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We demonstrate in numerical experiments that estimators of strength and directionality of coupling
between oscillators based on modeling of their phase dynafiicsA. Smirnov and B. P.
Bezruchko, Phys. Rev. B8, 046209(2003] are widely applicable. Namely, although the expres-
sions for the estimators and their confidence bands are derived for linear uncoupled oscillators
under the influence of independent sources of Gaussian white noise, they turn out to allow reliable
characterization of coupling from relatively short time series for different properties of noise,
significant phase nonlinearity of the oscillators, and nonvanishing coupling between them. We
apply the estimators to analyze a two-channel human intracranial epileptic electroencephalogram

(EEG) recording with the purpose of epileptic focus localization2@05 American Institute of

Physics [DOI: 10.1063/1.1938487

An interdisciplinary problem of detecting interaction be-
tween oscillatory systems solely from their time realiza-
tions has attracted attention of researchers for a long
time. Several approaches to its solution have been sug-
gested within the framework of linear time series analysis
and information theory. The most well-known of them
are cross-correlation function, coherence function, and
mutual information function, which are typically capable
of detecting only the presence of interdependence. To de-
tect coupling directionality, their generalizations exist,
such as Granger causalit)?, Geweke’s spectrzf', and simi-
lar information-theoretic concepts** Recently, there have
been new approaches in nonlinear dynamics to reveal the
presence of the nonlinear interaction and its directional-
ity. These nonlinear techniques are based either on analy-
sis in state spacds'® or investigation of phase
dynamics.l“‘20 The latter set of approaches includes an
evolution map approach, based on modeling phase dy-
namics of the systems/*and its extension for the case of
relatively short time series’ The latter technique is often
shown to be more sensitive to weak coupling than state
space approaches, especially for the practically important
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case of short signal§.l In addition, expressions for the
confidence bands have been developed for the coupling
estimators of Ref. 1 that increases reliability of the re-
sults. But all the formulas are rigorously valid only for
weakly nonlinear and weakly coupled phase oscillators
under the influence of independent sources of Gaussian
white noise. In the present paper, we investigate practical
limits of applicability of these formulas and show in nu-
merical experiments that they are quite wide. Finally, ap-
plication of the estimators to an intracranial EEG record-
ing from an epileptic patient is presented.

I. INTRODUCTION

Characterization of coupling between two oscillatory
systems from their time series is an important task in differ-
ent fields of scientific research and practice, including
climatology?? electronics’® and physiology” Thus, a great
deal of attention is paid nowadays to the investigation of
interaction between human cardio-vascular and respiratory
system&®181925-283n4 to the analysis of multichannel EEG
and MEG recording$;****%%n particular, with the pur-
pose to localize epileptic fodi*>?°303234\10st of the well-
known approaches, such as cross-spectral analysis and
information-theoretic characteristics, are often insufficient to
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detect directional coupling from complex realworld signals.on the current value of the phase of the other system. To
In the last years, new promising techniques are suggested [achieve this, one obtains a time series of the oscillations’
nonlinear dynamics, see comparative study of several aghases{¢;(t;),...,d1(ty)} and {ds(ty), ..., do(ty)} from the
proaches in Refs. 21 and 31. original time series of the two systerfig(t,), ..., x;(ty)} and
One family of nonlinear approaches exploits the idea ta{x,(t),...,X,(ty)}, t;=iAt, At is sampling interval. An ana-
analyze interdependencies betwgdrasesof the oscillatory  lytic signal is constructed for this purpose typically in one of
systems. The most sensitive approach within this family intwo ways. The most traditional one is to calculate Hilbert
volves construction of an empiric model for the phase dy-transformy,(t) of the observed signad(t):
namics and calculation of interaction strength from the val- o
ues of its parameters. The idea is suggested originally in Ref. v =p.o. f X (t")dt ,
17 and the technique to realize it is called the “evolution map e m(t=t")

approach”(EMA). It is efficient for analysis of oscillatory

processes unsynchronized with each other and exhibitinghf_erep'v' stalnds for Itrr_a Cf_;luchytpilnc[[pil_valtuelé"al'p_le_ﬂ, one
pronounced main rhythms of oscillations that allows the in- efines complex analytic signal(t)=x(t)+jy(t). N

troduction of well-defined phases. In its initial version, EMA seco.nd approach is to defiagt) via complex wavelet trans-
provides reliable results for stationary time series of quite Jorm.
considerable length, such as 5000 characteristic periods un- o t'—t

z(1) :f Xk(t')lﬂ(T)dt’,

1)

(2)

der moderate noise levels. A very similar approach is pro-

posed by Kiemekt al1*?°

However, in practice one often encountamstationary — wherey(t) is a complex wavelet functiors,is its time scale.
signals, e.g., EEG recordings are well-known to be highlyAs a rule, Morlet wavelet(t) = 7~ exp(j wot)exp(-t?/2) is
nonstationary® Thus, the problem of coupling characteriza- employed®® For any of these approaches, one defines an un-
tion from short time series segments inevitably arises. Tavrapped phasep,(t) as the argument of the signaj(t)
address it, special corrections have been introduced into foeg,(t)exp(j ¢ (t)) increased by 2 after each complete revo-
mulas for the EMA coupling estimators, so that the latterjution of the vectorz(t) about the origit® Both approaches
become unbiased even in the case of relatively short timgre closely related as shown in Ref. 39: The use of the com-
series(down to 50 basic periogisand expressions for their plex wavelet transform corresponds to band-pass filtering of
confidence bands have been derived in Ref. 1. The modifiehe signal x(t) around the angular frequenay,/s with
expressions for the coupling estimators are derived under thgandwidth determined by, and subsequent calculation of
assumptions of linear uncoupled phase oscillators influenceghe Hilbert transform to define the phase of the filtered sig-
by independent sources of Gaussian white noise. Their agal. For any approach, sampling frequency for the original
plicability in other cases has neither been rigorously proveniime series is desirable to be not less than 20 points per basic
nor thoroughly investigated experimentally. Our purposeperiod to extract the phase without significant distortithe.
here consists in a systematical investigation of the limits of  After calculation of the phases, one constructs a math-
applicability of the modified EMA estimators. Relevance andematical model from their time realizations. The model
applied importance of such a work is justified by a variety ofstructure is chosen based on the following considerations. In
situations, where one needs to detect weak coupling from variety of situations, the phase dynamics of oscillators ex-
short time series and the modified EMA appears very senshibiting a pronounced main rhythm are adequately described

tive and reliable. Yet, under some conditions its efficiencywith stochastic differential equations of the fé¥m
deteriorates, so that other techniques can be more effective as
discussed in Sec. IV. Aoy JAt= w1 2+ Gy o hy, o) + &1 1), 3)

The paper is organized as follows. We describe thgyhere parameters, , govern oscillators’ frequencies;(t)
modified EMA in Sec. Il A and a technique to find out limits gre independent Gaussian white noises with zero mean and
of its applicability in Sec. Il B. Results of investigation are gytocorrelation functions (ACF) (EMEM))=0?ot-t").

reported in Sec. lll where we show the influence of noisyhen dealing with discrete time series, it is convenient to
properties(Sec. Ill A), individual nonlinearity of oscillators  .qnsider a difference form of these equations
(Sec. Il B), coupling intensity(Sec. Il O, several factors

together including the case of common source of the noise A1 a(t) = Fy 4 ¢1(D), da(t),a1 o] + &1 A1), (4)
(Sec. Il D), and illustrate an application of the method with

the Qnalysflihof ar|1 ?plleﬁ'_uc EbE? reco;glf@eca_lfl_l ?EDI\;ISA: ixed time intervalr, ¢;(t) zero-mean noises;; trigonomet-
cussion otthe refationships between the moditie anGic polynomials,a; vectors of their coefficients. To construct

pther approaches and a summary of our results are_preser?tgqﬂodelm), one specifies the orders of the polynomig|s

in Sec. IV. TQO cu.mbersome for_mulas for the coupling €St-and the intervalr which is usually equal to the basic period
mators are given in the Appendix. of oscillations*® Using the time series of phases, one gets
I. METHODS estimatesy; of the coefficientsa, via the least-squares rou-
tine. Then, one calculates the strength of influence of the
oscillators on each other from the model coefficients as ex-

The main idea of the original method is to estimate howplained below.
strong future evolution of the phase of one system depends |If the “true” equations for phase dynamics were knaavn

where A;(t)= ¢(t+7)— ¢;(t) are phase increments over a

A. Modified evolution map approach
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priori, then the intensityc; of the influence of the second e« since one may also obtain indefinite conclusions about
system on the first on@ — 1) would be defined as the steep- coupling character, i.e., that it is impossible to detect cou-
ness of the dependenég(¢,), and everything is the same  pling presence or directionality with confidence, an impor-
for the intensityc, of the influence 1 2: tant question is “under what conditions the probability of
correct conclusions about coupling presence and direction-

, 1 (7 (T 5 ality is high?” To be concrete, we determine when this
12753 A [0F1 A1, 2,819/ po 1]°Dp1deps. probability is greater than 75%.

(5) To answer the first question we calculate biases of esti-

The directionality index is determined by the difference be-wr?;?gsg[@?]’ i\év?rlnceheiree(?tgltjiilnbo)%d\?\]:glsot?nfgfg[&“’% ;gltfl)e
tweenc, andc,. It would betrue coupling characteristics. Y P " Y

. N empiric mean value ofy, over an ensemble of 1000 time
However, one has only estimates of the coefficiemteb- P i

: . . . series, standard error of the mean is regarded as the error in
tained from a time series and needs to calculate estimates : . - 5.
. . . e obtained estimate & 7;]. If the true value ofc{ is not
c; andc, based org;. The most direct way is to use E(p)

substituting the estimates for the true values;. But such kpown a prior, I 'E estimated as the _valueAcy]f for a long
. = P Y . time series withN=200 000. The estimatoy; is regarded
estimatorsc, , appear “good” only for very long stationary

signals whose length should be about 5000 basic periods f(?'ased if the obtained estimalEy]-c| is greater than

the sampling frequency 10-20 points per a basic period anéOUbIe error in the estimate E[y'] .
. 17 23 . . To answer the secon¢third) question, we count the
moderate noise levétt’?® For a shorter time series often

) . : number of erroneousgcorrec) conclusions about couplin
encountered in practice, these estimators turn out to be bi- & ) pling

ased. The modified estimatols., for 2, and the estimator presence and directionality over the same ensemble of 1000
~ o 2270 M2 5 5 time series and check whether it is less than(g%ater than
0=7y,—7%, for the directionality indexd=c5-c; are sug- 75

gested in Ref. 1, see the Appendix. Expressions for their 95% |t hot stated otherwise, the time series of phases in nu-
confidence bands are derived in the foi—1.603,%  merical experiments are of the lengi=1000. In Secs.
+1.855,] and 6+1.65; whered;, and s are calculated from 111 B-III D they are generated by a system of stochastic dif-
the sameshort time series. Under the assumption of linearferential equations using Euler integration technique with the
uncoupled phase oscillators and independent sources efep sizeh=0.017. Sampling intervalAt may not coincide
Gaussian white noise, these modified estimators are unbiasedth h: We useAt=20h andAt=h in Sec. Il A, At=20h in

and provide the rate of erroneous conclusions about couplingecs. Il B and 11l CAt=10h in Sec. lll D. The value ofris
presence and directionality less than 5% for time seriealways taken to be 2 which is approximately equal to a
whose length may be as small as 50 basic periods. basic period in all examples, i.e., a time interval over which
the phase increases byr2Following Refs. 1, 17, and 18, we
use the third-order polynomials;. We also calculate the
mean phase coherertee=|(exp{j(¢,— #1)})|, where angle
brackets stand for the time average, which quantifies the de-

Expressions for the estimatof , and & are derived gree of synchrony in the systems’ oscillations, to check

analytically for the systert) with G; ,=0 whose equations whether it can always warn about inapplicability of the
can be rewritten rigorously in the form method. Such warning can be generated, at least sometimes,

if p>0.6 as observed in Ref. 23.

B. Technique for investigation of applicability limits
in numerical experiments

Aj(t) = wy o7+ g(t), 1=1,2, (6)

where g; are independent Gaussian noises with varianced!- RESULTS

of, their ACFs are linearly decreasing fronfr down to A Influence of noise properties

zero over the intervdl0, 7]. If one of the mentioned proper- R

ties of the system(Gaussianity and independence gf The estimator$, , and § are rigorously applicable if the
forms of their ACFs, linearity of oscillators, absence of cou-nhoise terms; , in (6) are Gaussian and their ACFs are lin-

pling) is violated, then the estimatofg , andd may become &'y decreasing down to zero over the interl@|7]. To
biased and the expressions for their confidence bands may f€ck to what extent these conditions are necessary, we ap-
longer correspond to 95% reliability. ply the method to estimate coupling from time realizations of

In this work, we vary different properties of oscillators the system6) with different properties o, ,. In the follow-

and find out where the estimatoys , andé are still reliable. M9 W€ fix 03=1.1, 0,=0.9.

To accomplish this, we aim at answering the following ques-

tions: 1. Variation of the autocorrelation time
* “Under what conditions the estimatofg , remain unbi- Noiseseg, , are taken to be Gaussian with ACF linearly
ased?”; decreasing down to zero over the inter{@lT]. We call T

» “under what conditions the probability of erroneous con-“the autocorrelation time” and vary it in the rang#, 10r]. A
clusions about coupling presence and directionality renoise realization for a necessary valueTag generated with
mains less tha5 % ?7; the aid of moving average filter applied to the sequence of
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i.i.d. Gaussian random values. Sampling interval is taken toc 0.6
be At=0.27, i.e., 7=10At. Noise levelo;=0,=0 is varied in _

8
the rangd0,0.6]. 0.4 s 04
.

As a result of calculations, we found that for @alando,

the number of erroneous conclusions about coupling presb i J ©

ence does not exceed 4% and the estimajgrsand 5 re- 0.2 X”/ S
main unbiased. For example, fer=0.12 andT=10r, we 1 / 1
obtainedE[y,]~1.3-10* with standard error of the mean 1 I T 0
3.1-10% Thus, as one can judge from this particular ex- 0 02 04 068 08 0
ample, variation of the ACFs of the noiseg, does not itself (@) b (b)

bound applicability of the eStlmatorﬁl,Z andé. FIG. 1. (a) Regions of the coupling estimators applicability on the plane

“nonlinearity—noise” for uncoupled oscillators—systef8 with G;=w;

2. Different probability distributions +b cosd. ¥, is unbiased and probability of erroneous conclusions about the
influence 2-1 is less than 5% to the left from the solid linga) Mean

Next, we consider noises , with qualitatively different  phase coherence values in grayscale, they are shown in the same manner in
probability density function$PDFg. ACFs remain the same Figs. 2-6 below, where pictures with the regions of applicability and mean
as above, i.e., linearly decreasing down to zero over the in2hase coherence are combined together.
terval[0, 7]. To simplify calculations, we use sampling inter-
val At=7=27 so that ACFs decreases down to zero over a
single sampling interval and one can generate noise realiza-
tions &, 5(t;) just as the sequence of i.i.d. random valtfes. B infiuence of the individual nonlinearities

We consider the following PDFs: of oscillators

¢ Unsmooth PDF—uniform distribution on a finite interval, To check to what extent the properties of the estimators
* asymmetric PDF—demeaned chi-square distribution witljeteriorate when oscillators are nonlinear, we calcujate

one degree of freedom; . and & from time realizations of the systeni3) with
e bimodal PDF—random alternation of values drawn from
Gi(¢1, o) =w;+bcos¢;, where w;=1.1, w,=0.9, and§; ,
two Gaussian distributions with the same variance and d'fare Gaussian white noises. The coefficibrdetermines the
ferent expectations.
“phase nonlinearity strength.” Noise leve|=0,=0 is var-

Noise intensitiesoy=0,=c are varied in the range ied inthe rang¢0,0.68, the value ob in the rangd0,0.8,
[0,0.6]. The results are practically the same for all PDFs and\t=0.2m.
noise levels. Namely, the estimators are unbiased and the The results fofy; are shown in Fig. (). They are analo-
number of erroneous conclusions about coupling presence @0us fory,. The estimatory, is unbiased and the probability
less than 5%. E.g., for the uniform distribution wih  of erroneous conclusion about coupling presence is less than
=0.12 we obtainedE[y,]~1.0-10* and the standard error 5% in the region to the left from the solid line, i.e., up to
of the mean 3.7- I8, the number of erroneous conclusions sufficiently strong nonlinearityp=0.3-0.7. The values of
is 5%. For asymmetric PDF witr=0.12, we haveE[y;,]  mean phase coherenpeare shown in Fig. (b) with gray-
~2.3-10% and standard error of the mean 3.8*l0the scale,p increases with nonlinearity to some extent since dis-
number of errors is 5%. For bimodal PDF witr  tribution of the wrapped phase differengg— ¢, on the in-
=0.12,E[y;]=1.4-10% and standard error of the mean terval[0,27] becomes less uniform. Howeveris relatively
3.6-10%, the number of errors is 4.9%. So, the form of the small even to the right from the solid line in Figial where
PDFs does not seem to affect applicability of the estimator$, is biased or error probability is high, gocannot reliably
also. detect such situations here.

This result can be understood intuitively based on the  Let us express the result in “physical” units, i.e., consid-
robust estimationdeas® It is known from the linear regres- ering contributions of the nonlinear terbncos¢, and noise
sion theory that ordinary least-squares estimators of the raerm &, into the dynamics with respect to contribution of the
gression coefficients arstatistically efficientn the case of termw,=1.1, the latter can be interpreted as the influence of
independent normally distributed observation errors. Variathe linear component of the restoring force of the first oscil-
tion of the distribution in a wide clas&ll distributions with lator. We express the relative value of non|inearityoa8)1_
variance less than a certain finite valugoes not change Relative noise level is/\2mw; which is derived as follows.
significantly the accuracy of the estimators. Nonzero corréContribution of white noise; over the periodr; =2/, is
lations between the observation errors often do not affect 'équal tomTl (it is a standard deviation of the integral &f
also. In our case, the estimatdyg, and 5 are based on the over time intervall,) and contribution of the linear restoring
least-squares estimators of the model coefficients, so the réorce is w,T;=27. In the new relative units, the numerical
bustness of the latter could carry overyp, and 8. Amore  values along the horizontal axes in Fig. 1 remain practically
serious problem arises if the distributionseqf,(t;) strongly ~ unchanged, while the values along the vertical axes decrease
depend on the current phases(t;), ¢,(t;). Such a case is approximately 2.5 times. We conclude that the coupling es-
encountered below for strongly nonlinear or strongly coupledimators are unbiased and probability of erroneous conclu-
oscillators. sion about coupling presence is less than 5% for noise inten-
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0.6

0 005 01 0.15 02 025
(@) k (b)

FIG. 2. Regions of the coupling estimators applicabilttythe left from the FIG. 3. Regions of the coupling estimators applicability on the plane

solid line) on the plane “nonlinearity—noise” for uncoupled oscillatdi: “coupling—noise” for unidirectionally coupled phase oscillators—systgm
system (3) with G;=w;+bcos 3; (b) system(3) with G;=w;+0.76b(1 with Gi=w;, Gy=w,+ksin(¢;—¢,). (8) A base case oN=1000 andAt
—<pi2)exyi—<pi2/2), @i =(¢py mod 2) — . =0.27 (a time series comprises 100 basic perjodds) Comparison of dif-

ferent time series lengths. Small region is reproduced again Nor

=1000,At=0.27 (100 basic periods in a time serigslashed line bounds

. . the applicability region foN=4000,At=0.05r (again 100 basic periogls
sity in the range 0-25% of the linear component of thejarge region is foN=4000,At=0.2r (400 basic periods

restoring force and phase nonlinearity strength up to 30%—
70%.

Similar results are observed for different nonlinearities.se€ Fig. 83). So, the “rule of thumb” thap close to 0.6 is a
We present two additional examples here. The first one is theign of dangé? for application of the EMA seems to be
system(3) with G;(¢,, ¢,) = w;, +b cos 3. Figure 2a) shows  roughly confirmed here.
that the estimators are applicable up to nonlinearities of —The causes of bias in the estimates in the case of large
40%-80% of the linear component of restoring force. Theare following: (i) Synchronization for low noise leve[§ig.
second example is the systefB) with G=w +0.760(1  3(@], (i) nonlinearity of the phase dynamics induced by the
—¢$)eXF(—¢$/2), where¢;= (¢, mod 2m)— 7 and multiplier ~ Presence of coupling for high noise levels. At a given noise
0.76 provides root-mean-square value of the term (A.76 level, the best situation is an intermediate strength of unidi-
—<Pi2)eXD(—<Pi2/2) over the interval—, 7] equal to 0.5 as for rectional coupling, since at weak coupling the probability of
the trigonometric nonlinearities considered above. Figuréorrect conclusion is low due to noise and at strong coupling
2(b) shows that here for noise levels up to 20% even strongelhe estimates become biased due to synchronization or just
nonlinearity (up to 100%—300%is allowable. phase nonlinearity. Domain of the estimators’ applicability

Thus, the domain of the estimators’ applicability appearsvidens with the time series length at fixed sampling fre-
quite significant with respect to the nonlinearity strength forduency, see a big region in Fig(i$ for time series length
all three cases considered, different nonlinearities manifesfN=4000. Note that right boundary is not a vertical line any
ing themselves in a very similar manner. In other wordsmore: For a higher noise level stronger coupling is accept-
linearity of the oscillators is not a necessary condition for theable since intensive noise prevents synchronization that is

estimators’ applicability and can be moderately violated. ~ 9ood for the modified EMA application. Fahorter time
series strong noise is not so usefalmost vertical right

boundary forN=1000, Figs. 8) and 3b)] because there is
not enough data to reliably extract information about cou-

To check to what extent the estimatoys, and 5 are pling. If the time series length is increased only due to in-
applicable when considerable coupling between oscillators i§'€ase in sampling frequency, the results almost do not
present, we calculate them from time realizations of the syschange, see the dashed line in Figh)3The reason is that
tem (3) with w;=1.1,,=0.9, Gaussian white noises N€W data points sampled from the same time interval are
&1, At=0.27, and different coupling functions. First, we highly correlated with the data already present, so that the
considerG, (¢, d») = wy »+Ky »SiN(hy 1— by ). The coeffi- former provide almost no new information about the dynam-
cientsk;, k, determine the coupling strengths. We consideriCS: Thus, it is not reasonable to aim at a very high sampling

the cases of unidirectional and bidirectional coupling in turn.freéquency, it is enough to use a frequency sufficient for reli-
able phase extractiof20 data points per basic perﬂ&i

In relative units(k/ w, and o/ \27w,) one observes that
the estimators work well for coupling strength up to 20% of
k=0, the value ok,=k is varied in the rang€0, 0.25, the linear restoring force. Coupling strength of 20% can be
noise levelo;=0,=0 in the rangg0,0.5. In Fig. 3a) we identified reliably from a time series of the lendgth=1000
show the “triangle” region where the estimatgs, are un-  for noise intensity up to 20%. Arbitrary weak coupling can
biased(this condition determines the right boundary which isbe detected reliably if noise level is sufficiently low: The left
close to the vertical straight lineand the number of correct boundary in Fig. 8) is an almost straight line-= 4.6k for
conclusions about coupling strength is greater than @6%  weak couplings.
condition determines the curved left boundary which makes  Similar conclusions can be drawn for different coupling
sense as a minimal reliably identifiable coupling strength foffunctions. Figure @) shows the results for the syste(®)
a given noise level The estimators are erroneouif>0.8,  with G;=w;, G,(d1, d,) =w,+k sin(3¢,). Here synchroniza-

C. Influence of coupling strength

1. Unidirectional coupling
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08 nificant scattering of the estimates’ values, which induces

small probability of correct conclusions about coupling char-
acter.

In relative units(k/ w, and o/ \/m) the limits of ap-
plicability are up to 8% for coupling strength at a noise level
up to 2% and up to 2% for coupling strength at a noise level
of about 5%. A noise level of 5% is the greatest allowable
one. Thus, for bidirectional coupling the method also works
(@) 0 02 0-4k0-6 08 1 b) 0 02 01-(4 06 08 properly for significant intervals of coupling strength and

noise intensity values. But the region of applicability is nar-
FIG. 4. Regions of the coupling estimators applicability on the planerower than that presented in Fig(aB since asymmetry in
“coupling-noise” for unidirectionally coupled phase oscillatdes:system  coupling is small. Bounds of the region of applicability move
8 ‘“é';ztgr;‘é;+vtlfr']“(é‘i’z;irzgz')":”w(;alpggfzz'g;’p'(s_ 222’/‘“2’;1'12;“'?5" Itlr?s apart with the increase in coupling asymmetry and fixed
phase differenceb, - ¢, wrapped td -, ). overall coupling strength. So, the case of unidirectional cou-

pling considered above is the easiest one for the determina-
tion of coupling directionality.

0.6

004

02

tion does not take place even for very strong coupling, Sy van der Pol and Van der Pol-Duffing oscillators
that no problem arises with an increase in coupling strength.

Only the boundary determined by high noigav number of More realistic is a situation where one observes phases
correct conclusions about couplinig observed. Figure(8)  not directly but rather some variables from which one needs
is obtained for the system(3) with Gy(¢,,¢,)=w, t0 calculate phases and, hence, may introduce some addi-
+1.26kA ¢ exp(-A¢?/2), where A¢ is phase differencep,  tional errors. To simulate such a situation, first, we take
- ¢, wrapped to the intervdl-, 7]. The region of the esti- coupled Van der Pol oscillators as an object:
mators’ applicability is up to a coupling strength of 40%. The 2 2_ 2 2
mean phase coherence reaches the value of 0.6 within this A% Afdt" = 0.2A1 = X7 J)dxg Jfdt = wf X o+ Ky 2%z
region, that is the value @f= 0.6 as an indicator of danger is =Xy 0+ &1, (7)
well confirmed here.

Thus, the estimators are widely applicable in respect o
coupling intensity in all examples.

¥vhere wy, are angular frequencies,w;=1.02,w,
=0.98, ¢, , are Gaussian white noises. We consider both the
usual case of independent sources of dynamical ngise
and common nois&;=¢&,. We take the variableg,, X, as
observables, both the case of absence and presence of obser-
vational noise are considered. The signals are quasi-
Gy o1, Po) = w1 o+ Ky 2SIy 1— 1 2), K=K, ko=k harmonic for moderate noise levels considered here, so the
+0.02. The value ok is varied in the rang¢0, 0.1]. The phases of oscillations are readily calculated with the aid of
value of coupling asymmetrig,—k; is held constant. Noise Hilbert transform even without filtering. Sampling interval is
level o1=0,=0 is varied in the rang€0, 0.12. At=0.17 that corresponds to 20 data points per basic period.
The results of calculations are shown in Fig. 5. The re-The original time series length ¥=1400. After calculation
gion of the coupling estimators efficiency is bounded on theof phases, we discard 200 values at each edge to avoid edge
right (i.e., for large coupling strengthp reaches a value of effects'® So, the resulting time series of each phase com-
0.8 within this region. Again, there are two causes that limitprises 1000 data points, i.e., 50 basic periods. The oscillators
the estimators’ applicability. For low noise level, there ispossess individual phase nonlinearity. Noise in the phase dy-
mainly an increase in oscillations’ synchrony, which inducesnamics equations is not precisely Gaussian and white. So,
biases in the estimators. For high noise level, there is a sighis object represents simultaneous violation of several con-
ditions for the estimators applicability. We consider unidirec-
tional coupling: k;=0, the value ofk,=k is varied in the
range(0, 0.08.

2. Bidirectional coupling

0.12 1 . .
| s 1. Independent sources of dynamical noise,
s <“r=’ T observational noise is absent
© i J | The level of dynamical noise;=o,=0 is varied in the
0.04 - I range(0,0.16. In Fig. 6@ we present the region where the
i 8 § estimators are unbias€dght boundary and the probability
\

: I | of correct conclusion about coupling presence is greater than
2 0.04 0.06 0.08 0.1 75% (left boundary. p reaches approximately 0.7 within the
k region, again in good agreement with the rule that0.6 is
FIG. 5. Regions of the coupling estimators applicability on the planeda‘ng(_:‘rous for the method application. The boundaries are

“coupling—noise” for bidirectionally coupled phase oscillators—systgm ~ &lmost -straig_ht lines. AS. usugl,becomes greater to the right. _
With Gy 5=y 2+ky 5 SIN(hp 1~ 1 ). from this region and estimators become biased due to signifi-

o —

0 o

Downloaded 28 Jun 2005 to 134.94.104.52. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



024102-7 Estimation of coupling from time series Chaos 15, 024102 (2005)

3. Observational noise is present, independent

0.12 sources of dynamical noise

Dynamical noise level is fixed to b@=0.025. Indepen-
dent observational noises are added to the variakigs
They are Gaussian and white and have the same standard
deviations which is varied in the rang,0.4]. Range of the
method efficiency is shown in Fig.(&. In relative units
along vertical axigratio of s to the standard deviation o
which is equal to 1.5 one obtains that observational noise
level up to 25% may be allowable. Again, the range of the

 0.08

0.04

(a)

0.4
method applicability is not infinitesimally small but rather
03 significant.
®» 02
4. Van der Pol-Duffing oscillators
o Finally, we present the results for a bit different nonlin-
38 N (RN S 0l earity of oscillators—unidirectionally coupled Van der Pol-
0 001 0.02 0.03 0.04 0.05 0 001 002 003 0.04 Duffing oscillators
() k (d) k

2 2 _ 2 2 3
d Xl'zldt - 0.11 _Xl'z)dX]_’Z/dt_ (1)1’2)(1'2_)(1’2
FIG. 6. Regions of the coupling estimators applicability on the plane K 8
“coupling—noise” for unidirectionally coupled Van der Pol oscillattas(c) + 1,2(X2,1_ X1,2) + 51,2’ 8

and Van der Pol-Duffing oscillatori). (a) van der Pol oscillators with . _ _ _ . .
independent noise sourceb) Van der Pol oscillators with a common dy- Wlth w1~ 1.05, w2—0.9$ k=0, _51,2_ independent Gaus&g_n
namical noise(c) The region on the plane “coupling—observational noise” white noises, observational noise is absent. Other conditions
Van der Pol oscillators with independent noise sources and dynamical noisgare the same as above. Figu(d)&hows that the results are
level 0=0.025.(d) Van der Pol-Duffing oscillators with independent dy- very close to that reported for Van der Pol oscillators. So,

namical noise sources, an analogue to Fi@).6 . . - . . . .
g @ wide applicability of the estimators is again confirmed.

E. Application to EEG data

cant synchrony of oscillations. Left boundary is determined ~ The data were recorded from intracranial depth elec-
by low probability of correct conclusions due to noise. Thetrodes implanted in a patient with medically refractory tem-

results are quite analogous to Figagin Sec. Ill C. In rela-  poral lobe epilepsy as part of routine clinical investigations

tive units, we express contributions of coupling and noise td0 determine candidacy for epilepsy surgery. The recordings
the phase dynamics ask /<x§>+(x§>/w§\/3x?> and included several left temporal neocorticahippocampal

o\ Tl 02\[(3), respectively. Using the observed value

2 . . . .
~2.3 at weak coupling, we obtain relative contribu- . . . _
(a2 W Upiing, W I v U analyzed: The first channel situated in the left hippocampus,

tions of coupling and noise _a_pprox|m_ately equal tokladd the second channel in the left temporal neocortex, where the
1.40. The range of applicability here is up to 6.5% for cou- . o . . :
interictal” activity between seizures at the time was com-

pling strengthiless than for the phase_ oscillators, Figa2 prised of pseudoperiodic epileptiform discharges. Visual
and up to 17 % for noise leveéhpproximately the same as . o ) o ] .
analysis of the interictal-ictal transitiorishown with verti-

for the phase oscillators cal dashed linesdetermined that the seizures all started first
in the neocortex, with an independent seizure subsequently
beginning at the ipsilateral hippocampus. We analyzed four
recordings, but here we present the results for only one of

seizures that occurred over the course of a long partial status
epilepticus, see an example in FigajZ Two channels were

2. Common dynamical noise, observational noise is them for the sake of brevity, simply as an illustration of
absent application of the method to a nonstationary real-world sys-
tem.

Next, we analyze what changes if dynamical noise isthe  The time series of Fig. (& contains about 4.5 min of
same for both oscillators. This case deserves special attentieqgpth electrode EEGreferential recording to scalp vertex
since common drivingeven stochastic ofecan lead to an  electrodé recorded at a sampling frequency of 250 Hz. Their
increase in the degree of synchrony between the two oscillaspectrograms are shown in Fig(by. One can see more or
tors. This is undesirable for the application of the couplingjess significant peaks in power spectra for both channels. For
eStIma_tOI’S analyZEd helje, see, e.Jg., R8f23 But the results fPfe hippocampa| channel: At frequency 3.2 Hz before the
numerical experiments~ig. 6(b)] are surprisingly almost in- - seizure(starting approximately at the 100th second and fin-
distinguishable from the case of mdepe_zndent noises. So, @dhing approximately at the 220th second.3 Hz after the
least for the range of parameters considered here, commaizure, and 7.1 Hz during the seizure. For the neocortex
noise is not an obstacle for the use of the coupling estimatorghannel: At frequency 1.4 Hz before the seizure, 1.6 Hz after
Y12 andé. the seizure, and 7.1 Hz during the seizure.
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results seem promising for localization of the epileptic focus,

igg | | §§ : ! : because a long interv&BO0 s length for the example shoyvn
0 P15 : ? : of significant predominant coupling direction neocortex
-400 | | - 12 s ,‘ gt L — hippocampus is observed before the seizure. It can be con-
800 +——————1—1"— 0 s |d".ﬁ, TPRBE sidered as an indication that epileptic focus is located near
0 50 100 150 200 250 0 50 100 150 200 250 neocortex that agrees witnpriori clinical information. De-
800  EEG (neocortex), uV - | | spite only a single example is presented, we note that the
400 I 20 [ [ results are sufficiently robust and are observed for a signifi-
408 f }g : : cant range of values of the above mentioned window lengths
800 | | 5 ikl 7l L and parameters of filters and wavelets.
1200 1" T Similar results of this type are observed for three of the
0 50 100 150 200 250 0 50 100 150 200 250 four analyzed recordings and not observed for one of them.
(=0 b s2e b) Lo Right now, we do not draw any definite conclusions about
8 | 8 ; applicability of the method to localize epileptic focus. This is
4 | 4 | only the first attempt and, of course, more EEG recordings
© om- B s ') should be processed to quantify the methadssitivityand
'g : : g L N i - : | specificity This is a subject of ongoing research. Therefore,
T T TN h T T i T !

0 50 100 150 200 250

0 50 100 150 200 250
03

the results presented in this Section should not be overesti-
mated, rather an illustration of how to apply the method in

0.3 P . . . . .
W 1 e T W, ractice and what kind of information one can expect from it.
.02 ﬁ( W‘M' Wk f‘m . 02 ﬂMWJU g‘{ W\‘ M’ P P
I I 1 i i L
0.1 [ #3 0.1 ¥ |
s L
O T T 7171 71 LS B S L L R
0 50 100 150 200 250 0 50 100 150 200 250 IV. DISCUSSION
(c) t, sec (d) t, sec

FIG. 7. (a) EEG recordings from hippocamputop) and neocortexbot-

Numerical experiments demonstrate that the estimators

tom). (b) Spectrograms obtained with window length 512 data points withOf coupling between oscillatory systems based on phase dy-

3/4 overlap of the adjacent window&) Coupling directionality index and

namics modeling are sufficiently widely applicable. Al-

mean phase coherence for the phase obtained via Hilbert transform. Negmough they are derived under the strict assumption of linear

tive delta values

correspond
— hippocampugapproximately from the 20th second to the 50th segond

to coupling direction

neocortex

uncoupled oscillators and independent sources of Gaussian

Both signals are preliminarily low-pass filtered with cut-off frequency of 25 White noise, they are valid for various dynamical noise prop-
Hz. Window length isN=6000, 500 phase values at each edge are discardecerties including the case of common noise and firtitet

(d) Coupling directionality index and mean phase coherence for the phasﬁegligibly smal) strengths of nonlinearity, coupling, and ob-

obtained via wavelet transform, time scales correspond to the maxima of the
scalograms, they are=0.44 s for the hippocampal signal, asd0.62 s for
the neocortex signal. Window length lis=6000, 130 phase values at each

edge are discarded.

servational noise. Thus, we conclude that:

Variation of ACFs and PDFs of dynamical noise in differ-
ence equation for the phase dynamics does not affect ap-
plicability of the estimators;

« significant individual phase nonlinearity of the oscillators

We have computed coupling characteristics in a running (up to 30 %—-300 % of the linear component of the restor-

window. The length of a running window was changed from ing force, unidirectional coupling strengtfup to 30%—
N=1000 data points tdl=10 000 data points. The value of 40%), and observational noideip to 25% may be allow-
was also changed from 25 to 100he best results are ex-  able;
pected for approximately=33 or 100 corresponding to the e the “rule of thumb” that mean phase coherence close to 0.6
“main frequencies” of oscillations The phases were deter- warns about problems is generally confirmed, but strictly
mined using both versions of the analytic signal approach. speaking any value of€ p<0.8 is neither a sufficient nor
For filtering with subsequent Hilbert transform, we tried dif- a necessary indicator for the estimators’ applicabildy
ferent frequency bands: Low-pass filter with cut-off frequen- the one hand, they may be biased alreadyger0.1, on
cies 12.5 and 25 Hz, band-pass filters with frequency bands the other hand, they may be quite efficient even for
around 2.5 and 7.1 Hz, etc. For wavelet transform, we used =0.8);
Morlet wavelet with wy=2 and different time scales In ¢ the probability of correct conclusion about coupling char-
particular, we tried the time scales corresponding to the main acter is very small for weak coupling and large noise, but
peak of the scalogram for each signal whicls#0.14 s for the corresponding bound moves apart with increase in time
the hippocampal signal, are£0.19 s for the neocortex sig-  series lengthN at fixed sampling frequencgincrease in
nal. number of basic periods contained in a time seyies

We present only one set of results, in Fig&)7and 7d)  the probability of erroneous conclusion about coupling
(gray tail denotes 95% confidence bands #piobtained for character is high for strong coupling due to considerable
windows of the lengtiN=6000. Coupling is regarded as sig- synchrony of oscillations, the corresponding bound de-
nificant if the confidence band does not include zero, e.g., pends relatively slightly ol especially for low dynamical
gray tail does not intersect the abscissa axis. The preliminary noise level.

Downloaded 28 Jun 2005 to 134.94.104.52. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



024102-9 Estimation of coupling from time series Chaos 15, 024102 (2005)

When the modified EMA approach is not reliakié- The modified EMA analyzed here is the extension of the
defined phases, too strong noise, too strong coupling, toBMA to short time series so that it seems to be a very pow-
strong phase nonlinearjtyother techniques may be efficient. erful method and deserves special attention. Based on con-
Thus, well-known cross-correlation function and Fourier co-sidering several exemplary oscillators, we formulated em-
herence are the methods of choice for very strong couplingiric conditions for applicability of the corresponding
and high level of observational noise. Moreover, they can beoupling estimators. Even though these conditions could be
easily applied to short time series. However, the reverse csomewhat different for other types of nonlinearity and cou-
the medal is that they are capable of detecting only venpling between oscillators, our results seem sufficiently repre-
strong and simplélinean relationships between the oscilla- sentative and already allow us to state that such conditions
tors’ dynamics and, generally speaking, they may reveal onlyre rather mild. Thereby, we confirm the potential for the
the presenceof coupling, notdirectionality. There exist non- application of the estimators in practice to analyze real-world
linear generalizations of these techniques such asomplex systems. In particular, our first attempt to apply
information-theoretic approach4e55 and nearest neighbors them for epileptic focus localization from multichannel in-
statistics in reconstructed state spat&$These nonlinear tracranial EEG recordings illustrated in the present paper
techniques are more advanced in that they can reveal wedRoks promising.
and complicatednonlineaj interactions and their direction-
ality, but simultanepusly they are much more (_jemanding I CKNOWLEDGMENTS
respect of time series length. Detailed comparison of one of
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It is not possible here to discuss in detail various rela-
tionships between different coupling characterization techappenDIX: EXPRESSIONS FOR COUPLING
niques. However, we would like to stress that methods basegdsT|MATORS
on phase dynamics analysis seem to be the best for coupling R
characterization between weakly coupled oscillatory systems Formulas for estimators, , are derived for linear un-
with well-defined phases, a situation widely spread in praccoupled oscillators under influence of Gaussian white noise.
tice. The EMA is one of the best among these techniques akhey are expressed in terms of estimators of coefficients of
shown in Ref. 18. An approach very similar to the EMA wasthe model(4), where functiong; are trigonometric polyno-
proposed by Kiemett al.in Refs. 14 and 20. It is based on Mials
the construction of an empiric model for the phase dynamics

in the form (3) with Gy o1, o) = w1 2+31 2 SiN(¢ho, 1~ 1 o). Fi = 2 [ mn COSMdy + Nby) + by Sin(misy
This approach is very close to the EMA with smakince in mn
this case the difference equati@ is an accurate integration +ng,)], i=1,2. (A1)

scheme for the differential equatidB). Analogously to the . ) . ~ ) ]
EMA, the approach of Kiemett al. would suffer from the ~ CO€fficient estimates ,, and by, are obtained via the
bias problem for short time series and high dynamical noisd€ast-squares routine and estimates of their variances are

level, but this bias could be corrected using considerations 52 k-1 R R
similar to that of Ref. 1. The main differences between the;2 _ i d 1 | o9 (1 —I—>cos{ (M3, 0,0+ na2v0v0)}
EMA and the approach of Kiemelt al. are as follows. The — %mn  N-k =1 k

latter does not require very weak coupling or nonlinearity,
since model parameters are estimated via “honest” maximum
likelihood method involving integration of the Fokker—
Planck equation. Due to the complexity of calculations, it is o ) ) o
very time consuming. The former is more demanding withWherea? is the estimate of variance of the noisein dif-
respect to the weakness of oscillators’ nonlinearity and couference equation&) which reads

pling (though not dramatically, as we showed hetaut is N-k N-k )

much simpler and faster. Besides, the EMA is used with an ., _ 1 S| At - LE Adt) (A3)
optimal value ofr, typically about a basic period of oscilla- % N-k-Liig BNk v

tions. Such a choice, as a rule, provides characteristics with

significantly greater sensitivity to weak coupling than small WhereL, is the number of coefficients of the polynomfal
which is close to the approach of Kiem&tl al. Finally, both  Expression for the variances bf,, , is the same. Estimator
approaches can be regarded as slightly different versions df; is expressed via estimates of coefficients and their vari-
the same phase dynamics modeling approach. ances as

(P62, + 267 ]
1 2 "7 ' (A2)

X exp{ - o
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= D nz(éim,n + bim,n _ 26-§lmn). (A4) Estimate of the variance df; reads
m,n o

Expression fory, is analogous. Directionality index is de-
fined asé=%,- ;.

~2 ~2 ~ ~2 ~2
> n4(052 to, ), Mm=5 > n4(créz top ),
mn 1,mn 1,mn mn 1,mn 1,mn
~2 _ ! ' A5)
0',y1 1 4/~ 2 2 (
_E n (0'52 + o2 )y
2m,n 1mn 1,mn
where
~4 a2 ~2 ~2 a2 ~2
N + ‘ — 0% < ‘ — g% =
~2 _ 2O-ai,m,n 4(a1,m,n o-ai,m,n)a-ai,m,n’ al,m,n o-ai,m,n 0'
02 =) 5~4 (A6)
i, mn 20'5. ,
i

,mn
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