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Abstract

The problem of parameter estimation in model maps from noisy time series is addressed. We suggest a new technique for a
special case of one-dimensional maps and chaotic signals. Itis based on the maximum likelihood (ML) principle and evaluation
of the cost function vidbackwarditerations of a model map. We demonstrate in numerical experiments and, in part, justify
theoretically that this “backward ML technique” gives more accurate estimates than previously known techniques for low and
moderate noise levels. In particular, global optimisation of the cost function becomes much easier; biases in the estimates vanish
as the time series lengttiincreases; variances of the estimates decrease as féstasherex depends on the original system,
typical values being about= 2.0 under mild conditions on the original systems.
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1. Introduction characteristics of electric circuit elemerjty to the
description of biochemical processes in c§llk The

Apart from their basic importance, the methods of Problem of modelling from time series is known as
mathematical modelling from time series find numer- “system identification’[3] and “reconstruction of dy-

ous applications ranging from estimation of nonlinear Namical systems[4,5]. Nowadays, approaches to its
solution are developed within the framework of non-
- linear dynamics[1,2,6—18] the use of maps being
" Corresponding author. _ _ quite widespreafil2—18]since even low-dimensional
E-mail addressessbire@sgu.rusmirnovda@info.sgu.ru maps are capable of describing complex dynamics
(D.A. Smirnov).
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Fig. 1. The graphs of the cost functio(®) and(4) for the time series of the quadratic még) at N = 20, a©® =185, andxio) =0.3. We
specifiedr; = x\” in (2) andxy =x 0 = F¥-D{?) in ().

of many real-world systems. Thus, the Poincaré map In the present Letter for the particular case of one-

of a strongly dissipative nonlinear flow is often one- dimensional maps we suggest a new technique which

dimensional to a high accuracy, e.g., the Lorenz and is also a special version of the ML method. It is based

Rossler systemd 9]. on the use obackward iteration®f a map to evaluate
Our work is devoted to parameter estimation in the cost function. Such an idea was exploited earlier

a one-dimensional map from a noisy chaotic time for nonlinear noise reductiof25] and separation of

series. This problem was considered in a series of the sum of chaotic signals into its componef&6].

works [20—-24] where different estimation techniques The new technique allows the use of the entire chaotic

were suggested. Each of them involves optimisation of time series without dividing it into segments due to

some cost function and is related to a certain extent to typically simple relief of the cost function graph, see

the ML principle. Theoretically, a longer time series Fig. 1(b) for an illustration. As we show below, apart

must provide opportunity to get more accurate esti- from the ease of global optimisation, the new estimates

mates. However, even the ML method encounters se- are more accurate for moderate noise. They are almost

rious practical difficulties when it is applied to chaotic unbiased and their variances often decrease Wwith

signals. The cause is that exponential sensitivity of a faster than 1N.

chaotic map orbit to initial conditions and parameters The Letter is organised as follows. In Sect@we

results in a very complicated, jagged “relief” of the describe the “piecewise” and “backward” ML tech-

cost function graph, sekig. 1(a) for an illustration nigues. In Sectior8 we present the results of their

and[24] for details. Hence, the optimisation problem comparison in numerical experiments and formulate

becomes practically unsolvable, especially for multi- conditions for the superiority of the “backward” tech-

ple estimated parameters. Therefore, modification of nique, while more rigorous mathematical justification

the method was suggested[B¥] and called “piece-  of the results is presented #ppendix A We sum-

wise” ML technique. It consists in segmentation of the marise in Sectiod.

time series and averaging the estimates obtained from

different segments. Despite such a modified approach

seems to be the most efficient among all others for es- 5 prghlem and methods

timation from chaotic signals, it is not “perfect” also

since the length of the segments must be sufficiently .

small that inevitably leads to bias in the estimates. This 2.1. Problem formulation

bias may not vanish even when the time series length ) . )

N tends to infinity. Besides, the variance of the esti- L€t us consider a one-dimensional map

mates decreases witi only as ¥ N like for a usual

regression problem. Xpt1 = f (xn, @), (1)
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where x is a dynamical variablea is a parameter
vector of dimensionalityP. Let a time series be gen-
erated by the magl) in a chaotic regime at some

a=a? andx; = xio) in the presence of additive ob-

D.A. Smirnov et al. / Physics Letters A 336 (2005) 448-458

reads

N
_ 2
= E In’
n=1

3)

servational noise. We denote the observed time series

{n1,...,nn}, wheren, = x, +&,, &, is a sequence of
i.i.d. Gaussmn random values with zero mean and vari-
anceo . The form of f is known, the values cd©@,

0
X1,

timatea of the parameter vector, which is as close to
the true valua© as possible.

(n—1) (-
wherel, = 79| ot can be shown
da x1=x;" ,a=a®"

that for a per|od|c reglme/N « N and, hence, the
vanancea scales a372 x N~1, seeAppendix A

ando are unknown. It is necessary to get an es- Besides, the cost function graph is typically not com-

plicated, so that a global minimum can be found easily.
Everything is the same faP > 1 and unknownx(o).

Throughout the Letter, we use a usual mean squaredSeemingly, nothing better can be achieved in this case.

error (MSE) to quantify “goodness” of the estimates.
Namely, the MSE in the estimadeof a single parame-
tera is ¢2 = (@ — a'?)?) where angle brackets stand

The situation is quite different for a chaotic regime.
First of all, some of the “general” conditions men-
tioned above are not fulfilled, so that the ML estimates

for mathematical expectation, i.e., for the average over obtained via minimisation of2) are no more guaran-

different noise realisations at fixed andxio) .Asis

well known from the theory of probabilities, the MSE
can be expressed a$ = ((a) — a©)? + 02, where
((a) — a'?) is the bias in the estimate and is its
variance. For multiple estimated parametefs; 1,
we define the total MSE a& = Y1 ; ¢? wheree? is
the MSE in the individual estimatg.

2.2. ML method and its “piecewise” version
Theoretically, one expects the ML method to be

the most efficient estimation technique under cer-
tain “general” conditions, se¢?4] and references

teed to be consistefi24]. The cause is that the cost
function becomes fast oscillating and, perhaps, is not
smooth asymptoticallyFig. 1(b) illustrates this for a
very moderateV. So, the theoretical property of con-
sistency and others are under the question. It would not
be crucial in practice since for sufficiently larfjaite

N the cost function{2) is smooth and biases and vari-
ances of the ML estimates are negligibly small. E.g.,
for a single unknown parameteiin the quadratic map

and knownx(o) the vanancen2 is shown in[23,24]to

decrease exponentially witki. Forunknownx(o) the

varlancecra2 does not decrease so fast that is explained
in [24] by ill-conditioning of the matrixJy. Never-

therein. It is tantamount to the least-squares method theless, one observes empirically thétcx N~* with
for Gaussian observational noise considered here.y = 3.2[24]. This relatively fast decreased:rf- along

Namely, one minimises a cost function

N-1

Z (nn—i-l - f(n)(xla a))Z,

n=0

S(x1,8) = 2

where ™ is the nth iteration of the mapf,
f(o)(x, a) =ux.

If the observed regime is stable periodic, then
the ML-method gives consistent, asymptotically un-

with a very small bias would suffice to clalm that the
ML estimate is “practically consistent and efficient”.
However, such efficiency takes place only if one
succeeds in searching for the global minimun(2t
In practice, the minimisation is carried out with the
aid of an iterative techniqu7], where certain start-
ing guesses for; anda are generated and a “descent”
to a minimum is realised stepwise. To find the global
minimum of (2) for a long chaotic time series is prac-

biased, and efficient estimates. So, both biases andtically impossible[24] since its relief exhibits variety

variances of the estimates vanish Hs— oco. The
varlanceSch2 and Uaz for moderate noise level can

of local minima, see illustration iRig. 1(a).
The starting guesses determine which of the min-

be est|mated accurately as diagonal elements of theima will be found. Usually, one tries big number

matrix o2 JN , WhereJy is a cumulative Fisher in-
formatlon matrix[24]. E.g., for the simplest case of

=1 and knownx(o) Jy is just a real number and

M of starting guesses and chooses the deepest min-
imum among all minima found. Those guesses are

taken from a certain domain where the true values of
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the estimated quantities are expected to be located.where the valuex,,, is the result of the previous
One often uses aA(+ 1)-dimensional parallelepiped backward iteration, should be taken a&s. Ideally,

Ax x Aag x Aap x --- x Aap, whereAx is its projec- one would choose the root closest to the true value
tion onto the initial condition axis anda;—onto the x,(lo). Sincex,ﬁo) is not observed, quite a natural and
respective parameter axes. Let us gallandAgq; “the simple way is to take the root which is the clos-

intervals of starting uncertainty”. To find the global est to the corresponding observed valje For the
minimum of (2) for a long chaotic time series is possi- values ofa and xy close to the true values, such a
ble only for astronomically larg#f or extremely small choice can be sometimes erroneous due to observa-
Ax andAg; [22], both conditions being unrealistic. tional noise. To avoid the erroneous choice, one can
According to “piecewise” ML technique, which try to performm backward iterations for every root
seems the best approach known so[2, one fixes of (5) thereby generating several alternatiuepoint
certain reasonablgf, Ax, and Ag;, and divides the “branches’x,, x,—1, ..., x,—m+1 Of the backward or-
original time series into the segments of a moderate bit. Finally, the branch closest to the observed segment
length L. Thus, it turns out practically possible to find  #,, 7,—1, ..., 7»—m+1 €an be selected. The depih
the global minimum of the cost functigi2) for each cannot be very big in practice since the number of

individual segment. The ultimate estimatgis an av- branches rises exponentially with We show in Sec-
erage value over the estimates obtained fiéjiL in- tion 3thatm = 1 is a good choice, while increaserin
dividual segments. Since the estimates obtained from gives almost no gain, and explain this observation.
each segment may be significantly bias&g,is also The minimisation of(4) is also performed numer-
probable to be biased. Technical details of the method ically at someM, Ax, and Ag;, but the technique
implementation, such as the choice bf are con- appears insensitive to these settings as shown below.
cerned in SectioB. Therefore, we us#f = 1, while Ax andAg; are taken

to be the same as fdrs. Let us denote the new esti-
2.3. “Backward” ML technique mator as.

We suggest to use the ML principle in combination 3, Numerical experiment
with backward iterations of a map, i.e., to minimise

the cost function Throughout this section we calculate the MSE in
N ar and &, via averaging over an ensemble of 1000
S(xy,a) = Z(WN—(n—l) — fEO=D) ey, a))z’ (4) time series generated at fixed valuesad¥, xio), N,
=1 and 052. N = 100, if not stated otherwise. The start-
ing guesses are obtained as random values uniformly
where [ is the nth backward iteration of the  gistributed in the respective intervals of starting un-

map (1). The only Lyapunov exponent of thene-  certainty. All the calculations are performed in double
dimensionamap(1) becomes negative under the time  precision.

reversal. Thus, sensitivity of a backward orbit of the
map to its “initial” conditionxy disappears. There-
fore, one can expect much smaller number of the local
minima for the cost functiorf4), seeFig. 1(b) for a
numerical illustration.

3.1. Estimation of a single parameter

Time series is generated by the quadratic map

Since a chaotic regime can be demonstrated only by , ., — 1 _ 442 (6)
anonmonoton®ne-dimensional map, the problem of !
the nonuniqueness of the inverse médp? arises in-  with ¢ = 1.85 andxio) = 0.3, exactly as if20-22,

evitably. To implement backward iterations, one must 24]to facilitate the comparison.
decide which root of the equation

Piecewise ML techniqueWe fixed somewhat arbi-
X1 — f(x, @) =0, ) trarily M = 10, Ax = [x\¥ — 0.1, x\¥ + 0.1], and
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Fig. 2. MSE in the estimates; of the parametes of the quadratic mags) at N = 100: (a) for different minimisation techniquesiat= 10;
(b) for constrained smooth minimisation at differént

Aa = [1.5,2.0]. First, let us consider what minimi- Selection of the segment lengths performed also
sation technique to use. We performed unconstrained via trials and errors. Ifrig. 2(b) the MSE for differ-
minimisation of(2) using both a smooth technige  ent L are presented. The length= 10 provides the
and a nonsmooth orfeBesides, in practice one may smallest MSE for a wide range of noise levels. It can
be sometimes confident that the values of estimated be explained as follows. For smallere.g.,L = 3, the
guantities cannot lie outside of certain intervals, e.g., global minimum of(2) can be found easily, but since

intervals of starting uncertainthx and Aa. Then, the segment is short, the exact location of the mini-
it is natural to perform constrained minimisation by mum strongly fluctuates around the true vaif® due
enforcing X1 and dy to belong toAx and Aaq, re- to noise. The latter results in a relatively large variance

spectively. Thus, we used also constrained versions of the estimates and, hence, a large MSE. For very long
of smoott? and nonsmoothtechniques. We compare  segments, e.gl, = 20, local minima are found very

the obtained estimate®; for the noise leveb? = often since the cost function graph becomes jagged,
0.01 and the segment length= 10 in Fig. 2(a). All that leads again to a large MSE. Therefore, there is an

the techniques give comparable results except for the optimal L in between, when local minima are found
unconstrained nonsmooth one which is significantly only rarely. We note also that it is very difficult to
worse. Constrained techniques give lower MSE since choose the best segment lendthin practice when
the constraints decrease the variance of the estimatesone has only a single time series. One opportunity is
The constrained honsmooth technique seems to be theto chooseL intuitively. The second opportunity is to
best one for the case considered and, therefore, it ischoose sucli that gives the minimal empirical vari-
used further. ance of the individual estimates ovat/L segments
as mentioned irf24]. The results for the latter (au-
tomatic) choice ofL are moderately good and are
S shown inFig. 2(b) with crosses: MSE is higher than
1 Quasi-Newton method with finite-difference gradient and for L = 10 but is comparable to “worse’. Further we
BFGS formula as implemented in the subroutine UMINF/DUMINF .
of the IMSL library, default settings. always use_the best= 1Q to compare good version of
2 Direct search polytope algorithm as implemented in the sub- the piecewise ML technlque ¢24] to our backward
routine UMPOL/DUMPOL of the IMSL library, default settings, ML technique?
tolerance for the relative error is specified to be 10
3 Quasi-Newton method with finite-difference gradient, BFGS
formula, and active set strategy as implemented in the subroutine
BCONF/DBCONF of the IMSL library, default settings. -
4 Direct search complex algorithm as implemented in the sub- 5 pisarenko and Sornette identified= 4 as the optimal segment
routine BCPOL/DBCPOL of the IMSL library, default settings, tol-  length[24]. However, we believe that this holds true only for very
erance for the relative error is specified to be 10 low noise levels.
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Fig. 3. (@) MSE in the estimateg, of the parametes of the quadratic maf6) at N = 100 for different depths: of backward branches and
genuine choice of the root of E(). (b) Variances ofi, and approximate “linear” theory (the dashed line) at low noise levels.
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Fig. 4. Comparison of the estimatés (at L = 10) anda;, (atm = 1) of the parametes of the quadratic mayg6): (a) MSE atN = 100,
(b) scaling exponent in the “asymptotic” lawsZ o N, (c) biases atrZ = 0.0001.

Backward ML technique We use the smallest num- Additional peculiarities ofa; are illustrated in
ber of starting guesse® = 1. The MSE in the esti-  Fig. 3b) where its variance is presented for very
matesa, are shown irFig. 3(a) for different choices  weak noise. Theoretically, the linear dependecr[tl%&

of the root of the Eq(5): genuine choice based on kNUSZ holds for 62 — 0, ky is determined from
knowing the true values,(,o) and different deptha: the cumulative Fisher information matriXy, see

of backward branches. The MSE for genuine choice Appendix A However, the variance aof, observed

is the least, but not drastically different from others. empirically follows the theoretical straight line only
The results for differentn are almost indistinguish-  up to agz ~ 2.0 x 1075, After that, it rises with noise
able. It can be explained as follows. Let us suppose level much faster. This is the case even for the gen-
that for m = 1 a deviation of a model orbit from  uine choice of the root of Eq(5), so this fast in-
the true orbit is induced at time instamtby the er- crease is not due to wrong choice of the root. It is
roneous choice of the root. This deviation decreases not also due to local minima problem since our exper-
under further backward iterations due to negativity iments showed that nothing is changed if more starting
of the Lyapunov exponent in reverse time. There- guessesM > 1) are used. It means that a global min-
fore, deeper backward branches add relatively small imum of (4) is always found even foM = 1 (that
amount of information to recognise the wrong choice, is a very important advantage of the backward ML
i.e.,m > 1 does not result in better estimates. Further technique). Thus, the fast increaser;@with noise re-
we always usen = 1 that is much faster and sim- flects seemingly the nonlinear properties of the cost
pler. function(4) around its global minimum.
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Fig. 5. MSE in&; (dashed lines) and, (solid lines) for estimation of multiple parametersft= 100: (a) 3 parameters of the mép),
constrained nonsmooth minimisation; (b) 3 parameters of the (Mponstrained smooth; (c) 4 parameters of the r{&p constrained

nonsmooth.

Comparison of the techniquesTo facilitate the com-
parison, the MSE iy (L =10, M = 10) anda,

(m =1, M = 1) are reproduced together kig. 4(a).
The backward ML technique gives more accurate es-
timates for noise levels up to a certain threshold value
of 02 ~ 0.011 shown with a filled circle. In terms of
noise-to-signal ratio this threshold level is equal to
17% (ratio of the standard deviation of noisge =
0.105 to the standard deviation of the “pure” signal
o, = 0.616).

An important property of the estimates is the behav-
iour of their variances and biases wha&hincreases.
We calculated variances @f; and a; for different
noise levels and the time series lengthsén the range
[107, 10%]. They follow a power laws? oc N~ quite
well. We determined the values of the exponerib-
gether with their 95% confident intervals via regress-
ing |Ogc7&2 onto logN, Fig. 4b). For high nose levels
052 > 0.015, one observes approximately the same val-
uesa ~ 1.0. Significantly faster decrease in the vari-
ance ofay is observed for lower noise. Vice versa, the
exponentx for 4y becomes even less than 1.0 due to
the local minima problem. FQ)‘SZ — 0 one observes
quite fast decrease of the variance af (¢ ~ 2.0)
which is due to close returns of the map orbit into
the vicinity of the maximum off as explained iAp-
pendix A Those returns provide high values of partial
Fisher information/? under backward iterations.

The behaviour of biases with increasennis also
different for the two techniques. For a low noise level
og =0.0001, the bias i@y does not decrease with
while the bias ina; is significantly smaller and van-
ishes asV — oo as illustrated irFig. 4(c). This is an

expected result. For the piecewise ML technique, sys-
tematic errors from each segment may not compensate
each other, so the bias ity may remain asymptoti-
cally. For the backward ML technique the entire time
series is used “at once”, so the usual property of as-
ymptotic unbiasedness of ML estimates looks natural,
even though it is not proven rigorously for the consid-
ered problem.

3.2. Estimation of multiple parameters

To study what changes when the number of the esti-
mated parameters increases, we take as an object again
the quadratic map but witk = 3:

(7)

Time series were generated at the same values of
al® =10, a4 =00, aQ = 185, andx? = 03.

We use constrained nonsmooth minimisation and un-
changedM, L, m to calculated; and &,. The un-
certainty intervals areAa; = [0.8,1.2] and Aay =
[—0.2,0.2], the others are unchanged.

Backward ML estimatéy, is again more accurate
for low noise levels, the threshold noise variance being
approximatelyoc2 ~ 0.008, Fig. 5a). The threshold
is smaller as compared to the casePt 1 where
02~ 0.011, but the difference is not large. Moreover,
the use of constrained smooth minimisation leads to
unchanged? =~ 0.011 for single parameter estimation
(not shown) and to greaterf ~ 0.013 for estimation
of three parameters={g. 5b)). Thus, one can con-
clude that the observed estimation results foe= 1

2
Xp+1=ai+azx, —asx,.
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and P = 3 are approximately the same even quantita-
tively.

Let us finally report the results of estimation of four
parameters for the same object and orbit

2 3
Xp4+1 = a1+ azx, — asx, +asx,.

)

As the only additional setting we usedas =
[—0.2,0.2]. The results shown iifrig. 5c) are qual-
itatively the same but the threshold noise level is defi-
nitely smaller now. It iss? ~ 0.001 or about 5%, i.e.,
approximately three times as small as =1 and

P = 3. This isagain quite a strong noissince, say,
typical levels of measurement noise in electronics are
about 0.05-0.1%.

It is difficult to reveal a universal law in the depen-
dence of the threshold noise level éh One could
expect that superiority of the backward ML technique
should become more prominent for largesince the
global minimum of(4) is easily found for any? and so
the accuracy of, could remain the same. On the other
hand, minimisation of2) is far more difficult for big
P at fixed M and the accuracy d@f; should decrease.
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case of a chaotic signal since a model orbit is very sen-
sitive to parameters. However, if the usual ML method
is applied and forward iterations of a model map are
used, inevitable practical difficulties arise for a long
chaotic time series. The problem is that one cannot
practically find the global minimum of the cost func-
tion. A “piecewise” ML method is a good attempt to
circumvent the problem, but the estimates may be as-
ymptotically biased and their variance decreases with
the time series lengthv (only as U N).

In this Letter we suggested new “backward” ML
technique for the case of one-dimensional maps and
chaotic time series. It consists in the use of backward
iterations of a map for evaluation of the cost function.
It is shown to have several essential advantages over
the “piecewise” ML technique for weak and moder-
ate observational noise levels. First, the cost function
graph is much simpler and to find the global minimum
is very easy. Second, the MSE in the new estimates are
(much) less than in the “piecewise” ML estimates for
noise levels up to a certain threshold level. This thresh-
old is typically quite significant, of the order of 5-15%

However, our experience shows that the accuracy of of the signal in rms values. Third, the bias in the new

&, also decreases with due to the properties of the
global minimum of(4) similar to that illustrated in
Fig. 3(b) (not due to local minima problem). We would

estimates vanishes @ — oo while for the piece-
wise ML estimates it remains approximately constant.
Fourth, the variance of the new estimates typically de-

conjecture that the threshold noise level dependencecrease agv— with quite a typical valuex ~ 2. The

on P is specific to the form of the original mag),
rather than being universal.

Finally, we would like to note that onlgnormous
increase inM canmore or lessrefine the piecewise
ML estimates, since it would allow an increase in the
segment lengthl.. But it would introduce only rel-
atively weakquantitativechange whilequalitatively
all the results, such as an outlook of the comparison
plotin Fig. 4(a), would remain the same. Similarly, in-

third and fourth properties hold true at least as an inter-
mediate asymptotic, but only for sufficiently low noise
level. The results are qualitatively the same when mul-
tiple parameters are estimated.

We stress that the backward ML technique is ap-
plicable forone-dimensionamaps. Generalisation to
higher dimensions is problematic since an orbit of
a multidimensional dissipative system becomes even
more sensitive to the parameters under the time re-

crease in the number of the estimated parameters mayversal. Nevertheless, there also exist multidimensional

lead only to quantitative changes. In fa&lg. 4(a)
illustrating robust superiority of the backward ML
method for moderate noise levels is the main result of
the Letter.

4. Conclusions
Modelling from time series is always finished with

parameter estimation for a selected model structure.
Intuitively, accurate estimates could be achieved in the

systems to which the method is applicable. These are
hyperchaotic maps without negative Lyapunov expo-
nents, e.g., several weakly coupled quadratic nj@ps
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Appendix A. Asymptotic scaling laws for
variances of estimates

Here, we focus on the dependence of the cumu-
lative Fisher information/y [24] on N for a single
estimated quantity (x{o) is assumed to be known for
the ease of illustration). Thereby, we find out the de-
pendence of the variances of the estimate®/asince
o2 =02/Jy for weak noise.

The cumulative Fisher information is given by
Eq. (3). Using the chain differentiation rule, it is
straightforward to get the following recurrent relation
for I,

Lyv1 =y - Iy + vy, (Al)

where
_ af(xnva)
"7 da _©O _ o
Xn=Xp ,d=a
_0f (e, a)
T ax © :
n Xp=2Xp, ,a=a®©

The question is whethd, is bounded or what is the
law of its increase with. If I, were independent qf,,
andv, then the Eq(A.1) would describe a linear sys-
tem. Boundedness or rise §f would be determined
by the Lyapunov exponent ¢fA.1). Even thoughl,
dependsn general orw,, andv,, we furtherassume
that/,, u, andv, aremutually independent his is a
strong approximation but it is justified in part by the
following considerations:

(1) the dependence @f on u, andv, can be non-
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which coincides with the Lyapunov exponehtof
the original map orbit. Thus, if the observed regime
is periodic theni is negative andl, is bounded.
Hence, mean squared vaIL(lf-;f) is finite. Then one
derives from(3) that asymptotically/y = (Inz) - N,
ie., 0&2 o 1/N. For chaotic regime the Lyapunov ex-
ponentx is positive that leads to unbounded rise of
I,,. In practice, a piecewise ML technique is applied.
The variance of the estimate obtained from a single
segment of the length is given byaSZ/JL. Since the
estimates obtained from different segments are inde-
pendent, then empirical averaging of them gives final
estimated with the variancer? = og/(JL(N/L)),
i.e., again? o< 1/N.

For the backward ML technique the similar con-
siderations hold with some changes. The functjon
in (A.1) should be replaced with its inverge 1 (x,,, a).
f~Y(xn,a) depends om, since the root of Eq(5)
is chosen based on the observed valie1. For
weak noise such a choice is almost equivalent to gen-
uine choice of the root as closest x{;‘fl. One can
rewrite (A.1) in reverse time as

In—1=pn - In+ vy (A.2)
with
_ 3 M)
! da xtzle(IO)xa=a(0) ,
)
Hn = 0xy, xn=x a=a©®"

Let us consider only chaotic regime. f, in (A.2)
is bounded, then it is easy again to derive that the
Lyapunov exponent ofA.2) in reverse time is equal
to —A, wherea is the positive Lyapunov exponent of
the original “forward-time” orbit. Since the Lyapunov

linear and very complicated so that they can be at least exponent is negative, one gets again the scaling law

almost uncorrelated;

o2 oc 1/N. However,u, in (A.2) is bounded only if

(2) the results obtained under the assumption are extrema of the smooth functiofi are not embedded

confirmed by numerical experiments.

The values ofu, andv, areboundedfor the con-
sidered case of continuously differentiable mgp

into the observed orbit and are not visited arbitrarily
close. Otherwiseu,, is unbounded so that one can-
not guarantee boundednessigfunder the iterations
of (A.2). E.g., for the quadratic ma() its maximum

Hence, under our assumption and according to the is visited arbitrarily close by a chaatic orbit.

Lyapunov theorem, there exist the Lyapunov exponent

of the system(A.1). It is liMy_ oo & Son ;N 1Lyl

Let us consider the most typical situation with un-
boundedu,,:



D.A. Smirnov et al. / Physics Letters A 336 (2005) 448-458

(1) The extremum of at the pointc* is quadratic
so thatf(x) ~ f(x*) + ¢ - (x — x*)?/2 and f'(x) ~
¢ (x —x™) inits vicinity;

(2) Probability density function (invariant measure
derivative) does not vanish at: p(x*) =5 > 0.

The values oy, are bounded for a smooth mgp

and oscillate irregularly since the original orlsﬁP) is
chaotic. At the first glance, the produgtiis. .. uy|
is small for largeN so even the initially large values
of I, should decay. Ift, were bounded, theh, would
fluctuate around the constant valGeproportional to
(v,). But sometimest,, are enormously large and the
corresponding values df,_; contribute the most es-
sentially to the cumulative informatiafy (3). To esti-
mate this contribution, let us choose an interfual —
d, x* + d] with d being so small thap(x) is approxi-
mately constant within the interval. The probability for
x2 to visit this interval is equal to 2(x*)d. Among
the N observed values,go), n* = 2p(x*)dN values
fall into this interval. If N — oo, thenn* — oo and
the points»c,(f;) falling into the intervalx* —d, x* +d]
tend to fill it uniformly. Similarly, the respective*
values of the distanqe,(,?) — x™*| tend to be distributed
uniformly in the interval[0, d]. Hence, those™ dis-
tances|x,(,?) — x*| are well represented by the sample
(4,2 0=Dd gy Thesen* time instants give
the largest values df,_1|. Namely, one can assume
that the previous valugs, | are equal taC by the or-
der of magnitude, since the close returnstare rare
and between them may return to the assumed mean
level C. The latter assumption is approximate and may
lead finally to an underestimatefy;. Thus, the val-
ues of|I,_1| corresponding to the* close returns
to x* are equal approximately td,,_1| = |un |l 1;| =
|1,/ (clx, — x*]), they are represented well by the
sampleC/(cd) - {n*,n*/2,...,n*/(n* — 1), 1}. Their
contribution toJy (3)is equal to($2)2(1+ 2+ +
(ni)z) ~ (E)L5)2 . N2 _ const: N2, Even if one
neglects the contribution of all remaining termg3®),
then the scaling lawy o« N2 is derived. That is, the
varianceva2 of the estimat@;, decreaseat leastas fast
asN 2.

As numerical experiments show, the scaling law
for o2 is unchanged itxio) is also unknown since

the ill-conditioning of the matrix/;* is not observed
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Table 1
Coefficientsk and scaling exponentscalculated for the example
of the quadratic mag6). Backward ML estimates are obtained for

the reverse time orbit starting fronﬁooom 0.306
Piecewise ML £ = 10)

Backward ML

ky,N =10 225 4608

kn, N =100 0117 Q0211

ky, N =1000 00127 000109
kpn, N =10000 000149 000000869
a 0.93 210

even for very largeV. However, one cannot guaran-
tee that this scaling holds true in the limit — oo
since Jy* must become finally ill-conditioned. The
law 0&2 o N~2 holds true at least as intermediate as-
ymptotic.

Using quite similar arguments, we formulatean-
jectureabout the scaling laws fafy in case when the
extremum is not quadratic and it is visited not so often,
i.e., p(x) »> 0 asx — x*. Letx* be a critical point of
the mapf and| f (x) — f(x*)| = const |x — x*|# with
B > 2. Let the probability density function be equal to
p(x) =const [x — x*|¥ with y > 0 in the vicinity of
x*. Then via similar manipulations one can derive that
Jy « N® with @ > 2(8 — 1)/(y + 1). Thus, for the
above examplg = 2, y =0, and, hencey > 2. So,
the cause for fast decreaseagf with N is close re-
turns to critical point of the mag which are rich of
information about parameter value under backward it-
erations.

We stress that all above considerations are heuris-
tic arguments and not a rigorous proof of asymptotic
properties of the estimates. Finally, let us illustrate
their plausibility with the main numerical example
of Section3 which is the quadratic mag6) with
a©® =185 andxio) = 0.3. We calculated the coeffi-
cientsky in the lawo? = kN"sz as respective diagonal

elements of the inverse Fisher matrl;@1 for piece-
wise and backward ML techniques and differevit

in the case of unknowaio). The results are shown
in Table 1 where the exponert is also estimated as
a ~ 1094 (k1000/ k10000 - 0&2 decreases approximately
asN 2 for the backward ML estimate, while the scal-
ing is N1 for the piecewise ML technique. Besides,
ky for the backward ML estimate any = 100 is

20 times as small as for the piecewise ML estimate.
Everything is in a very good agreement with the above
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