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We demonstrate in numerical experiments that estimators of strength and directionality of coupling
between oscillators based on modeling of their phase dynamicsfD. A. Smirnov and B. P.
Bezruchko, Phys. Rev. E68, 046209s2003dg are widely applicable. Namely, although the expres-
sions for the estimators and their confidence bands are derived for linear uncoupled oscillators
under the influence of independent sources of Gaussian white noise, they turn out to allow reliable
characterization of coupling from relatively short time series for different properties of noise,
significant phase nonlinearity of the oscillators, and nonvanishing coupling between them. We
apply the estimators to analyze a two-channel human intracranial epileptic electroencephalogram
sEEGd recording with the purpose of epileptic focus localization. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1938487g

An interdisciplinary problem of detecting interaction be-
tween oscillatory systems solely from their time realiza-
tions has attracted attention of researchers for a long
time. Several approaches to its solution have been sug-
gested within the framework of linear time series analysis
and information theory. The most well-known of them
are cross-correlation function, coherence function, and
mutual information function, which are typically capable
of detecting only the presence of interdependence. To de-
tect coupling directionality, their generalizations exist,
such as Granger causality,2 Geweke’s spectra,3 and simi-
lar information-theoretic concepts.4,5 Recently, there have
been new approaches in nonlinear dynamics to reveal the
presence of the nonlinear interaction and its directional-
ity. These nonlinear techniques are based either on analy-
sis in state spaces6–13 or investigation of phase
dynamics.14–20 The latter set of approaches includes an
evolution map approach, based on modeling phase dy-
namics of the systems,17,18and its extension for the case of
relatively short time series.1 The latter technique is often
shown to be more sensitive to weak coupling than state
space approaches, especially for the practically important

case of short signals.21 In addition, expressions for the
confidence bands have been developed for the coupling
estimators of Ref. 1 that increases reliability of the re-
sults. But all the formulas are rigorously valid only for
weakly nonlinear and weakly coupled phase oscillators
under the influence of independent sources of Gaussian
white noise. In the present paper, we investigate practical
limits of applicability of these formulas and show in nu-
merical experiments that they are quite wide. Finally, ap-
plication of the estimators to an intracranial EEG record-
ing from an epileptic patient is presented.

I. INTRODUCTION

Characterization of coupling between two oscillatory
systems from their time series is an important task in differ-
ent fields of scientific research and practice, including
climatology,22 electronics,23 and physiology.24 Thus, a great
deal of attention is paid nowadays to the investigation of
interaction between human cardio-vascular and respiratory
systems16,18,19,25–28and to the analysis of multichannel EEG
and MEG recordings,9–13,15,29–35in particular, with the pur-
pose to localize epileptic foci.9,15,29,30,32,34Most of the well-
known approaches, such as cross-spectral analysis and
information-theoretic characteristics, are often insufficient toadElectronic mail: smirnovda@info.sgu.ru
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detect directional coupling from complex realworld signals.
In the last years, new promising techniques are suggested by
nonlinear dynamics, see comparative study of several ap-
proaches in Refs. 21 and 31.

One family of nonlinear approaches exploits the idea to
analyze interdependencies betweenphasesof the oscillatory
systems. The most sensitive approach within this family in-
volves construction of an empiric model for the phase dy-
namics and calculation of interaction strength from the val-
ues of its parameters. The idea is suggested originally in Ref.
17 and the technique to realize it is called the “evolution map
approach”sEMAd. It is efficient for analysis of oscillatory
processes unsynchronized with each other and exhibiting
pronounced main rhythms of oscillations that allows the in-
troduction of well-defined phases. In its initial version, EMA
provides reliable results for stationary time series of quite a
considerable length, such as 5000 characteristic periods un-
der moderate noise levels. A very similar approach is pro-
posed by Kiemelet al.14,20

However, in practice one often encountersnonstationary
signals, e.g., EEG recordings are well-known to be highly
nonstationary.36 Thus, the problem of coupling characteriza-
tion from short time series segments inevitably arises. To
address it, special corrections have been introduced into for-
mulas for the EMA coupling estimators, so that the latter
become unbiased even in the case of relatively short time
seriessdown to 50 basic periodsd, and expressions for their
confidence bands have been derived in Ref. 1. The modified
expressions for the coupling estimators are derived under the
assumptions of linear uncoupled phase oscillators influenced
by independent sources of Gaussian white noise. Their ap-
plicability in other cases has neither been rigorously proven,
nor thoroughly investigated experimentally. Our purpose
here consists in a systematical investigation of the limits of
applicability of the modified EMA estimators. Relevance and
applied importance of such a work is justified by a variety of
situations, where one needs to detect weak coupling from
short time series and the modified EMA appears very sensi-
tive and reliable. Yet, under some conditions its efficiency
deteriorates, so that other techniques can be more effective as
discussed in Sec. IV.

The paper is organized as follows. We describe the
modified EMA in Sec. II A and a technique to find out limits
of its applicability in Sec. II B. Results of investigation are
reported in Sec. III where we show the influence of noise
propertiessSec. III Ad, individual nonlinearity of oscillators
sSec. III Bd, coupling intensitysSec. III Cd, several factors
together including the case of common source of the noise
sSec. III Dd, and illustrate an application of the method with
the analysis of an epileptic EEG recordingsSec. III Ed. Dis-
cussion of the relationships between the modified EMA and
other approaches and a summary of our results are presented
in Sec. IV. Too cumbersome formulas for the coupling esti-
mators are given in the Appendix.

II. METHODS

A. Modified evolution map approach

The main idea of the original method is to estimate how
strong future evolution of the phase of one system depends

on the current value of the phase of the other system. To
achieve this, one obtains a time series of the oscillations’
phaseshf1st1d ,… ,f1stNdj and hf2st1d ,… ,f2stNdj from the
original time series of the two systemshx1st1d ,… ,x1stNdj and
hx2st1d ,… ,x2stNdj , ti = iDt , Dt is sampling interval. An ana-
lytic signal is constructed for this purpose typically in one of
two ways. The most traditional one is to calculate Hilbert
transformykstd of the observed signalxkstd:

ykstd = p . v .E
−`

` xkst8ddt8

pst − t8d
, s1d

wherep.v. stands for the Cauchy principal value. Then, one
defines complex analytic signalzkstd=xkstd+ jykstd.

16,37 The
second approach is to definezkstd via complex wavelet trans-
form:

zkstd =E
−`

`

xkst8dcS t8 − t

s
Ddt8, s2d

wherecstd is a complex wavelet function,s is its time scale.
As a rule, Morlet waveletcstd=p−1/4 exps jv0tdexps−t2/2d is
employed.38 For any of these approaches, one defines an un-
wrapped phasefkstd as the argument of the signalzkstd
=akstdexps jfkstdd increased by 2p after each complete revo-
lution of the vectorzkstd about the origin.16 Both approaches
are closely related as shown in Ref. 39: The use of the com-
plex wavelet transform corresponds to band-pass filtering of
the signal xkstd around the angular frequencyv0/s with
bandwidth determined byv0 and subsequent calculation of
the Hilbert transform to define the phase of the filtered sig-
nal. For any approach, sampling frequency for the original
time series is desirable to be not less than 20 points per basic
period to extract the phase without significant distortions.16,40

After calculation of the phases, one constructs a math-
ematical model from their time realizations. The model
structure is chosen based on the following considerations. In
a variety of situations, the phase dynamics of oscillators ex-
hibiting a pronounced main rhythm are adequately described
with stochastic differential equations of the form41

df1,2/dt = v1,2+ G1,2sf1,f2d + j1,2std, s3d

where parametersv1,2 govern oscillators’ frequencies,jistd
are independent Gaussian white noises with zero mean and
autocorrelation functionssACFd kjistdjist8dl=si

2dst− t8d.
When dealing with discrete time series, it is convenient to
consider a difference form of these equations

D1,2std = F1,2ff1std,f2std,a1,2g + «1,2std, s4d

where Distd;fist+td−fistd are phase increments over a
fixed time intervalt , «istd zero-mean noises,Fi trigonomet-
ric polynomials,ai vectors of their coefficients. To construct
a models4d, one specifies the orders of the polynomialsFi

and the intervalt which is usually equal to the basic period
of oscillations.16 Using the time series of phases, one gets
estimatesâi of the coefficientsai via the least-squares rou-
tine. Then, one calculates the strength of influence of the
oscillators on each other from the model coefficients as ex-
plained below.

If the “true” equations for phase dynamics were knowna
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priori , then the intensityc1 of the influence of the second
system on the first ones2→1d would be defined as the steep-
ness of the dependenceF1sf2d, and everything is the same
for the intensityc2 of the influence 1→2:

c1,2
2 =

1

2p2E
0

2p E
0

2p

f]F1,2sf1,f2,a1,2d/]f2,1g2df1df2.

s5d

The directionality index is determined by the difference be-
tweenc1 and c2. It would be true coupling characteristics.
However, one has only estimates of the coefficientsâi ob-
tained from a time series and needs to calculate estimates of
c1 andc2 based onâi. The most direct way is to use Eq.s5d
substituting the estimatesâi for the true valuesai. But such
estimatorsĉ1,2 appear “good” only for very long stationary
signals whose length should be about 5000 basic periods for
the sampling frequency 10–20 points per a basic period and
moderate noise level.1,17,23 For a shorter time series often
encountered in practice, these estimators turn out to be bi-
ased. The modified estimatorsĝ1,2 for c1,2

2 and the estimator

d̂; ĝ2− ĝ1 for the directionality indexd=c2
2−c1

2 are sug-
gested in Ref. 1, see the Appendix. Expressions for their 95%
confidence bands are derived in the formfĝi −1.6ŝĝi

,ĝi

+1.8ŝĝi
g and d̂±1.6ŝd̂ whereŝĝi

andŝd̂ are calculated from
the sameshort time series. Under the assumption of linear
uncoupled phase oscillators and independent sources of
Gaussian white noise, these modified estimators are unbiased
and provide the rate of erroneous conclusions about coupling
presence and directionality less than 5% for time series
whose length may be as small as 50 basic periods.

B. Technique for investigation of applicability limits
in numerical experiments

Expressions for the estimatorsĝ1,2 and d̂ are derived
analytically for the systems3d with G1,2;0 whose equations
can be rewritten rigorously in the form1

Distd = v1,2t + «istd, i = 1,2, s6d

where «i are independent Gaussian noises with variances
si

2t, their ACFs are linearly decreasing fromsi
2t down to

zero over the intervalf0,tg. If one of the mentioned proper-
ties of the systemsGaussianity and independence of«i,
forms of their ACFs, linearity of oscillators, absence of cou-

plingd is violated, then the estimatorsĝ1,2 andd̂ may become
biased and the expressions for their confidence bands may no
longer correspond to 95% reliability.

In this work, we vary different properties of oscillators

and find out where the estimatorsĝ1,2 andd̂ are still reliable.
To accomplish this, we aim at answering the following ques-
tions:

• “Under what conditions the estimatorsĝ1,2 remain unbi-
ased?”;

• “under what conditions the probability of erroneous con-
clusions about coupling presence and directionality re-
mains less than 5 % ?”;

• since one may also obtain indefinite conclusions about
coupling character, i.e., that it is impossible to detect cou-
pling presence or directionality with confidence, an impor-
tant question is “under what conditions the probability of
correct conclusions about coupling presence and direction-
ality is high?” To be concrete, we determine when this
probability is greater than 75%.

To answer the first question we calculate biases of esti-
matorsĝ1,2, which are equal by definition tosEfĝ1,2g−c1,2d
whereEfĝig is the expectation ofĝi. We estimateEfĝig as the
empiric mean value ofĝi over an ensemble of 1000 time
series, standard error of the mean is regarded as the error in
the obtained estimate ofEfĝig. If the true value ofci

2 is not
known a priori, it is estimated as the value ofĝi for a long
time series withN=200 000. The estimatorĝi is regarded
biased if the obtained estimateuEfĝig−ci

2u is greater than
double error in the estimate ofEfĝig.

To answer the secondsthirdd question, we count the
number of erroneousscorrectd conclusions about coupling
presence and directionality over the same ensemble of 1000
time series and check whether it is less than 5%sgreater than
75%d.

If not stated otherwise, the time series of phases in nu-
merical experiments are of the lengthN=1000. In Secs.
III B–III D they are generated by a system of stochastic dif-
ferential equations using Euler integration technique with the
step sizeh=0.01p. Sampling intervalDt may not coincide
with h: We useDt=20h andDt=h in Sec. III A, Dt=20h in
Secs. III B and III C,Dt=10h in Sec. III D. The value oft is
always taken to be 2p which is approximately equal to a
basic period in all examples, i.e., a time interval over which
the phase increases by 2p. Following Refs. 1, 17, and 18, we
use the third-order polynomialsFi. We also calculate the
mean phase coherence15 r= ukexph jsf2−f1djlu, where angle
brackets stand for the time average, which quantifies the de-
gree of synchrony in the systems’ oscillations, to check
whether it can always warn about inapplicability of the
method. Such warning can be generated, at least sometimes,
if r.0.6 as observed in Ref. 23.

III. RESULTS

A. Influence of noise properties

The estimatorsĝ1,2 andd̂ are rigorously applicable if the
noise terms«1,2 in s6d are Gaussian and their ACFs are lin-
early decreasing down to zero over the intervalf0,tg. To
check to what extent these conditions are necessary, we ap-
ply the method to estimate coupling from time realizations of
the systems6d with different properties of«1,2. In the follow-
ing, we fix v1=1.1, v2=0.9.

1. Variation of the autocorrelation time

Noises«1,2 are taken to be Gaussian with ACF linearly
decreasing down to zero over the intervalf0,Tg. We call T
“the autocorrelation time” and vary it in the rangef0,10tg. A
noise realization for a necessary value ofT is generated with
the aid of moving average filter applied to the sequence of
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i.i.d. Gaussian random values. Sampling interval is taken to
beDt=0.2p, i.e.,t=10Dt. Noise levels1=s2=s is varied in
the rangef0,0.6g.

As a result of calculations, we found that for allT ands,
the number of erroneous conclusions about coupling pres-

ence does not exceed 4% and the estimatorsĝ1,2 and d̂ re-
main unbiased. For example, fors=0.12 andT=10t, we
obtainedEfĝ1g<1.3·10−4 with standard error of the mean
3.1·10−3. Thus, as one can judge from this particular ex-
ample, variation of the ACFs of the noises«1,2 does not itself

bound applicability of the estimatorsĝ1,2 and d̂.

2. Different probability distributions

Next, we consider noises«1,2 with qualitatively different
probability density functionssPDFsd. ACFs remain the same
as above, i.e., linearly decreasing down to zero over the in-
terval f0,tg. To simplify calculations, we use sampling inter-
val Dt=t=2p so that ACFs decreases down to zero over a
single sampling interval and one can generate noise realiza-
tions «1,2stid just as the sequence of i.i.d. random values.42

We consider the following PDFs:

• Unsmooth PDF—uniform distribution on a finite interval;
• asymmetric PDF—demeaned chi-square distribution with

one degree of freedom;
• bimodal PDF—random alternation of values drawn from

two Gaussian distributions with the same variance and dif-
ferent expectations.

Noise intensitiess1=s2=s are varied in the range
f0,0.6g. The results are practically the same for all PDFs and
noise levels. Namely, the estimators are unbiased and the
number of erroneous conclusions about coupling presence is
less than 5%. E.g., for the uniform distribution withs
=0.12 we obtainedEfĝ1g<1.0·10−4 and the standard error
of the mean 3.7·10−3, the number of erroneous conclusions
is 5%. For asymmetric PDF withs=0.12, we haveEfĝ1g
<2.3·10−4 and standard error of the mean 3.8·10−3, the
number of errors is 5%. For bimodal PDF withs
=0.12,Efĝ1g<1.4·10−4 and standard error of the mean
3.6·10−3, the number of errors is 4.9%. So, the form of the
PDFs does not seem to affect applicability of the estimators
also.

This result can be understood intuitively based on the
robust estimationideas.43 It is known from the linear regres-
sion theory that ordinary least-squares estimators of the re-
gression coefficients arestatistically efficientin the case of
independent normally distributed observation errors. Varia-
tion of the distribution in a wide classsall distributions with
variance less than a certain finite valued does not change
significantly the accuracy of the estimators. Nonzero corre-
lations between the observation errors often do not affect it

also. In our case, the estimatorsĝ1,2 and d̂ are based on the
least-squares estimators of the model coefficients, so the ro-

bustness of the latter could carry over toĝ1,2 and d̂. A more
serious problem arises if the distributions of«1,2stid strongly
depend on the current phasesf1stid ,f2stid. Such a case is
encountered below for strongly nonlinear or strongly coupled
oscillators.

B. Influence of the individual nonlinearities
of oscillators

To check to what extent the properties of the estimators
deteriorate when oscillators are nonlinear, we calculateĝ1,2

and d̂ from time realizations of the systems3d with
Gisf1,f2d=vi +b cosfi, where v1=1.1, v2=0.9, andj1,2

are Gaussian white noises. The coefficientb determines the
“phase nonlinearity strength.” Noise levels1=s2=s is var-
ied in the rangef0,0.66g, the value ofb in the rangef0,0.80g,
Dt=0.2p.

The results forĝ1 are shown in Fig. 1sad. They are analo-
gous forĝ2. The estimatorĝ1 is unbiased and the probability
of erroneous conclusion about coupling presence is less than
5% in the region to the left from the solid line, i.e., up to
sufficiently strong nonlinearityb=0.3–0.7. The values of
mean phase coherencer are shown in Fig. 1sbd with gray-
scale,r increases with nonlinearity to some extent since dis-
tribution of the wrapped phase differencef2−f1 on the in-
tervalf0,2pg becomes less uniform. However,r is relatively
small even to the right from the solid line in Fig. 1sad where
ĝ1 is biased or error probability is high, sor cannot reliably
detect such situations here.

Let us express the result in “physical” units, i.e., consid-
ering contributions of the nonlinear termb cosf1 and noise
term j1 into the dynamics with respect to contribution of the
termv1=1.1, the latter can be interpreted as the influence of
the linear component of the restoring force of the first oscil-
lator. We express the relative value of nonlinearity asb/v1.
Relative noise level iss /Î2pv1 which is derived as follows.
Contribution of white noisej1 over the periodT1=2p /v1 is
equal tosÎT1 sit is a standard deviation of the integral ofj1

over time intervalT1d and contribution of the linear restoring
force is v1T1=2p. In the new relative units, the numerical
values along the horizontal axes in Fig. 1 remain practically
unchanged, while the values along the vertical axes decrease
approximately 2.5 times. We conclude that the coupling es-
timators are unbiased and probability of erroneous conclu-
sion about coupling presence is less than 5% for noise inten-

FIG. 1. sad Regions of the coupling estimators applicability on the plane
“nonlinearity–noise” for uncoupled oscillators–systems3d with Gi =vi

+b cosfi. ĝ1 is unbiased and probability of erroneous conclusions about the
influence 2→1 is less than 5% to the left from the solid line.sbd Mean
phase coherence values in grayscale, they are shown in the same manner in
Figs. 2–6 below, where pictures with the regions of applicability and mean
phase coherence are combined together.
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sity in the range 0–25% of the linear component of the
restoring force and phase nonlinearity strength up to 30%–
70%.

Similar results are observed for different nonlinearities.
We present two additional examples here. The first one is the
systems3d with Gisf1,f2d=vi +b cos 3fi. Figure 2sad shows
that the estimators are applicable up to nonlinearities of
40%–80% of the linear component of restoring force. The
second example is the systems3d with Gi =vi +0.76bs1
−wi

2dexps−wi
2/2d, wherewi ;sfi mod 2pd−p and multiplier

0.76 provides root-mean-square value of the term 0.76s1
−wi

2dexps−wi
2/2d over the intervalf−p ,pg equal to 0.5 as for

the trigonometric nonlinearities considered above. Figure
2sbd shows that here for noise levels up to 20% even stronger
nonlinearitysup to 100%–300%d is allowable.

Thus, the domain of the estimators’ applicability appears
quite significant with respect to the nonlinearity strength for
all three cases considered, different nonlinearities manifest-
ing themselves in a very similar manner. In other words,
linearity of the oscillators is not a necessary condition for the
estimators’ applicability and can be moderately violated.

C. Influence of coupling strength

To check to what extent the estimatorsĝ1,2 and d̂ are
applicable when considerable coupling between oscillators is
present, we calculate them from time realizations of the sys-
tem s3d with v1=1.1, v2=0.9, Gaussian white noises
j1,2, Dt=0.2p, and different coupling functions. First, we
considerG1,2sf1,f2d=v1,2+k1,2 sinsf2,1−f1,2d. The coeffi-
cientsk1, k2 determine the coupling strengths. We consider
the cases of unidirectional and bidirectional coupling in turn.

1. Unidirectional coupling

k1=0, the value ofk2=k is varied in the ranges0, 0.25g,
noise levels1=s2=s in the rangef0,0.5g. In Fig. 3sad we
show the “triangle” region where the estimatesĝ1,2 are un-
biasedsthis condition determines the right boundary which is
close to the vertical straight lined and the number of correct
conclusions about coupling strength is greater than 75%sthis
condition determines the curved left boundary which makes
sense as a minimal reliably identifiable coupling strength for
a given noise leveld. The estimators are erroneous ifr.0.8,

see Fig. 3sad. So, the “rule of thumb” thatr close to 0.6 is a
sign of danger23 for application of the EMA seems to be
roughly confirmed here.

The causes of bias in the estimates in the case of largek
are following: sid Synchronization for low noise levelsfFig.
3sadg, sii d nonlinearity of the phase dynamics induced by the
presence of coupling for high noise levels. At a given noise
level, the best situation is an intermediate strength of unidi-
rectional coupling, since at weak coupling the probability of
correct conclusion is low due to noise and at strong coupling
the estimates become biased due to synchronization or just
phase nonlinearity. Domain of the estimators’ applicability
widens with the time series length at fixed sampling fre-
quency, see a big region in Fig. 3sbd for time series length
N=4000. Note that right boundary is not a vertical line any
more: For a higher noise level stronger coupling is accept-
able since intensive noise prevents synchronization that is
good for the modified EMA application. Forshorter time
series strong noise is not so usefulfalmost vertical right
boundary forN=1000, Figs. 3sad and 3sbdg because there is
not enough data to reliably extract information about cou-
pling. If the time series length is increased only due to in-
crease in sampling frequency, the results almost do not
change, see the dashed line in Fig. 3sbd. The reason is that
new data points sampled from the same time interval are
highly correlated with the data already present, so that the
former provide almost no new information about the dynam-
ics. Thus, it is not reasonable to aim at a very high sampling
frequency, it is enough to use a frequency sufficient for reli-
able phase extractions20 data points per basic period16d.

In relative unitssk/v2 ands /Î2pv2d one observes that
the estimators work well for coupling strength up to 20% of
the linear restoring force. Coupling strength of 20% can be
identified reliably from a time series of the lengthN=1000
for noise intensity up to 20%. Arbitrary weak coupling can
be detected reliably if noise level is sufficiently low: The left
boundary in Fig. 3sad is an almost straight lines<4.6k for
weak couplings.

Similar conclusions can be drawn for different coupling
functions. Figure 4sad shows the results for the systems3d
with G1=v1, G2sf1,f2d=v2+k sins3f1d. Here synchroniza-

FIG. 2. Regions of the coupling estimators applicabilitysto the left from the
solid lined on the plane “nonlinearity–noise” for uncoupled oscillators:sad
system s3d with Gi =vi +b cos 3fi; sbd system s3d with Gi =vi +0.76bs1
−wi

2dexps−wi
2/2d , wi =sfi mod 2pd−p.

FIG. 3. Regions of the coupling estimators applicability on the plane
“coupling–noise” for unidirectionally coupled phase oscillators–systems3d
with G1=v1, G2=v2+k sinsf1−f2d. sad A base case ofN=1000 andDt
=0.2p sa time series comprises 100 basic periodsd. sbd Comparison of dif-
ferent time series lengths. Small region is reproduced again forN
=1000,Dt=0.2p s100 basic periods in a time seriesd; dashed line bounds
the applicability region forN=4000,Dt=0.05p sagain 100 basic periodsd;
large region is forN=4000,Dt=0.2p s400 basic periodsd.
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tion does not take place even for very strong coupling, so
that no problem arises with an increase in coupling strength.
Only the boundary determined by high noiseslow number of
correct conclusions about couplingd is observed. Figure 4sbd
is obtained for the systems3d with G2sf1,f2d=v2

+1.26kDf exps−Df2/2d, whereDf is phase differencef1

−f2 wrapped to the intervalf−p ,pg. The region of the esti-
mators’ applicability is up to a coupling strength of 40%. The
mean phase coherence reaches the value of 0.6 within this
region, that is the value ofrù0.6 as an indicator of danger is
well confirmed here.

Thus, the estimators are widely applicable in respect of
coupling intensity in all examples.

2. Bidirectional coupling

G1,2sf1,f2d=v1,2+k1,2 sinsf2,1−f1,2d , k1=k, k2=k
+0.02. The value ofk is varied in the rangef0, 0.1g. The
value of coupling asymmetryk2−k1 is held constant. Noise
level s1=s2=s is varied in the rangef0, 0.12g.

The results of calculations are shown in Fig. 5. The re-
gion of the coupling estimators efficiency is bounded on the
right si.e., for large coupling strengthd. r reaches a value of
0.8 within this region. Again, there are two causes that limit
the estimators’ applicability. For low noise level, there is
mainly an increase in oscillations’ synchrony, which induces
biases in the estimators. For high noise level, there is a sig-

nificant scattering of the estimates’ values, which induces
small probability of correct conclusions about coupling char-
acter.

In relative unitssk/v2 and s /Î2pv2d the limits of ap-
plicability are up to 8% for coupling strength at a noise level
up to 2% and up to 2% for coupling strength at a noise level
of about 5%. A noise level of 5% is the greatest allowable
one. Thus, for bidirectional coupling the method also works
properly for significant intervals of coupling strength and
noise intensity values. But the region of applicability is nar-
rower than that presented in Fig. 3sad since asymmetry in
coupling is small. Bounds of the region of applicability move
apart with the increase in coupling asymmetry and fixed
overall coupling strength. So, the case of unidirectional cou-
pling considered above is the easiest one for the determina-
tion of coupling directionality.

D. Van der Pol and Van der Pol–Duffing oscillators

More realistic is a situation where one observes phases
not directly but rather some variables from which one needs
to calculate phases and, hence, may introduce some addi-
tional errors. To simulate such a situation, first, we take
coupled Van der Pol oscillators as an object:

d2x1,2/dt2 = 0.2s1 − x1,2
2 ddx1,2/dt − v1,2

2 x1,2+ k1,2sx2,1

− x1,2d + j1,2, s7d

where v1,2 are angular frequencies,v1=1.02,v2

=0.98,j1,2 are Gaussian white noises. We consider both the
usual case of independent sources of dynamical noisej1,2

and common noisej1=j2. We take the variablesx1, x2 as
observables, both the case of absence and presence of obser-
vational noise are considered. The signals are quasi-
harmonic for moderate noise levels considered here, so the
phases of oscillations are readily calculated with the aid of
Hilbert transform even without filtering. Sampling interval is
Dt=0.1p that corresponds to 20 data points per basic period.
The original time series length isN=1400. After calculation
of phases, we discard 200 values at each edge to avoid edge
effects.16 So, the resulting time series of each phase com-
prises 1000 data points, i.e., 50 basic periods. The oscillators
possess individual phase nonlinearity. Noise in the phase dy-
namics equations is not precisely Gaussian and white. So,
this object represents simultaneous violation of several con-
ditions for the estimators applicability. We consider unidirec-
tional coupling:k1=0, the value ofk2=k is varied in the
ranges0, 0.08g.

1. Independent sources of dynamical noise,
observational noise is absent

The level of dynamical noises1=s2=s is varied in the
ranges0,0.16g. In Fig. 6sad we present the region where the
estimators are unbiasedsright boundaryd and the probability
of correct conclusion about coupling presence is greater than
75% sleft boundaryd. r reaches approximately 0.7 within the
region, again in good agreement with the rule thatr.0.6 is
dangerous for the method application. The boundaries are
almost straight lines. As usual,r becomes greater to the right
from this region and estimators become biased due to signifi-

FIG. 4. Regions of the coupling estimators applicability on the plane
“coupling–noise” for unidirectionally coupled phase oscillators:sad system
s3d with G2=v2+k sins3f1d sregion of applicability is below the thick lined;
sbd system s3d with G2sf1,f2d=v2+1.26kDf exps−Df2/2d , Df is the
phase differencef1−f2 wrapped tof−p ,pg.

FIG. 5. Regions of the coupling estimators applicability on the plane
“coupling–noise” for bidirectionally coupled phase oscillators–systems3d
with G1,2=v1,2+k1,2 sinsf2,1−f1,2d.
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cant synchrony of oscillations. Left boundary is determined
by low probability of correct conclusions due to noise. The
results are quite analogous to Fig. 3sad in Sec. III C. In rela-
tive units, we express contributions of coupling and noise to
the phase dynamics askÎkx1

2l+kx2
2l /v2

2Îkx2
2l and

sÎT2/v2
2Îkx2

2l, respectively. Using the observed value
kx1,2

2 l<2.3 at weak coupling, we obtain relative contribu-
tions of coupling and noise approximately equal to 1.4k and
1.4s. The range of applicability here is up to 6.5% for cou-
pling strengthfless than for the phase oscillators, Fig. 2sadg
and up to 17 % for noise levelsapproximately the same as
for the phase oscillatorsd.

2. Common dynamical noise, observational noise is
absent

Next, we analyze what changes if dynamical noise is the
same for both oscillators. This case deserves special attention
since common drivingseven stochastic oned can lead to an
increase in the degree of synchrony between the two oscilla-
tors. This is undesirable for the application of the coupling
estimators analyzed here, see, e.g., Ref. 23. But the results of
numerical experimentsfFig. 6sbdg are surprisingly almost in-
distinguishable from the case of independent noises. So, at
least for the range of parameters considered here, common
noise is not an obstacle for the use of the coupling estimators

ĝ1,2 and d̂.

3. Observational noise is present, independent
sources of dynamical noise

Dynamical noise level is fixed to bes=0.025. Indepen-
dent observational noises are added to the variablesx1,2.
They are Gaussian and white and have the same standard
deviations which is varied in the rangef0,0.4g. Range of the
method efficiency is shown in Fig. 6scd. In relative units
along vertical axissratio of s to the standard deviation ofx2

which is equal to 1.5d, one obtains that observational noise
level up to 25% may be allowable. Again, the range of the
method applicability is not infinitesimally small but rather
significant.

4. Van der Pol–Duffing oscillators

Finally, we present the results for a bit different nonlin-
earity of oscillators—unidirectionally coupled Van der Pol–
Duffing oscillators

d2x1,2/dt2 = 0.2s1 − x1,2
2 ddx1,2/dt − v1,2

2 x1,2− x1,2
3

+ k1,2sx2,1− x1,2d + j1,2, s8d

with v1=1.05,v2=0.95,k1=0, j1,2 independent Gaussian
white noises, observational noise is absent. Other conditions
are the same as above. Figure 6sdd shows that the results are
very close to that reported for Van der Pol oscillators. So,
wide applicability of the estimators is again confirmed.

E. Application to EEG data

The data were recorded from intracranial depth elec-
trodes implanted in a patient with medically refractory tem-
poral lobe epilepsy as part of routine clinical investigations
to determine candidacy for epilepsy surgery. The recordings
included several left temporal neocortical→hippocampal
seizures that occurred over the course of a long partial status
epilepticus, see an example in Fig. 7sad. Two channels were
analyzed: The first channel situated in the left hippocampus,
the second channel in the left temporal neocortex, where the
“interictal” activity between seizures at the time was com-
prised of pseudoperiodic epileptiform discharges. Visual
analysis of the interictal–ictal transitionssshown with verti-
cal dashed linesd determined that the seizures all started first
in the neocortex, with an independent seizure subsequently
beginning at the ipsilateral hippocampus. We analyzed four
recordings, but here we present the results for only one of
them for the sake of brevity, simply as an illustration of
application of the method to a nonstationary real-world sys-
tem.

The time series of Fig. 7sad contains about 4.5 min of
depth electrode EEGsreferential recording to scalp vertex
electroded recorded at a sampling frequency of 250 Hz. Their
spectrograms are shown in Fig. 7sbd. One can see more or
less significant peaks in power spectra for both channels. For
the hippocampal channel: At frequency 3.2 Hz before the
seizuresstarting approximately at the 100th second and fin-
ishing approximately at the 220th secondd, 2.3 Hz after the
seizure, and 7.1 Hz during the seizure. For the neocortex
channel: At frequency 1.4 Hz before the seizure, 1.6 Hz after
the seizure, and 7.1 Hz during the seizure.

FIG. 6. Regions of the coupling estimators applicability on the plane
“coupling–noise” for unidirectionally coupled Van der Pol oscillatorssad–scd
and Van der Pol–Duffing oscillatorssdd. sad van der Pol oscillators with
independent noise sources.sbd Van der Pol oscillators with a common dy-
namical noise.scd The region on the plane “coupling–observational noise”
Van der Pol oscillators with independent noise sources and dynamical noise
level s=0.025. sdd Van der Pol–Duffing oscillators with independent dy-
namical noise sources, an analogue to Fig. 6sad.
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We have computed coupling characteristics in a running
window. The length of a running window was changed from
N=1000 data points toN=10 000 data points. The value oft
was also changed from 25 to 1000sthe best results are ex-
pected for approximatelyt=33 or 100 corresponding to the
“main frequencies” of oscillationsd. The phases were deter-
mined using both versions of the analytic signal approach.
For filtering with subsequent Hilbert transform, we tried dif-
ferent frequency bands: Low-pass filter with cut-off frequen-
cies 12.5 and 25 Hz, band-pass filters with frequency bands
around 2.5 and 7.1 Hz, etc. For wavelet transform, we used
Morlet wavelet withv0=2 and different time scaless. In
particular, we tried the time scales corresponding to the main
peak of the scalogram for each signal which iss=0.14 s for
the hippocampal signal, ands=0.19 s for the neocortex sig-
nal.

We present only one set of results, in Figs. 7scd and 7sdd
sgray tail denotes 95% confidence bands fordd obtained for
windows of the lengthN=6000. Coupling is regarded as sig-
nificant if the confidence band does not include zero, e.g.,
gray tail does not intersect the abscissa axis. The preliminary

results seem promising for localization of the epileptic focus,
because a long intervals30 s length for the example shownd
of significant predominant coupling direction neocortex
→hippocampus is observed before the seizure. It can be con-
sidered as an indication that epileptic focus is located near
neocortex that agrees witha priori clinical information. De-
spite only a single example is presented, we note that the
results are sufficiently robust and are observed for a signifi-
cant range of values of the above mentioned window lengths
and parameters of filters and wavelets.

Similar results of this type are observed for three of the
four analyzed recordings and not observed for one of them.
Right now, we do not draw any definite conclusions about
applicability of the method to localize epileptic focus. This is
only the first attempt and, of course, more EEG recordings
should be processed to quantify the method’ssensitivityand
specificity. This is a subject of ongoing research. Therefore,
the results presented in this Section should not be overesti-
mated, rather an illustration of how to apply the method in
practice and what kind of information one can expect from it.

IV. DISCUSSION

Numerical experiments demonstrate that the estimators
of coupling between oscillatory systems based on phase dy-
namics modeling are sufficiently widely applicable. Al-
though they are derived under the strict assumption of linear
uncoupled oscillators and independent sources of Gaussian
white noise, they are valid for various dynamical noise prop-
erties including the case of common noise and finitesnot
negligibly smalld strengths of nonlinearity, coupling, and ob-
servational noise. Thus, we conclude that:

• Variation of ACFs and PDFs of dynamical noise in differ-
ence equation for the phase dynamics does not affect ap-
plicability of the estimators;

• significant individual phase nonlinearity of the oscillators
sup to 30 %–300 % of the linear component of the restor-
ing forced, unidirectional coupling strengthsup to 30%–
40%d, and observational noisesup to 25%d may be allow-
able;

• the “rule of thumb” that mean phase coherence close to 0.6
warns about problems is generally confirmed, but strictly
speaking any value of 0,r,0.8 is neither a sufficient nor
a necessary indicator for the estimators’ applicabilityson
the one hand, they may be biased already forr<0.1, on
the other hand, they may be quite efficient even forr
<0.8d;

• the probability of correct conclusion about coupling char-
acter is very small for weak coupling and large noise, but
the corresponding bound moves apart with increase in time
series lengthN at fixed sampling frequencysincrease in
number of basic periods contained in a time seriesd;

• the probability of erroneous conclusion about coupling
character is high for strong coupling due to considerable
synchrony of oscillations, the corresponding bound de-
pends relatively slightly onN especially for low dynamical
noise level.

FIG. 7. sad EEG recordings from hippocampusstopd and neocortexsbot-
tomd. sbd Spectrograms obtained with window length 512 data points with
3/4 overlap of the adjacent windows.scd Coupling directionality index and
mean phase coherence for the phase obtained via Hilbert transform. Nega-
tive delta values correspond to coupling direction neocortex
→hippocampussapproximately from the 20th second to the 50th secondd.
Both signals are preliminarily low-pass filtered with cut-off frequency of 25
Hz. Window length isN=6000, 500 phase values at each edge are discarded.
sdd Coupling directionality index and mean phase coherence for the phase
obtained via wavelet transform, time scales correspond to the maxima of the
scalograms, they ares=0.44 s for the hippocampal signal, ands=0.62 s for
the neocortex signal. Window length isN=6000, 130 phase values at each
edge are discarded.
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When the modified EMA approach is not reliablesill-
defined phases, too strong noise, too strong coupling, too
strong phase nonlinearityd, other techniques may be efficient.
Thus, well-known cross-correlation function and Fourier co-
herence are the methods of choice for very strong coupling
and high level of observational noise. Moreover, they can be
easily applied to short time series. However, the reverse of
the medal is that they are capable of detecting only very
strong and simpleslineard relationships between the oscilla-
tors’ dynamics and, generally speaking, they may reveal only
thepresenceof coupling, notdirectionality. There exist non-
linear generalizations of these techniques such as
information-theoretic approaches4,5 and nearest neighbors
statistics in reconstructed state spaces.6,7,9 These nonlinear
techniques are more advanced in that they can reveal weak
and complicatedsnonlineard interactions and their direction-
ality, but simultaneously they are much more demanding in
respect of time series length. Detailed comparison of one of
the state space approaches and the modified EMA is given in
Ref. 21. A strong coupling making the systems close to some
type of synchronous regimespossibly nonlineard is readily
detected even in the presence of observational noise with
“multidimensional phase coupling”13 sfor detection of inter-
relations in reconstructed state spacesd or mean phase
coherence15 sfor detection of interrelations between the
phasesd.

It is not possible here to discuss in detail various rela-
tionships between different coupling characterization tech-
niques. However, we would like to stress that methods based
on phase dynamics analysis seem to be the best for coupling
characterization between weakly coupled oscillatory systems
with well-defined phases, a situation widely spread in prac-
tice. The EMA is one of the best among these techniques as
shown in Ref. 18. An approach very similar to the EMA was
proposed by Kiemelet al. in Refs. 14 and 20. It is based on
the construction of an empiric model for the phase dynamics
in the form s3d with G1,2sf1,f2d=v1,2+a1,2 sinsf2,1−f1,2d.
This approach is very close to the EMA with smallt since in
this case the difference equations4d is an accurate integration
scheme for the differential equations3d. Analogously to the
EMA, the approach of Kiemelet al. would suffer from the
bias problem for short time series and high dynamical noise
level, but this bias could be corrected using considerations
similar to that of Ref. 1. The main differences between the
EMA and the approach of Kiemelet al. are as follows. The
latter does not require very weak coupling or nonlinearity,
since model parameters are estimated via “honest” maximum
likelihood method involving integration of the Fokker–
Planck equation. Due to the complexity of calculations, it is
very time consuming. The former is more demanding with
respect to the weakness of oscillators’ nonlinearity and cou-
pling sthough not dramatically, as we showed hered, but is
much simpler and faster. Besides, the EMA is used with an
optimal value oft, typically about a basic period of oscilla-
tions. Such a choice, as a rule, provides characteristics with
significantly greater sensitivity to weak coupling than smallt
which is close to the approach of Kiemelet al. Finally, both
approaches can be regarded as slightly different versions of
the same phase dynamics modeling approach.

The modified EMA analyzed here is the extension of the
EMA to short time series so that it seems to be a very pow-
erful method and deserves special attention. Based on con-
sidering several exemplary oscillators, we formulated em-
piric conditions for applicability of the corresponding
coupling estimators. Even though these conditions could be
somewhat different for other types of nonlinearity and cou-
pling between oscillators, our results seem sufficiently repre-
sentative and already allow us to state that such conditions
are rather mild. Thereby, we confirm the potential for the
application of the estimators in practice to analyze real-world
complex systems. In particular, our first attempt to apply
them for epileptic focus localization from multichannel in-
tracranial EEG recordings illustrated in the present paper
looks promising.
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APPENDIX: EXPRESSIONS FOR COUPLING
ESTIMATORS

Formulas for estimatorsĝ1,2 are derived for linear un-
coupled oscillators under influence of Gaussian white noise.1

They are expressed in terms of estimators of coefficients of
the models4d, where functionsFi are trigonometric polyno-
mials

Fi = o
m,n

fai,m,n cossmf1 + nf2d + bi,m,n sinsmf1

+ nf2dg, i = 1,2. sA1d

Coefficient estimatesâi,m,n and b̂i,m,n are obtained via the
least-squares routine and estimates of their variances are

ŝâi,m,n

2 =
2ŝ«i

2

N − kH1 + 2o
l=1

k−1 S1 −
l

k
DcosF lsmâ1,0,0+ nâ2,0,0d

k
G

3expF−
lsm2ŝ«1

2 + n2ŝ«2

2 d

2k
GJ , sA2d

whereŝ«i

2 is the estimate of variance of the noise«i in dif-
ference equationss4d which reads

ŝ«i

2 =
1

N − k − Li
o
j=1

N−kFDistjd −
1

N − k
o
l=1

N−k

DistldG2

, sA3d

whereLi is the number of coefficients of the polynomialFi.

Expression for the variances ofb̂i,m,n is the same. Estimator
ĝ1 is expressed via estimates of coefficients and their vari-
ances as
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ĝ1 = o
m,n

n2sâ1,m,n
2 + b̂1,m,n

2 − 2ŝâ1,m,n

2 d. sA4d

Expression forĝ2 is analogous. Directionality index is de-

fined asd̂= ĝ2− ĝ1.

Estimate of the variance ofĝ1 reads

ŝĝ1

2 =5o
m,n

n4sŝâ1,m,n
2

2 + ŝ
b̂1,m,n

2
2 d, ĝ1 ù 5Îo

m,n
n4sŝâ1,m,n

2
2 + ŝ

b̂1,m,n
2

2 d,

1

2o
m,n

n4sŝâ1,m,n
2

2 + ŝ
b̂1,m,n

2
2 d, 6 sA5d

where

ŝâi,m,n
2

2 =H2ŝâi,m,n

4 + 4sâi,m,n
2 − ŝâi,m,n

2 dŝâi,m,n

2 , âi,m,n
2 − ŝâi,m,n

2 ù 0,

2ŝâi,m,n

4 , J sA6d

and everything is the same forŝ
b̂i,m,n

2
2

. Estimate of the vari-

ance ofĝ2 is derived analogously. For directionality index,
one has the variance estimateŝ

d̂

2
=ŝĝ1

2 +ŝĝ2

2 . Confidence
bands for the coupling estimates are expressed via their vari-
ances. Thus, 95% confidence bands were found semiempiri-

cally: fĝi −1.6ŝĝi
,ĝi +1.8ŝĝi

g for ĝi and fd̂−1.6ŝd̂ , d̂
+1.6ŝd̂g for directionality index.
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