of
coupling (not known a priori), and finding the coupling
coefficients.

 

Description of coupled systems.

 

 Consider two
time-delay systems, 

 

X

 

1

 

 and 

 

X

 

2

 

, described in the absence
of coupling by first-order differential equations with
delayed argument of the following general type:

(1)ε1 2, ẋ1 2, t( ) x1 2, t( )– f 1 2, x1 2, t τ1 2,–( )( ),+=

 

where 

 

x

 

1, 2

 

 are the dynamical variables at the time 

 

t

 

, 

 

τ

 

1, 2

 

are the delay times, 

 

f

 

1, 2

 

 are nonlinear functions, 

 

ε

 

1, 2

 

 are
the parameters characterizing the inertial properties of
the systems (subscripts 1 and 2 assign the variables and
parameters to the systems 

 

X

 

1

 

 and 

 

X

 

2

 

, respectively). In
the general case, Eq. (1) represents the mathematical
model of an oscillatory system known in radio engi-
neering as a delay-feedback oscillator [18], comprising
a circuit with three ideal elements: nonlinear device,
inertial element, and delay line. Below, these elements
will be denoted by 

 

f

 

, 

 

ε

 

, and 

 

τ

 

, respectively.
The time-delay systems 

 

X

 

1

 

 and 

 

X

 

2

 

 can be coupled in
different ways. We will distinguish three types of cou-
pling, by which the variable 

 

x

 

1

 

(

 

t

 

) of system 

 

X

 

1

 

 is intro-
duced with a certain coefficient 

 

k

 

1

 

 into various points of
circuit 

 

X

 

2

 

 denoted by Arabic numerals 

 

1

 

–

 

3 

 

in Fig. 1. By
the same token, the variable 

 

x

 

2

 

(

 

t

 

) of system 

 

X

 

2

 

 can be
introduced with the coefficient 

 

k

 

2

 

 into various points of
circuit 

 

X

 

1

 

 denoted by Roman numerals I–III in Fig. 1.
In the case when the types of coupling 

 

X

 

1

 

 to 

 

X

 

2

 

 and 

 

X

 

2

 

to 

 

X

 

1

 

 are the same, the dynamics of these coupled sys-
tems is described by one of the following equations:

(2)

(3)

(4)

where 

 

k

 

1, 2

 

 are the coupling coefficients. Here, Eq. (2)
describes the type of coupling referred to below as 

 

1

 

/I,
whereby the first time-delay system acts upon the sec-

ε1 2, ẋ1 2, t( ) x1 2, t( )–=

+ f 1 2, x1 2, t τ1 2,–( ) k2 1, x2 1, t τ1 2,–( )+( ),

ε1 2, ẋ1 2, t( ) x1 2, t( )–=

+ f 1 2, x1 2, t τ1 2,–( ) k2 1, x2 1, t( )+( ),

ε1 2, ẋ1 2, t( ) x1 2, t( )–=

+ f 1 2, x1 2, t τ1 2,–( )( ) k2 1, x2 1, t( ),+
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ond system at point 1 and the second time-delay system
acts upon the first system at point I. By the same token,
Eqs. (3) and (4) describe the mutually interacting sys-
tems coupled to each other at points 2/II and 3/III,
respectively. If the types of mutual coupling of systems
X1 and X2 are different, the common system will be
described by the equations of different types. For exam-
ple, the type of coupling denoted 1/II implies that sys-
tem X1 is described by Eq. (3), while system X2 is
described by Eq. (2).

Description of the method. First, let us reconstruct
the equation of system X1, that is, determine the param-
eters τ1, ε1, and k2 and find the function f1 from the
available time series. In order to determine the delay
time τ1 from the observed time series x1(t), we use the
method developed in [5], where it was demonstrated
that time series of the systems of type (1) contain virtu-
ally no extrema spaced from each other by τ1. In order
to find τ1, we have to indicate extrema in the initial time
series, determine the numbers N of the pairs of extrema
in this series spaced by various times τ, and construct
the N(τ) function. Then, the delay time τ1 is determined
by the position of the absolute minimum of the N(τ)
function. The results of our investigations showed that
this approach can be also successfully used in cases
when system X1 occurs under the action of another sys-
tem X2, provided that this external action does not lead
to the appearance of a large number of additional
extrema in the time realizations of oscillations in sys-
tem X1.

For determining the parameter ε1 and the function f1
of system X1, as well as the coupling coefficient k2, we
propose a method based on an analysis of the time
series of both observables x1(t) and x2(t). First, let us
assume that the type of action of system X2 upon system
X1 (i.e., the structure of equation describing dynamics
of the time-delay system X1 under the external action)
is known. For example, consider the coupling type
described by Eq. (2), whereby the variable of system X2
is introduced into the feedback circuit of X1 before the
delay element (i.e., at point I in Fig. 1). In this case,
Eq. (2) for system X1 can be written as

(5)

As can be seen from Eq. (5), a set of points with the
coordinates (x1(t – τ1) + k2x2(t – τ1), ε1 (t) + x1(t)) plot-
ted on the plane will reproduce the function f1. Since
the quantities ε1 and k2 are not known a priori, we have
to plot ε (t) + x1(t) versus x1(t – τ1) + kx2(t – τ1) for
various ε and k in search for the single-valued relation-
ship that is possible only for ε = ε1 and k = k2. As a
quantitative criterion of such a unique relationship in
the search for ε1 and k2, we can use the minimum length
of a segment L(ε, k) connecting points (ordered with
respect to the abscissa) on the above plane. A minimum

ε1 ẋ1 t( ) x1 t( )+ f 1 x1 t τ1–( ) k2x2 t τ1–( )+( ).=

ẋ1

ẋ1

of L(ε, k) (Lmin(ε, k)) will correspond to ε = ε1 and
k = k2, while the dependence of ε1 (t) + x1(t) on
x1(t − τ1) + k2x2(t – τ1) constructed for these parameters
will reproduce a certain nonlinear function that can be
(if necessary) approximated. The proposed approach
employs all points of the time series, which allows short
time series to be used for reconstruction of the system
parameters ε1 and k2 and the nonlinear function f1.

The same method can be used for reconstructing the
nonlinear function f1 and the parameters ε1 and k2 in the
situations described by Eqs. (3) and (4), by plotting
ε (t) + x1(t) versus x1(t – τ1) + kx2(t) and ε (t) +
x1(t) – kx2(t) versus x1(t – τ1), respectively, for various ε
and k. If the point (I, II, or III) at which system X2 acts
upon system X1 is not known a priori, it is necessary to
perform reconstruction for each of the three model
equations (2)–(4) for system X1 and determine the cor-
responding values of Lmin(ε, k). The only correct struc-
ture of the model equation will be indicated by single-
valued form of the reconstructed function and, accord-
ingly, by the lowest of the three values of Lmin(ε, k).
Thus, the proposed method allows both the parameters
of mutually coupled time-delay systems and the type of
this action (i.e., the form of the model equation) to be
reconstructed from the observed time series.

The same procedures are used to reconstruct the
time-delay system X2 from the available time series of
variables x2(t) and x1(t). These procedures yield the
parameters τ2 and ε2, define the form of the nonlinear
function f2 for system X2, and determine the coupling
coefficient k1 and the type of action of system X1 upon
system X2.

ẋ1

ẋ1 ẋ1
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Fig. 1. Schematic diagram of coupled time-delay systems
X1 and X2. Elements denoted by τ1, 2, f1, 2, and ε1, 2 repre-
sent the delay line, nonlinear device, and inertial transfor-
mation of oscillations, respectively; elements k1, 2 deter-
mine the mutual coupling of systems X1 and X2. Points 1–3
(I−III) represent various types of introduction of the action
of system X1 into system X2 (X2 into system X1).
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Verification of the method. We have verified the
proposed reconstruction method by applying the proce-
dure outlined above to the experimental time series of
two coupled delay-feedback oscillators. When such
coupled oscillators are schematically depicted as in
Fig. 1, the delay of signal x1(t) by the time τ1 and the
delay of signal x2(t) by the time τ2 are provided by the
corresponding delay line; the role of a nonlinear ele-
ment in each oscillator is played by an amplifier with a
transmission function f1 or f2; the inertial properties are
determined by a filter, the parameters of which define ε1
or ε2; and the coupling is effected by adding amplifiers
ensuring the transmission coefficients k1 or k2. In the
example under consideration, the coupling type accord-
ing to our classification corresponded to 1/III. In the
case when the inertial element is a first-order low-fre-
quency RC filter, such oscillators in the absence of cou-
pling are described by the equation

(6)R1 2, C1 2, V̇1 2, t( ) V1 2, t( )– f 1 2, V1 2, t τ1 2,–( )( ),+=

where V1, 2(t) and V1, 2(t – τ1, 2) are the voltages at the
input and output of the corresponding delay line; and
R1, 2 and C1, 2 are the resistances and capacitances in the
filters of the corresponding oscillator, respectively.
Equation (6) has the form of Eq. (1) with ε1, 2 =
R1, 2C1, 2 .

The signals V1(t) and V2(t) at the input of the corre-
sponding delay line were recorded and digitized using
an analog-to-digital converter at sampling rate of
10 kHz for the following parameters of coupled oscilla-
tors: τ1 = 23 ms; τ2 = 31.7 ms; R1C1 = 0.48 ms; R2C2 =
1.01 ms; k1 = –0.1; k2 = 0.1. Fragments of the corre-
sponding time series are presented in Figs. 2a and 2b.
Upon counting the number of situations where the sig-

nals (t) and (t – τ) simultaneously vanish for var-
ious τ (tried at a step equal to the period of sampling
Ts = 0.1 ms), we construct the function N(τ) (Fig. 2c).

In order to evaluate the derivative (t) from the time
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Fig. 2. Reconstruction of the system of two delay-feedback oscillators coupled in the 1/III type: (a, b) typical experimental time
series of systems X1 and X2, respectively; (c, d) plots of the number N of the pairs of extrema in a time series of X1 and X2, respec-
tively, spaced by various times τ, normalized to the total number of such extrema; (e) reconstruction of the nonlinear function f1 (for
τ1 = 23.0 ms, ε1 = 0.46 ms, and k2 = 0.10); (f) reconstruction of the nonlinear function f2 (for τ2 = 31.7 ms, ε2 = 1.06 ms, and
k1 = −0.10).
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series, we used a local parabolic approximation. The
absolute minimum of N(τ) is observed for the first
oscillator at τ = 23.0 ms (Fig. 2c) and for the second
oscillator at τ = 31.7 ms (Fig. 2d).

During the reconstruction of oscillator X1 in the
form of Eq. (4), the curve of L(ε, k), constructed using
a 0.01 ms step in ε and a 0.01 step in k, exhibited a min-
imum at ε = 0.46 ms and k = 0.10 (which provides a
quite close estimation of the ε1 and k2 values). The
reconstructed nonlinear function (Fig. 2e) shows a
good coincidence with the true transmission character-
istic f1 of the nonlinear element of the first oscillator.

A minimum of the curve of L(ε, k) constructed for
system X2 represented by Eq, (2) was observed at ε =
1.06 ms and k = –0.10 (also sufficiently close to the true
values of ε2 and k1). The reconstructed nonlinear func-
tion f2 is depicted in Fig. 2f.

Conclusion. We proposed a method for reconstruct-
ing coupled time delay systems using the observable
time series. This method allows the delay times, inertial
parameters, nonlinear functions, and coupling coeffi-
cients for the two coupled time-delay systems to be
determined, even when the type of coupling is a priori
unknown. In the latter case, the reconstruction proce-
dure makes it possible to establish the type of coupling
between the time-delay systems. In contrast to other
methods of determining the coupling between systems
using their time series [19–21], the proposed procedure
is capable of determining not only the direction of cou-
pling, but its magnitude as well.
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