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Abstract

The problem of parameter estimation in model maps from noisy time series is addressed. We suggest a new techn
special case of one-dimensional maps and chaotic signals. It is based on the maximum likelihood (ML) principle and e
of the cost function viabackwarditerations of a model map. We demonstrate in numerical experiments and, in part,
theoretically that this “backward ML technique” gives more accurate estimates than previously known techniques for
moderate noise levels. In particular, global optimisation of the cost function becomes much easier; biases in the estima
as the time series lengthN increases; variances of the estimates decrease as fast asN−α whereα depends on the original system
typical values being aboutα = 2.0 under mild conditions on the original systems.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Apart from their basic importance, the methods
mathematical modelling from time series find num
ous applications ranging from estimation of nonline
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characteristics of electric circuit elements[1] to the
description of biochemical processes in cells[2]. The
problem of modelling from time series is known
“system identification”[3] and “reconstruction of dy
namical systems”[4,5]. Nowadays, approaches to
solution are developed within the framework of no
linear dynamics[1,2,6–18], the use of maps bein
quite widespread[12–18]since even low-dimensiona
maps are capable of describing complex dynam
.
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(a) (b)

Fig. 1. The graphs of the cost functions(2) and(4) for the time series of the quadratic map(6) at N = 20, a(0) = 1.85, andx
(0)
1 = 0.3. We

specifiedx1 = x
(0)
1 in (2) andxN = x

(0)
N

≡ f (N−1)(x
(0)
1 ) in (4).
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of many real-world systems. Thus, the Poincaré m
of a strongly dissipative nonlinear flow is often on
dimensional to a high accuracy, e.g., the Lorenz
Rössler systems[19].

Our work is devoted to parameter estimation
a one-dimensional map from a noisy chaotic ti
series. This problem was considered in a series
works [20–24] where different estimation techniqu
were suggested. Each of them involves optimisatio
some cost function and is related to a certain exten
the ML principle. Theoretically, a longer time seri
must provide opportunity to get more accurate e
mates. However, even the ML method encounters
rious practical difficulties when it is applied to chao
signals. The cause is that exponential sensitivity o
chaotic map orbit to initial conditions and paramet
results in a very complicated, jagged “relief” of th
cost function graph, seeFig. 1(a) for an illustration
and[24] for details. Hence, the optimisation proble
becomes practically unsolvable, especially for mu
ple estimated parameters. Therefore, modification
the method was suggested in[24] and called “piece-
wise” ML technique. It consists in segmentation of t
time series and averaging the estimates obtained
different segments. Despite such a modified appro
seems to be the most efficient among all others for
timation from chaotic signals, it is not “perfect” als
since the length of the segments must be sufficie
small that inevitably leads to bias in the estimates. T
bias may not vanish even when the time series len
N tends to infinity. Besides, the variance of the e
mates decreases withN only as 1/N like for a usual
regression problem.
In the present Letter for the particular case of o
dimensional maps we suggest a new technique w
is also a special version of the ML method. It is bas
on the use ofbackward iterationsof a map to evaluate
the cost function. Such an idea was exploited ea
for nonlinear noise reduction[25] and separation o
the sum of chaotic signals into its components[26].
The new technique allows the use of the entire cha
time series without dividing it into segments due
typically simple relief of the cost function graph, s
Fig. 1(b) for an illustration. As we show below, apa
from the ease of global optimisation, the new estima
are more accurate for moderate noise. They are alm
unbiased and their variances often decrease witN

faster than 1/N .
The Letter is organised as follows. In Section2 we

describe the “piecewise” and “backward” ML tec
niques. In Section3 we present the results of the
comparison in numerical experiments and formul
conditions for the superiority of the “backward” tec
nique, while more rigorous mathematical justificati
of the results is presented inAppendix A. We sum-
marise in Section4.

2. Problem and methods

2.1. Problem formulation

Let us consider a one-dimensional map

(1)xn+1 = f (xn,a),
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where x is a dynamical variable,a is a paramete
vector of dimensionalityP . Let a time series be gen
erated by the map(1) in a chaotic regime at som
a = a(0) andx1 = x

(0)
1 in the presence of additive ob

servational noise. We denote the observed time se
{η1, . . . , ηN }, whereηn = xn + ξn, ξn is a sequence o
i.i.d. Gaussian random values with zero mean and v
anceσ 2

ξ . The form off is known, the values ofa(0),

x
(0)
1 , andσ 2

ξ are unknown. It is necessary to get an
timate â of the parameter vector, which is as close
the true valuea(0) as possible.

Throughout the Letter, we use a usual mean squ
error (MSE) to quantify “goodness” of the estimate
Namely, the MSE in the estimateâ of a single parame
ter a is ε2 = 〈(â − a(0))2〉 where angle brackets stan
for mathematical expectation, i.e., for the average o
different noise realisations at fixeda(0) andx

(0)
1 . As is

well known from the theory of probabilities, the MS
can be expressed asε2 = (〈â〉 − a(0))2 + σ 2

â
, where

(〈â〉 − a(0)) is the bias in the estimate andσ 2
â

is its
variance. For multiple estimated parameters,P > 1,
we define the total MSE asε2 = ∑P

i=1 ε2
i whereε2

i is
the MSE in the individual estimatêai .

2.2. ML method and its “piecewise” version

Theoretically, one expects the ML method to
the most efficient estimation technique under c
tain “general” conditions, see[24] and reference
therein. It is tantamount to the least-squares met
for Gaussian observational noise considered h
Namely, one minimises a cost function

(2)S(x1,a) =
N−1∑

n=0

(
ηn+1 − f (n)(x1,a)

)2
,

where f (n) is the nth iteration of the mapf ,
f (0)(x,a) ≡ x.

If the observed regime is stable periodic, th
the ML-method gives consistent, asymptotically u
biased, and efficient estimates. So, both biases
variances of the estimates vanish asN → ∞. The
variancesσ 2

x̂1
and σ 2

âi
for moderate noise level ca

be estimated accurately as diagonal elements of
matrix σ 2

ξ · J−1
N , whereJN is a cumulative Fisher in

formation matrix[24]. E.g., for the simplest case o
P = 1 and knownx(0)

1 , JN is just a real number an
reads

(3)JN =
N∑

n=1

I2
n ,

whereIn = ∂f (n−1)(x1,a)
∂a

∣∣
x1=x

(0)
1 ,a=a(0) . It can be shown

that for a periodic regimeJN ∝ N and, hence, the
varianceσ 2

â
scales asσ 2

â
∝ N−1, seeAppendix A.

Besides, the cost function graph is typically not co
plicated, so that a global minimum can be found eas
Everything is the same forP > 1 and unknownx(0)

1 .
Seemingly, nothing better can be achieved in this c

The situation is quite different for a chaotic regim
First of all, some of the “general” conditions me
tioned above are not fulfilled, so that the ML estima
obtained via minimisation of(2) are no more guaran
teed to be consistent[24]. The cause is that the co
function becomes fast oscillating and, perhaps, is
smooth asymptotically.Fig. 1(b) illustrates this for a
very moderateN . So, the theoretical property of co
sistency and others are under the question. It would
be crucial in practice since for sufficiently largefinite
N the cost function(2) is smooth and biases and va
ances of the ML estimates are negligibly small. E
for a single unknown parametera in the quadratic map
and knownx(0)

1 , the varianceσ 2
â

is shown in[23,24]to

decrease exponentially withN . For unknownx(0)
1 , the

varianceσ 2
â

does not decrease so fast that is explai
in [24] by ill-conditioning of the matrixJN . Never-
theless, one observes empirically thatσ 2

â
∝ N−α with

α = 3.2 [24]. This relatively fast decrease inσ 2
â

along
with a very small bias would suffice to claim that t
ML estimate is “practically consistent and efficient”

However, such efficiency takes place only if o
succeeds in searching for the global minimum of(2).
In practice, the minimisation is carried out with th
aid of an iterative technique[27], where certain start
ing guesses forx1 anda are generated and a “descen
to a minimum is realised stepwise. To find the glo
minimum of(2) for a long chaotic time series is pra
tically impossible[24] since its relief exhibits variety
of local minima, see illustration inFig. 1(a).

The starting guesses determine which of the m
ima will be found. Usually, one tries big numb
M of starting guesses and chooses the deepest
imum among all minima found. Those guesses
taken from a certain domain where the true value
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the estimated quantities are expected to be loca
One often uses a (P + 1)-dimensional parallelepipe
�x ×�a1×�a2×· · ·×�aP , where�x is its projec-
tion onto the initial condition axis and�ai—onto the
respective parameter axes. Let us call�x and�ai “the
intervals of starting uncertainty”. To find the glob
minimum of(2) for a long chaotic time series is poss
ble only for astronomically largeM or extremely smal
�x and�ai [22], both conditions being unrealistic.

According to “piecewise” ML technique, whic
seems the best approach known so far[24], one fixes
certain reasonableM , �x, and�ai , and divides the
original time series into the segments of a mode
lengthL. Thus, it turns out practically possible to fin
the global minimum of the cost function(2) for each
individual segment. The ultimate estimateâf is an av-
erage value over the estimates obtained fromN/L in-
dividual segments. Since the estimates obtained f
each segment may be significantly biased,âf is also
probable to be biased. Technical details of the met
implementation, such as the choice ofL, are con-
cerned in Section3.

2.3. “Backward” ML technique

We suggest to use the ML principle in combinati
with backward iterations of a map, i.e., to minimi
the cost function

(4)S(xN,a) =
N∑

n=1

(
ηN−(n−1) − f (−(n−1))(xN ,a)

)2
,

where f (−n) is the nth backward iteration of the
map (1). The only Lyapunov exponent of theone-
dimensionalmap(1) becomes negative under the tim
reversal. Thus, sensitivity of a backward orbit of t
map to its “initial” conditionxN disappears. There
fore, one can expect much smaller number of the lo
minima for the cost function(4), seeFig. 1(b) for a
numerical illustration.

Since a chaotic regime can be demonstrated onl
a nonmonotoneone-dimensional map, the problem
the nonuniqueness of the inverse mapf (−1) arises in-
evitably. To implement backward iterations, one m
decide which root of the equation

(5)xn+1 − f (x,a) = 0,
where the valuexn+1 is the result of the previou
backward iteration, should be taken asxn. Ideally,
one would choose the root closest to the true va
x

(0)
n . Sincex

(0)
n is not observed, quite a natural a

simple way is to take the root which is the clo
est to the corresponding observed valueηn. For the
values ofa and xN close to the true values, such
choice can be sometimes erroneous due to obse
tional noise. To avoid the erroneous choice, one
try to performm backward iterations for every roo
of (5) thereby generating several alternativem-point
“branches”xn, xn−1, . . . , xn−m+1 of the backward or-
bit. Finally, the branch closest to the observed segm
ηn, ηn−1, . . . , ηn−m+1 can be selected. The depthm
cannot be very big in practice since the number
branches rises exponentially withm. We show in Sec-
tion 3 thatm = 1 is a good choice, while increase inm

gives almost no gain, and explain this observation.
The minimisation of(4) is also performed numer

ically at someM , �x, and �ai , but the technique
appears insensitive to these settings as shown be
Therefore, we useM = 1, while�x and�ai are taken
to be the same as for̂af . Let us denote the new est
mator aŝab.

3. Numerical experiment

Throughout this section we calculate the MSE
âf and âb via averaging over an ensemble of 10

time series generated at fixed values ofa(0), x
(0)
1 , N ,

andσ 2
ξ . N = 100, if not stated otherwise. The sta

ing guesses are obtained as random values unifo
distributed in the respective intervals of starting u
certainty. All the calculations are performed in dou
precision.

3.1. Estimation of a single parameter

Time series is generated by the quadratic map

(6)xn+1 = 1− ax2
n,

with a(0) = 1.85 andx
(0)
1 = 0.3, exactly as in[20–22,

24] to facilitate the comparison.

Piecewise ML techniqueWe fixed somewhat arbi
trarily M = 10, �x = [x(0)

n − 0.1, x
(0)
n + 0.1], and
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(a) (b)

Fig. 2. MSE in the estimateŝaf of the parametera of the quadratic map(6) at N = 100: (a) for different minimisation techniques atL = 10;
(b) for constrained smooth minimisation at differentL.
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�a = [1.5,2.0]. First, let us consider what minim
sation technique to use. We performed unconstra
minimisation of(2) using both a smooth technique1

and a nonsmooth one.2 Besides, in practice one ma
be sometimes confident that the values of estima
quantities cannot lie outside of certain intervals, e
intervals of starting uncertainty�x and �a. Then,
it is natural to perform constrained minimisation
enforcing x̂1 and âf to belong to�x and �a, re-
spectively. Thus, we used also constrained vers
of smooth3 and nonsmooth4 techniques. We compar
the obtained estimateŝaf for the noise levelσ 2

ξ =
0.01 and the segment lengthL = 10 in Fig. 2(a). All
the techniques give comparable results except for
unconstrained nonsmooth one which is significan
worse. Constrained techniques give lower MSE si
the constraints decrease the variance of the estim
The constrained nonsmooth technique seems to b
best one for the case considered and, therefore,
used further.

1 Quasi-Newton method with finite-difference gradient a
BFGS formula as implemented in the subroutine UMINF/DUMIN
of the IMSL library, default settings.

2 Direct search polytope algorithm as implemented in the s
routine UMPOL/DUMPOL of the IMSL library, default settings
tolerance for the relative error is specified to be 10−7.

3 Quasi-Newton method with finite-difference gradient, BFG
formula, and active set strategy as implemented in the subro
BCONF/DBCONF of the IMSL library, default settings.

4 Direct search complex algorithm as implemented in the s
routine BCPOL/DBCPOL of the IMSL library, default settings, to
erance for the relative error is specified to be 10−7.
.

Selection of the segment lengthL is performed also
via trials and errors. InFig. 2(b) the MSE for differ-
ent L are presented. The lengthL = 10 provides the
smallest MSE for a wide range of noise levels. It c
be explained as follows. For smallerL, e.g.,L = 3, the
global minimum of(2) can be found easily, but sinc
the segment is short, the exact location of the m
mum strongly fluctuates around the true valuea(0) due
to noise. The latter results in a relatively large varian
of the estimates and, hence, a large MSE. For very l
segments, e.g.,L = 20, local minima are found ver
often since the cost function graph becomes jagg
that leads again to a large MSE. Therefore, there i
optimal L in between, when local minima are foun
only rarely. We note also that it is very difficult t
choose the best segment lengthL in practice when
one has only a single time series. One opportunit
to chooseL intuitively. The second opportunity is t
choose suchL that gives the minimal empirical var
ance of the individual estimates overN/L segments
as mentioned in[24]. The results for the latter (au
tomatic) choice ofL are moderately good and a
shown inFig. 2(b) with crosses: MSE is higher tha
for L = 10 but is comparable to “worse”L. Further we
always use the bestL = 10 to compare good version o
the piecewise ML technique of[24] to our backward
ML technique.5

5 Pisarenko and Sornette identifiedL = 4 as the optimal segmen
length[24]. However, we believe that this holds true only for ve
low noise levels.
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d

(a) (b)

Fig. 3. (a) MSE in the estimateŝab of the parametera of the quadratic map(6) at N = 100 for different depthsm of backward branches an
genuine choice of the root of Eq.(5). (b) Variances of̂ab and approximate “linear” theory (the dashed line) at low noise levels.

(a) (b) (c)

Fig. 4. Comparison of the estimatesâf (at L = 10) andâb (at m = 1) of the parametera of the quadratic map(6): (a) MSE atN = 100,

(b) scaling exponentα in the “asymptotic” lawσ2
â

∝ N−α , (c) biases atσ2
ξ = 0.0001.
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Backward ML technique We use the smallest num
ber of starting guessesM = 1. The MSE in the esti
matesâb are shown inFig. 3(a) for different choices
of the root of the Eq.(5): genuine choice based o
knowing the true valuesx(0)

n and different depthsm
of backward branches. The MSE for genuine cho
is the least, but not drastically different from othe
The results for differentm are almost indistinguish
able. It can be explained as follows. Let us supp
that for m = 1 a deviation of a model orbit from
the true orbit is induced at time instantn by the er-
roneous choice of the root. This deviation decrea
under further backward iterations due to negativ
of the Lyapunov exponent in reverse time. The
fore, deeper backward branches add relatively sm
amount of information to recognise the wrong choi
i.e., m > 1 does not result in better estimates. Furt
we always usem = 1 that is much faster and sim
pler.
Additional peculiarities ofâb are illustrated in
Fig. 3(b) where its variance is presented for ve
weak noise. Theoretically, the linear dependenceσ 2

â
=

kNσ 2
ξ holds for σ 2

ξ → 0, kN is determined from
the cumulative Fisher information matrixJN , see
Appendix A. However, the variance of̂ab observed
empirically follows the theoretical straight line on
up to σ 2

ξ ≈ 2.0 × 10−5. After that, it rises with noise
level much faster. This is the case even for the g
uine choice of the root of Eq.(5), so this fast in-
crease is not due to wrong choice of the root. It
not also due to local minima problem since our exp
iments showed that nothing is changed if more star
guesses (M > 1) are used. It means that a global m
imum of (4) is always found even forM = 1 (that
is a very important advantage of the backward M
technique). Thus, the fast increase inσ 2

â
with noise re-

flects seemingly the nonlinear properties of the c
function(4) around its global minimum.
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(a) (b) (c)

Fig. 5. MSE in âf (dashed lines) and̂ab (solid lines) for estimation of multiple parameters atN = 100: (a) 3 parameters of the map(7),
constrained nonsmooth minimisation; (b) 3 parameters of the map(7), constrained smooth; (c) 4 parameters of the map(8), constrained
nonsmooth.
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Comparison of the techniquesTo facilitate the com-
parison, the MSE in̂af (L = 10, M = 10) and âb

(m = 1, M = 1) are reproduced together inFig. 4(a).
The backward ML technique gives more accurate
timates for noise levels up to a certain threshold va
of σ 2 ≈ 0.011 shown with a filled circle. In terms o
noise-to-signal ratio this threshold level is equal
17% (ratio of the standard deviation of noiseσξ =
0.105 to the standard deviation of the “pure” sign
σx = 0.616).

An important property of the estimates is the beh
iour of their variances and biases whenN increases
We calculated variances of̂af and âb for different
noise levels and the time series lengthsN in the range
[102,103]. They follow a power lawσ 2

â
∝ N−α quite

well. We determined the values of the exponentα to-
gether with their 95% confident intervals via regre
ing logσ 2

â
onto logN , Fig. 4(b). For high nose level

σ 2
ξ > 0.015, one observes approximately the same

uesα ≈ 1.0. Significantly faster decrease in the va
ance ofâb is observed for lower noise. Vice versa, t
exponentα for âf becomes even less than 1.0 due
the local minima problem. Forσ 2

ξ → 0 one observe
quite fast decrease of the variance ofâb (α ≈ 2.0)
which is due to close returns of the map orbit in
the vicinity of the maximum off as explained inAp-
pendix A. Those returns provide high values of part
Fisher informationI2

n under backward iterations.
The behaviour of biases with increase inN is also

different for the two techniques. For a low noise le
σ 2

ξ = 0.0001, the bias in̂af does not decrease withN
while the bias inâb is significantly smaller and van
ishes asN → ∞ as illustrated inFig. 4(c). This is an
expected result. For the piecewise ML technique, s
tematic errors from each segment may not compen
each other, so the bias in̂af may remain asymptoti
cally. For the backward ML technique the entire tim
series is used “at once”, so the usual property of
ymptotic unbiasedness of ML estimates looks natu
even though it is not proven rigorously for the cons
ered problem.

3.2. Estimation of multiple parameters

To study what changes when the number of the e
mated parameters increases, we take as an object
the quadratic map but withP = 3:

(7)xn+1 = a1 + a2xn − a3x
2
n.

Time series were generated at the same value
a

(0)
1 = 1.0, a

(0)
2 = 0.0, a

(0)
3 = 1.85, andx

(0)
1 = 0.3.

We use constrained nonsmooth minimisation and
changedM , L, m to calculateâf and âb. The un-
certainty intervals are�a1 = [0.8,1.2] and �a2 =
[−0.2,0.2], the others are unchanged.

Backward ML estimatêab is again more accurat
for low noise levels, the threshold noise variance be
approximatelyσ 2

c ≈ 0.008, Fig. 5(a). The threshold
is smaller as compared to the case ofP = 1 where
σ 2

c ≈ 0.011, but the difference is not large. Moreov
the use of constrained smooth minimisation leads
unchangedσ 2

c ≈ 0.011 for single parameter estimatio
(not shown) and to greaterσ 2

c ≈ 0.013 for estimation
of three parameters (Fig. 5(b)). Thus, one can con
clude that the observed estimation results forP = 1
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andP = 3 are approximately the same even quant
tively.

Let us finally report the results of estimation of fo
parameters for the same object and orbit

(8)xn+1 = a1 + a2xn − a3x
2
n + a4x

3
n.

As the only additional setting we used�a4 =
[−0.2,0.2]. The results shown inFig. 5(c) are qual-
itatively the same but the threshold noise level is d
nitely smaller now. It isσ 2

c ≈ 0.001 or about 5%, i.e.
approximately three times as small as forP = 1 and
P = 3. This isagain quite a strong noisesince, say,
typical levels of measurement noise in electronics
about 0.05–0.1%.

It is difficult to reveal a universal law in the depe
dence of the threshold noise level onP . One could
expect that superiority of the backward ML techniq
should become more prominent for largerP since the
global minimum of(4) is easily found for anyP and so
the accuracy of̂ab could remain the same. On the oth
hand, minimisation of(2) is far more difficult for big
P at fixedM and the accuracy of̂af should decrease
However, our experience shows that the accurac
âb also decreases withP due to the properties of th
global minimum of(4) similar to that illustrated in
Fig. 3(b) (not due to local minima problem). We wou
conjecture that the threshold noise level depende
on P is specific to the form of the original map(1),
rather than being universal.

Finally, we would like to note that onlyenormous
increase inM can more or lessrefine the piecewise
ML estimates, since it would allow an increase in t
segment lengthL. But it would introduce only rel-
atively weakquantitativechange whilequalitatively
all the results, such as an outlook of the compari
plot in Fig. 4(a), would remain the same. Similarly, in
crease in the number of the estimated parameters
lead only to quantitative changes. In fact,Fig. 4(a)
illustrating robust superiority of the backward ML
method for moderate noise levels is the main resu
the Letter.

4. Conclusions

Modelling from time series is always finished wi
parameter estimation for a selected model struct
Intuitively, accurate estimates could be achieved in
case of a chaotic signal since a model orbit is very s
sitive to parameters. However, if the usual ML meth
is applied and forward iterations of a model map
used, inevitable practical difficulties arise for a lo
chaotic time series. The problem is that one can
practically find the global minimum of the cost fun
tion. A “piecewise” ML method is a good attempt
circumvent the problem, but the estimates may be
ymptotically biased and their variance decreases w
the time series lengthN (only as 1/N ).

In this Letter we suggested new “backward” M
technique for the case of one-dimensional maps
chaotic time series. It consists in the use of backw
iterations of a map for evaluation of the cost functio
It is shown to have several essential advantages
the “piecewise” ML technique for weak and mode
ate observational noise levels. First, the cost func
graph is much simpler and to find the global minimu
is very easy. Second, the MSE in the new estimates
(much) less than in the “piecewise” ML estimates
noise levels up to a certain threshold level. This thre
old is typically quite significant, of the order of 5–15
of the signal in rms values. Third, the bias in the n
estimates vanishes asN → ∞ while for the piece-
wise ML estimates it remains approximately consta
Fourth, the variance of the new estimates typically
crease asN−α with quite a typical valueα ≈ 2. The
third and fourth properties hold true at least as an in
mediate asymptotic, but only for sufficiently low noi
level. The results are qualitatively the same when m
tiple parameters are estimated.

We stress that the backward ML technique is
plicable forone-dimensionalmaps. Generalisation t
higher dimensions is problematic since an orbit
a multidimensional dissipative system becomes e
more sensitive to the parameters under the time
versal. Nevertheless, there also exist multidimensio
systems to which the method is applicable. These
hyperchaotic maps without negative Lyapunov ex
nents, e.g., several weakly coupled quadratic maps(6).
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Appendix A. Asymptotic scaling laws for
variances of estimates

Here, we focus on the dependence of the cum
lative Fisher informationJN [24] on N for a single
estimated quantitya (x(0)

1 is assumed to be known fo
the ease of illustration). Thereby, we find out the
pendence of the variances of the estimates onN since
σ 2

â
= σ 2

ξ /JN for weak noise.
The cumulative Fisher information is given b

Eq. (3). Using the chain differentiation rule, it i
straightforward to get the following recurrent relati
for In

(A.1)In+1 = µn · In + νn,

where

νn = ∂f (xn, a)

∂a

∣∣∣∣
xn=x

(0)
n ,a=a(0)

,

µn = ∂f (xn, a)

∂xn

∣∣∣∣
xn=x

(0)
n ,a=a(0)

.

The question is whetherIn is bounded or what is th
law of its increase withn. If In were independent ofµn

andνn then the Eq.(A.1) would describe a linear sys
tem. Boundedness or rise ofIn would be determined
by the Lyapunov exponent of(A.1). Even thoughIn

dependsin general onµn andνn, we furtherassume
thatIn, µn andνn aremutually independent. This is a
strong approximation but it is justified in part by th
following considerations:

(1) the dependence ofIn onµn andνn can be non-
linear and very complicated so that they can be at l
almost uncorrelated;

(2) the results obtained under the assumption
confirmed by numerical experiments.

The values ofµn andνn areboundedfor the con-
sidered case of continuously differentiable mapf .
Hence, under our assumption and according to
Lyapunov theorem, there exist the Lyapunov expon
of the system(A.1). It is limN→∞ 1

N

∑N
n=1 ln |µn|
which coincides with the Lyapunov exponentλ of
the original map orbit. Thus, if the observed regim
is periodic thenλ is negative andIn is bounded.
Hence, mean squared value〈I2

n 〉 is finite. Then one
derives from(3) that asymptoticallyJN = 〈I2

n 〉 · N ,
i.e., σ 2

â
∝ 1/N . For chaotic regime the Lyapunov e

ponentλ is positive that leads to unbounded rise
In. In practice, a piecewise ML technique is applie
The variance of the estimate obtained from a sin
segment of the lengthL is given byσ 2

ξ /JL. Since the
estimates obtained from different segments are in
pendent, then empirical averaging of them gives fi
estimateâf with the varianceσ 2

â
= σ 2

ξ /(JL(N/L)),

i.e., againσ 2
â

∝ 1/N .
For the backward ML technique the similar co

siderations hold with some changes. The functionf

in (A.1) should be replaced with its inversef −1(xn, a).
f −1(xn, a) depends onn, since the root of Eq.(5)
is chosen based on the observed valueηn−1. For
weak noise such a choice is almost equivalent to g
uine choice of the root as closest tox(0)

n−1. One can
rewrite(A.1) in reverse time as

(A.2)In−1 = µn · In + νn

with

νn = ∂f −1(xn, a)

∂a

∣∣∣∣
xn=x

(0)
n ,a=a(0)

,

µn = ∂f −1(xn, a)

∂xn

∣∣
xn=x

(0)
n ,a=a(0) .

Let us consider only chaotic regime. Ifµn in (A.2)
is bounded, then it is easy again to derive that
Lyapunov exponent of(A.2) in reverse time is equa
to −λ, whereλ is the positive Lyapunov exponent
the original “forward-time” orbit. Since the Lyapuno
exponent is negative, one gets again the scaling
σ 2

â
∝ 1/N . However,µn in (A.2) is bounded only if

extrema of the smooth functionf arenot embedded
into the observed orbit and are not visited arbitra
close. Otherwise,µn is unbounded so that one ca
not guarantee boundedness ofIn under the iterations
of (A.2). E.g., for the quadratic map(6) its maximum
is visited arbitrarily close by a chaotic orbit.

Let us consider the most typical situation with u
boundedµn:



D.A. Smirnov et al. / Physics Letters A 336 (2005) 448–458 457

re

s

e
-

or

le

e

an
ay

e

aw

e
or

n-

e
as-

en,

to

hat

it-

ris-
tic

ate
le

-
l

n
s
ly
l-
s,

te.
ove
(1) The extremum off at the pointx∗ is quadratic
so thatf (x) ≈ f (x∗) + c · (x − x∗)2/2 andf ′(x) ≈
c · (x − x∗) in its vicinity;

(2) Probability density function (invariant measu
derivative) does not vanish atx∗: p(x∗) = b > 0.

The values ofνn are bounded for a smooth mapf

and oscillate irregularly since the original orbitx
(0)
n is

chaotic. At the first glance, the product|µ1µ2 . . .µN |
is small for largeN so even the initially large value
of In should decay. Ifµn were bounded, thenIn would
fluctuate around the constant valueC proportional to
〈νn〉. But sometimesµn are enormously large and th
corresponding values ofIn−1 contribute the most es
sentially to the cumulative informationJN (3). To esti-
mate this contribution, let us choose an interval[x∗ −
d, x∗ + d] with d being so small thatp(x) is approxi-
mately constant within the interval. The probability f
x

(0)
n to visit this interval is equal to 2p(x∗)d . Among

the N observed valuesx(0)
n , n∗ = 2p(x∗)dN values

fall into this interval. If N → ∞, thenn∗ → ∞ and
the pointsx(0)

nj
falling into the interval[x∗ −d, x∗ +d]

tend to fill it uniformly. Similarly, the respectiven∗
values of the distance|x(0)

nj
−x∗| tend to be distributed

uniformly in the interval[0, d]. Hence, thosen∗ dis-
tances|x(0)

nj
− x∗| are well represented by the samp

{ d
n∗ , 2d

n∗ , . . . ,
(n∗−1)d

n∗ , d}. Thesen∗ time instants give
the largest values of|In−1|. Namely, one can assum
that the previous values|In| are equal toC by the or-
der of magnitude, since the close returns tox∗ are rare
and between themI may return to the assumed me
levelC. The latter assumption is approximate and m
lead finally to an underestimatedJN . Thus, the val-
ues of |In−1| corresponding to then∗ close returns
to x∗ are equal approximately to|In−1| = |µn||In| ≡
|In|/(c|xn − x∗|), they are represented well by th
sampleC/(cd) · {n∗, n∗/2, . . . , n∗/(n∗ − 1),1}. Their
contribution toJN (3) is equal to(Cn∗

cd
)2(1+ 1

4 +· · ·+
1

(n∗)2 ) ≈ (
2Cp(x∗)·1.5

c
)2 · N2 = const· N2. Even if one

neglects the contribution of all remaining terms in(3),
then the scaling lawJN ∝ N2 is derived. That is, the
varianceσ 2

â
of the estimatêab decreasesat leastas fast

asN−2.
As numerical experiments show, the scaling l

for σ 2
â

is unchanged ifx(0)
1 is also unknown since

the ill-conditioning of the matrixJ−1
N is not observed
Table 1
CoefficientskN and scaling exponentsα calculated for the exampl
of the quadratic map(6). Backward ML estimates are obtained f

the reverse time orbit starting fromx(0)
10000≈ 0.306

Piecewise ML (L = 10) Backward ML

kN , N = 10 2.25 4.608
kN , N = 100 0.117 0.0211
kN , N = 1000 0.0127 0.00109
kN , N = 10000 0.00149 0.00000869
α 0.93 2.10

even for very largeN . However, one cannot guara
tee that this scaling holds true in the limitN → ∞
sinceJ−1

N must become finally ill-conditioned. Th
law σ 2

â
∝ N−2 holds true at least as intermediate

ymptotic.
Using quite similar arguments, we formulate acon-

jectureabout the scaling laws forJN in case when the
extremum is not quadratic and it is visited not so oft
i.e.,p(x) → 0 asx → x∗. Let x∗ be a critical point of
the mapf and|f (x)−f (x∗)| = const· |x −x∗|β with
β � 2. Let the probability density function be equal
p(x) = const· |x − x∗|γ with γ � 0 in the vicinity of
x∗. Then via similar manipulations one can derive t
JN ∝ Nα with α � 2(β − 1)/(γ + 1). Thus, for the
above exampleβ = 2, γ = 0, and, hence,α � 2. So,
the cause for fast decrease ofσ 2

â
with N is close re-

turns to critical point of the mapf which are rich of
information about parameter value under backward
erations.

We stress that all above considerations are heu
tic arguments and not a rigorous proof of asympto
properties of the estimates. Finally, let us illustr
their plausibility with the main numerical examp
of Section 3 which is the quadratic map(6) with
a(0) = 1.85 andx

(0)
1 = 0.3. We calculated the coeffi

cientskN in the lawσ 2
â

= kNσ 2
ξ as respective diagona

elements of the inverse Fisher matrixJ−1
N for piece-

wise and backward ML techniques and differentN

in the case of unknownx(0)
1 . The results are show

in Table 1, where the exponentα is also estimated a
α ≈ log10(k1000/k10000). σ 2

â
decreases approximate

asN−2 for the backward ML estimate, while the sca
ing is N−1 for the piecewise ML technique. Beside
kN for the backward ML estimate andN = 100 is
20 times as small as for the piecewise ML estima
Everything is in a very good agreement with the ab
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heuristic considerations and the results of numer
experiments (Section3, Fig. 4(b)).
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