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Abstract—A new method is proposed for estimating the control parameters of single-mode semiconductor
optical-feedback lasers from experimentally measured time series of the laser intensity. The procedure is based
on a statistical analysis of specially selected points of the time series and on the phenomenon of chaotic syn-
chronization of unidirectionally coupled lasers with coinciding parameters. © 2005 Pleiades Publishing, Inc.
In recent years, much attention has been devoted to
the use of semiconductor optical-feedback lasers for
secure data transmission [1–3]. The interest in these
lasers as potential sources for data transmission sys-
tems with a high degree of information security is
related to the fact that the laser intensity exhibits wide-
band chaotic oscillations of very high dimension. The
extraction of transmitted data in communication sys-
tems employing chaotic signals is possible due to the
phenomenon of synchronization of coupled chaotic
dynamical systems [4–6]. Such a synchronization of
the interacting chaotic systems is manifested for certain
types of coupling between them and can be used to
estimate the control parameters of the coupled systems
[7–12]. Previously, several methods were proposed for
the estimation of parameters of coupled dynamical sys-
tems, which were based on autosynchronization [7],
adaptive control [8, 12], random optimization [9], error
minimization [10], and iterative adaptation of parame-
ters [11].

This Letter describes a new method for sequential
refinement of the control parameters of semiconductor
optical-feedback lasers, which is based on the phenom-
enon of chaotic synchronization.

Let us consider a single-mode semiconductor opti-
cal-feedback laser whose operation is described by the
Lang–Kobayashi equations [13]. After appropriate nor-
malization, these equations can be written in the fol-
lowing form [14]:

(1)

where E(t) is the complex amplitude of the electric
field, which exhibits slow variation (on the time scale of
optical oscillations); F is the density of nonequilibrium
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charge carriers; T = τs/τp is the ratio of the carrier life-
time τs to the photon lifetime τp in the laser cavity; P is
the pumping parameter (in excess of the generation
threshold); τ0 is the delay time in the optical feedback
chain; η is the feedback gain; α is the factor of noniso-
chronicity; Ω is the laser frequency in the absence of
the feedback; and the upper dot denotes differentiation
with respect to dimensionless time t (expressed in units
of the photon lifetime τp).

Writing the complex field amplitude as E(t) =
ρ(t)exp(iφ(t)) [where ρ(t) and φ(t) are the modulus and
phase of E(t)], denoting ρ = ρ(t), ρτ = ρ(t – τ0), φ = φ(t),
φτ = φ(t – τ0), and F = F(t), and taking into account that
the complex constant exp(–iΩτ0) determining the phase
shift in the feedback chain does not qualitatively influ-
ence the procedure proposed below for evaluation of
the delay time (and, hence, can be omitted), we can
rewrite system of equations (1) as follows:

(2)

Previously, we demonstrated that the time series of
delay systems of the type (t) = F(x(t), x(t – τ)) possess
virtually no extrema separated from each other by τ [15]
and developed a method employing this circumstance
for determining τ. Now we will show that this method,
after appropriate modification, can also be applied to a
time-delay system of the type described by Eqs. (2).
Differentiating the first equation in system (2) with
respect to time t, we obtain

(3)

ρ̇ Fρ ηρτ φ φτ–( ),cos+=

ρφ̇ Fαρ ηρτ φ φτ–( ),sin–=

TḞ P F– 1 2F+( )ρ2
.–=

ẋ

ρ̇̇ Ḟρ Fρ̇ ηρ̇τ φ φτ–( )cos+ +=

– ηρτ φ φτ–( ) φ̇ φ̇τ–( ).sin
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Fig. 1. Estimation of the parameters of a Lang–Kobayashi system (2): (a) typical experimental time series for the system with
parameters P = 1.1 × 10–3, τ0 = 2 ns, η = 5 × 10–3, T = 103, and α = 5; (b, c) plots of N(τ) for the time series of variables ρ and I
normalized to the total number of points simultaneously obeying conditions (4) and (6); (d) autocorrelation function R(τ) for the
laser intensity oscillations.
The typical time series of oscillations of the variable
ρ = |E | for a single-mode semiconductor optical-feed-
back laser described by Eqs. (2) with a small value of
parameter P exhibits a large number of extrema in
which ρ is close to zero (Fig. 1a). Such points are char-
acterized by simultaneously obeying two conditions:

(4)

where ε is a certain small quantity. According to
Eq. (3), these points also obey the relation

(5)

In the typical case of quadratic extrema, we have
 = 0 and  ≠ 0. From this we infer that, for small ρτ ,

the ratio /ρτ must be quite large. Taking this fact into
account, we can use the following method of process-
ing of the time series of ρ to determine the delay time
τ0 in a system described by equations (2). First, we con-
sider the points satisfying conditions (4) and select
those also meeting the conditions

(6)

for sufficiently large Θ. Since τ0 is unknown, we try
various τ and count the number N of the pairs of points
simultaneously satisfying conditions (4) and (6). Then,

ρ̇ 0, ρ ε,<=

ρ̇τ

ρτ
-----

ρ̇̇ ηρτ φ φτ–( ) φ̇ φ̇τ–( )sin+
ηρτ φ φτ–( )cos

-----------------------------------------------------------------.≈

ρ̇ ρ̇
ρ̇τ

ρτ ε, ρ̇τ /ρτ Θ,><
TE
the function N(τ) represents the number of the pairs of
points for which conditions (4) are satisfied at the time
t and conditions (6) at t – τ. For τ equal to the true delay
time τ0, the number of points N(τ0) must be greater than
that for arbitrary τ, where the conditions (6) may not be
satisfied. Therefore, the position of the maximum in the
N(τ) curve gives us an estimate for the delay time τ0.
The same considerations are applicable to the experi-
mental time series of oscillations of the laser intensity
I = |E |2.

Figure 1b shows the N(τ) curve constructed as
described above for a time series of the variable ρ in
Eqs. (2) with τ0 = 2 ns, P = 1.1 × 10–3, η = 5 × 10–3, T =
103, α = 5, ε = σ1/k1, and Θ = σ2k2, where σ1 is the rms
deviation of ρ, σ2 is the rms deviation of /ρτ , k1 = 1,
and k2 = 7. This plot was constructed using a series of
400000 points, which contained about 4000 points sat-
isfying conditions (4). As the values of k1 and k2 are
increased, the number of points used for the construc-
tion of the N(τ) curve decreases. When τ was varied at
a step of 0.01 ns, the absolute maximum of N(τ) is
observed at τ = 2.00 ns, which is precisely the actual
delay time. Figure 1c presents a plot of N(τ) constructed
using time series of the intensity I for system (2) with the
same control parameters as in Fig. 1b, but with k1 =
k2 = 4. In this case, the procedure of delay time estima-
tion based on the search for a maximum of the autocor-
relation function yields τ0 = 2.10 ns (Fig. 1d).

ρ̇τ
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For estimating the other parameters of the system
under consideration, we suggest the phenomenon of
chaotic synchronization observed for two semiconduc-
tor lasers with unidirectional coupling be used. Such
unidirectionally coupled systems (1) are described by
the following equations [16]:

(7)

where the variables and parameters of the drive system
(transmitter) are indicated by superscript “T” and those
of the response system (receiver) are indicated by
superscript “R.” When the parameters of two coupled
systems are sufficiently close, these systems exhibit
synchronization [16].

Since the α and T values in real lasers of the same
type are fixed and close, we assume these parameters
for the transmitter and receiver to be same: αT = αR and
TT = TR. The other parameters of the transmitter (PT, ηT,
and τT) will be estimated by providing its synchroniza-
tion with the receiver, whose parameters (PR, ηR, and
τR) can be tuned. A convenient quantitative measure of
synchronization is provided by the correlation function

(8)

where IT, R = |ET, R |2 and the angle brackets indicate
averaging with respect to time. In the case of compete
synchronization, this function has a maximum value at
the origin, and this maximum reaches unity when all
parameters of the transmitter and receiver are identical.
If the analogous parameters of the transmitter and
receiver are slightly different, the maximum value of
C(τ) differs from unity, while its shift from the origin
gives an estimate of the difference of delay times in the
transmitter and receiver.

Let us set the same transmitter parameters as those
used above for a single system and select the initial
approximation as τR = 2.00 ns (which corresponds to
the absolute maximum of N(τ)) and ηR = 1 × 10–3. The
third parameter (PR) will be estimated by plotting the
maximum value (Cmax) of the correlation function (8)
versus the parameter PR (Fig. 2a). As can be seen, Cmax

reaches the absolute maximum at PR = 1.8 × 10–3. Then,
we plot Cmax as a function of ηR for PR = 1.8 × 10–3

(Fig. 2b). This curve has the absolute maximum at ηR =
5.2 × 10–3. In the next step, we again plot Cmax versus
PR, but with the just refined value of ηR (Fig. 2c), and
so on. The next step (Fig. 2d) already gives the true
value of the feedback gain, ηR = ηT = 5.0 × 10–3, for
which the PR value no longer varies in subsequent iter-

Ė
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1 iαT R,
+( )F

T R,
E

T R,
=
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ation steps. The correlation function exhibits maximum
at the origin and this maximum is Cmax = 1. This result
confirms that the plot of N(τ) constructed as described
above provides exact estimation of the delay time, since
τR = τT = 2 ns.

Applying the proposed method for the numerical
investigation of system (7), it is also possible to esti-
mate the other parameters of the transmitter, for exam-
ple, αT and TT, under the conditions ηR = ηT and
PR = PT. If all parameters of the transmitter in the
numerical experiment are unknown, the procedure con-
verges to the true values only provided that the initial
values are selected close to the corresponding true
parameters.

We have also evaluated the robustness of the above
procedure of sequential refinement of the control
parameters by introducing an additive noise into the
communication channel between the transmitter and
receiver. It was established that the proposed method
provides correct estimation of the parameters PT and ηT

even in the presence of significant noise on a level
of 10%.
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Fig. 2. Sequential refinement of the transmitter parameters
based on the chaotic synchronization of unidirectionally
coupled lasers as illustrated by plots of the maximum
(Cmax) of the correlation function (8) versus the receiver

parameters PR and ηR: (a) ηR = 1 × 10-3, Cmax(PR) is max-

imum at PR = 1.8 × 10–3; (b) PR = 1.8 × 10–3, Cmax(ηR) is

maximum at ηR = 5.2 × 10–3; (c) ηR = 5.2 × 10–3, Cmax(PR)

is maximum at PR = 1.1 × 10–3; (d) PR = 1.1 × 10–3,
Cmax(ηR) is maximum at ηR = 5.0 × 10–3.
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Conclusion. We have developed a new method for
the sequential refinement of parameters of single-mode
semiconductor optical-feedback lasers described by the
Lang–Kobayashi equations. The proposed procedure
employs the phenomenon of chaotic synchronization of
unidirectionally coupled lasers. We also described a
procedure for the initial estimation of the delay time in
the feedback chain, which is based on the statistical
analysis of specially selected points of a measured time
series of the laser intensity. The efficiency of the pro-
posed method is confirmed by the results obtained for
unidirectionally coupled Lang–Kobayashi systems.

The possibility of estimating the parameters of
semiconductor optical-feedback lasers provides a
means of useful signal extraction in communication
systems employing chaotic signals for masking the
transmitted data. Therefore, the level of security pro-
vided by such communication systems based on single-
mode semiconductor lasers can be insufficient, despite
the very high dimension and the large number of posi-
tive Lyapunov exponents for chaotic attractors in these
dynamical systems.

Acknowledgments. This study was supported by
the Russian Foundation for Basic Research (project
nos. 03-02-17593 and 03-02-17243), the U.S. Civilian
Research and Development Foundation for the Inde-
pendent States of the Former Soviet Union (CRDF
Award no. REC-006), and by the INTAS Foundation
(grant no. 03-55-920).
TE
REFERENCES
1. V. Ahlers, U. Parlitz, and W. Lauterborn, Phys. Rev. E

58, 7208 (1998).
2. S. Sivaprakasam and K. A. Shore, Opt. Lett. 24, 466

(1999).
3. I. Fisher, Y. Liu, and P. Davis, Phys. Rev. A 62, 011801

(2000).
4. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 21

(1990).
5. L. Kocarev, K. S. Halle, K. Eckert, et al., Int. J. Bifurca-

tion Chaos Appl. Sci. Eng. 2, 709 (1992).
6. L. M. Pecora, T. L. Carroll, G. A. Johnson, et al., Chaos

7, 520 (1997).
7. U. Parlitz, Phys. Rev. Lett. 76, 1232 (1996).
8. A. Maybhate and R. E. Amritkar, Phys. Rev. E 59, 284

(1999).
9. H. Sakaguchi, Phys. Rev. E 65, 027201 (2002).

10. R. Konnur, Phys. Rev. E 67, 027204 (2003).
11. C. Tao, Y. Zhang, G. Du, and J. J. Jiang, Phys. Rev. E 69,

036204 (2004).
12. D. Huang, Phys. Rev. E 69, 067201 (2004).
13. R. Lang and K. Kobayashi, IEEE J. Quantum Electron

16, 347 (1980).
14. P. M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux,

Phys. Rev. A 53, 4429 (1996).
15. B. P. Bezruchko, A. S. Karavaev, V. I. Ponomarenko, and

M. D. Prokhorov, Phys. Rev. E 64, 056216 (2001).
16. I. V. Koryukin and P. Mandel, Phys. Rev. E 65, 026201

(2002).

Translated by P. Pozdeev
CHNICAL PHYSICS LETTERS      Vol. 31      No. 11      2005


