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Abstract

Objective: The investigation of nonstationarity in complex, multivariable signals, such as electroencephalographic (EEG) recordings,

requires the application of different and novel approaches to analysis. In this study, we have divided the EEG recordings during epileptic

seizures into sequential stages using spectral and statistical analysis, and have as well reconstructed discrete-time models (maps) that reflect

dynamical (deterministic) properties of the EEG voltage time series.

Methods: Intracranial human EEG recordings with epileptic seizures from three different subjects with medically intractable temporal lobe

epilepsy were studied. The methods of statistical (power spectra, wavelet spectra, and one-dimensional probability distribution functions)

and dynamical (comparison of dynamical models) nonstationarity analysis were applied.

Results: Dynamical nonstationarity analysis revealed more detailed inner structure within the seizures than the statistical analysis. Three or

four stages with different dynamics are typically present within seizures. The difference between interictal activity and seizure events was

also more evident through dynamical analysis.

Conclusions: Nonstationarity analysis can reveal temporal structure within an epileptic seizure, which could further understanding of how

seizures evolve. The method could also be used for identification of seizure onset.

Significance: Our approach reveals new information about the temporal structure of seizures, which is inaccessible using conventional

methods.

q 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The vast majority of signals in nature, including

physiological data, are nonstationary, in that their properties

change with time. Nonstationarity can arise as a result of the

influence of processes whose characteristic time scale is

larger than the observation time, or due to external events

causing changes in dynamics, transient processes, and drifts

of system parameters. The problems of detection of such

situations and the development of methods for their analysis

are relevant for different fields of science. Here, they
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are considered in the framework of electroencephalographic

(EEG) time series analysis.

An EEG recording is an important example of a

nonstationary time series (Palus, 1996). Changes in EEG

waveforms occur continuously in association with different

behavioral and mental states (Gribkov and Gribkova, 2000;

Kaplan, 1998; Kohlmorgen et al., 2000; Shishkin et al.,

1997). Especially robust changes occur during epileptic

seizures (Jefferys, 1990). The period of time within which

properties of the EEG signal (namely, spectral properties)

can be considered constant is quite small, with estimates

ranging from 4 s to 1 min (Blanco, 1995; Kaplan, 1998;

Lopes da Silva, 1998).

The importance of nonstationarity is not limited to

physiological applications. For example, the problem of
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bifurcation forecasting is discussed by Feigin et al. (2001a)

and finds application in the analysis of ozone hole dynamics

(Feigin et al., 2001b). The problem of segmentation of

nonstationary time series with subsequent classification of

quasistationary segments has been addressed by Manuca

and Savit (1996), Schreiber and Schmitz (1997a). In this

case, the goal of the analysis is the detection of qualitative

changes in the state of the system generating the time series.

In our study, we address the question of whether a

determination of nonstationarity can provide insights into

EEG recordings and, specifically, epileptic phenomena.

1.1. Statistical and dynamical nonstationarity

In the theory of stochastic processes two types of

stationarity are distinguished—strong stationarity and

weak stationarity. A process is called strongly (strictly)

stationary when all its joint (multidimensional) probability

distributions do not change under a time shift. Since it is

practically impossible to estimate all joint probability

distributions having only a finite time series, weaker

demands are employed for practical use. Namely, a process

is called weakly stationary (stationary in a wide sense) when

its mean and variance are constant and the autocorrelation

function depends only on the time lag. So, the constancy of

power spectrum estimates can serve as an indication of

weak stationarity. Nonstationarity during epileptic seizures

is well-known (Blanco et al., 1995; Franaszczuk et al.,

1998). Time-frequency analysis of epileptic EEG activity

has also been performed with the use of a special Fourier

transform (Mallat and Zhang, 1993). The presence of certain

seizure stages with different spectral properties was

observed in these studies.

Theiler (1995) showed that, based on surrogate data tests,

the properties of EEG signals during a seizure cannot be

described completely with the power spectrum alone. The

presence of nonlinearities (Andrzejak et al., 2001a,b; Jing

et al., 2000; Palus, 1996; Pijn et al., 1997; Schiff et al., 1999;

Theiler, 1995) and the existence of almost periodic patterns

leads to the assumption that the activity recorded during an

epileptic seizure may be described with low-dimensional

nonlinear deterministic models (see, e.g. Haken, 1996;

Lehnertz et al., 2000). This assumption has not been fully

justified empirically (Theiler, 1995, 1996), but it inspired

investigations of different groups. These have been devoted

mainly to seizure prediction (Aschenbrenner-Scheibe et al.,

2003; Andrzejak et al., 2003; Elger and Lehnertz, 1998; Le

Van Quyen et al., 2001; Lopes da Silva et al., 2003;

Maiwald et al., 2004; Martinerie et al., 1998; Mormann

et al., 2003a,b; Suffczinski et al., 2004), epileptic foci

localization (Andrzejak et al., 2001a,b) and synchronization

within the brain (Altenburg et al., 2003; Arnhold et al.,

1999; Lachaux et al., 1999; Mormann et al., 2000; Stam and

van Dijk, 2002; Varela et al., 2001) with many significant

results. Yet, the investigation of EEG nonstationarity

from the nonlinear point of view has been done only rarely
(Rieke et al., 2002, 2003), and the ‘structure’ of dynamical

nonstationarity within the seizure (number and duration of

quasi-stationary segments) has not been studied at all to our

best knowledge.

Detailed temporal information during seizure events can

be obtained with dynamical nonstationarity analysis, which

looks for changes in the evolution operator of the system

that generates the time series (Dejin et al., 1998; Kennel,

1997; Manuca and Savit, 1996; Rieke et al., 2002;

Schreiber, 1997a,b, 1999). Weak stationarity implies only

constancy of linear relationships between data points,

dynamical stationarity can be regarded as the generalization

of this concept to relationships of an arbitrary character.

Here, we consider both the changes in statistical properties

(power and wavelet spectra, one-dimensional probability

distribution function) and the dynamical nonstationarity of

EEG signals during epileptic seizures.
2. Methods
2.1. Spectral techniques

Traditional statistical methods of nonstationarity analysis

consist in the investigation of the spectral properties of time

series: spectrograms (power spectra in moving windows)

and wavelet spectra. We apply both approaches below to the

EEG data simply for the sake of completeness and

comparison with the results of dynamical nonstationarity

analysis.

The most direct approach to the construction of a

spectrogram is to estimate Fourier power spectrum in

moving windows of different length as a periodogram. On

the one hand, one should avoid very small window length to

have reasonable frequency resolution; on the other hand, the

windows should not be very long to cope properly with

nonstationarity of the signal. Taking into account these

considerations, we select an optimal intermediate length of

moving window by trial and error.

Wavelet spectrum of the signal x(t) is defined as a result

of its convolution with a complex conjugate of a wavelet

function j (the latter is well-localized both in time and

frequency domains):

Wjðt; sÞ Z
1ffiffi
s

p

ðN

KN
xðtÞj

t K t

s

� �
dt (1)

The wavelet function has two parameters: temporal

location of its center t and its time scale s, so that the

wavelet amplitude spectrum jWj(t,s)j provides infor-

mation about ‘instantaneous’ frequency composition of

the signal and its variation over time. The multiplier 1=
ffiffi
s

p

is used for normalization to maintain unit energy of the

function j tKt
s

� �
for each scale s. This is a linear technique

which is well-suited for analysis of nonstationary signals.

One of the very popular wavelet functions which is used
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below for the EEG data analysis is the Morlet wavelet

(Lachaux et al., 2000)

j
t K t

s
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Z pK1=4 exp i
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exp K

ðt K tÞ2

2s2
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(2)

with different values of the parameter u0 which

determines frequency resolution.
2.2. Methods for analysis of dynamical nonstationarity

For the detection of dynamical nonstationarity of a time

series with subsequent analysis of its temporal structure, the

following methodology is used. The time series XZ fxig
N
iZ1

is divided into sufficiently short segments Xk Z fxjg
ðkK1ÞsCw
jZðkK1ÞsC1

such that the evolution operator of the system within each of

them can be considered constant. Below, we use the

segments of the length of 2 s for the EEG data, recalling

that the spectral properties of EEG can be regarded as

constant even during segments longer than 4 s (Blanco,

1995; Kaplan, 1998; Lopes da Silva, 1998). Then, the

difference in dynamics between each pair of segments is

determined somehow (discussed below) and a matrix of

distances dmn ZdðXm;XnÞ is obtained.

Among different measures of distance between segments

that have been proposed to date, many investigators have

used various distances between the distributions of data

points in reconstructed phase space: for example, the L1

distance (Hively et al., 1999; Moeckel and Murray, 1997),

c2 criterion (Hively et al., 1999) and transportation distance

(Moeckel and Murray, 1997). To distinguish accurately

between fractal distributions, the use of cross-correlation

integrals has also been proposed (Kantz, 1994). However,

all these methods also quantify differences in statistical

properties of the time series segments and can produce

irrelevant results when dealing with transient processes.

The ways of quantification of the distances that show

differences between the evolution operators directly are

following: first, the nonlinear cross-prediction error proposed

by Schreiber (1997b); second, and conceptually similar,

predictability of one time series segment using nearest

neighbors from the other segment, proposed by Manuca and

Savit (1996); third, the Euclidean distance between vectors of

coefficients of global dynamical models reconstructed from

different time series segments (Gribkov and Gribkova, 2000).
2.3. Numerical example

To illustrate different techniques, we consider a simple

test example of dynamical nonstationarity analysis. We

iterate the cosine map

xnC1 Z r cosðxnÞ (3)

to obtain a time series. This time series contains 2000 data

points. Half the time series (up to the 1000th data point) is
generated when rZ2.1 and the system exhibits chaotic

motion. At the time instant nZ1000, the value of the

parameter is changed abruptly and becomes equal to

rZ2.11735. After the transient process dies out, a periodic

regime of period 7 is established. The entire time series is

shown in Fig. 1a. Note that although the change occurs at

nZ1000, the phase trajectory wanders near the previous

chaotic attractor for a certain period after that.

Dynamical nonstationarity of this time series is brought

about by a parameter change at nZ1000, but the majority of

statistical properties such as mean value, standard deviation,

etc, estimated from different segments, changes signifi-

cantly only after nZ1500. Let us compare the ability of

different methods of time series nonstationarity analysis to

detect the character of the observed dynamical nonstatio-

narity correctly.

For statistical and dynamical nonstationarity analysis we

construct the matrices of distances between short segments

of the time series. We use three kinds of distance:

(1) c2 criterion for the difference between one-dimen-

sional distributions of time series data points. For its

calculation, the range of the observable variable (from its

minimum to its maximum value) is divided into L bins.

Then the number of points in each bin is counted for both

time series segments and compared. The difference in

distributions is defined as

c2 Z
XL

iZ1

ðn1i Kn2iÞ
2

n1i Cn2i

; (4)

where n1i and n2i are the number of data points in the i-th bin

from the first segment and the second one, respectively.

(2) The Euclidean distance between the vectors of

coefficients of global dynamical models. Here, global

dynamical models are reconstructed from each segment of

the time series. The distance between segments is estimated

as the distance between corresponding vectors of the

coefficients. This method is used, e.g. in (Gribkov and

Gribkova, 2000) where models in the form of delay

differential equations are used. In our case it is expedient

to use models in the form of maps

xnC1 Z f ðxnÞ; (5)

where f is found in the form of polynomials of different

orders

f ðxnÞ Z
Xp

iZ0

aix
i
n: (6)

The distance can be written formally in this case as

d Z
Xp

iZ0

ðai1 Kai2Þ
2; (7)

where ai1 and ai2 are the corresponding coefficients of two

different models.



Fig. 1. (a) The time series generated by the cosine map (3). The first 1000 data points correspond to rZ2.1, the next 1000 points to rZ2.11735. After parameter

change the chaotic regime becomes unstable. Eventually a regime of period 7 is settled, but during the transient process (until nZ1500) the dynamics remains

very similar to that before change; (b) The matrix of distances between different segments of this time series. Distances are calculated as Euclidean distances

between vectors of the coefficients of the third order polynomial map models (6), reconstructed from these segments, and are shown with grayscale. Every point

of the diagram represents the result of comparison of two time series segments. Black points correspond to zero distance, white ones to a pre-defined large

threshold distance. A dark square on the diagram corresponds to a quasi-stationary segment (all its parts are similar to each other); (c) The matrix of distances

for the same time series which are defined via c2 criterion (4); the number of bins LZ10.
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After the matrices of distances are calculated, it is

convenient to represent them in the form of diagrams where

the numbers of the starting point of segments are the

coordinates along the axes and the distances between the

segments are encoded in gray scale (Fig. 1b). Such a way of

representation is similar to recurrence plots (Eckmann et al.,

1987) where the distances between points in reconstructed

phase space are shown. The use of distances between

segments of time series (instead of individual points) leads

to loss of time resolution, but allows detection of changes

not only in the waveform (that can be a consequence of

transient processes when the system parameters are

constant), but in the evolution operator itself.
Such a diagram constructed for the considered time

series using c2 distance is shown in Fig. 1c. Black points

denote zero distance (which corresponds to a completely

coinciding distribution of data points of each segment).

White points correspond to a certain large threshold

distance. The threshold distance was calculated as the

sum of the distance averaged over all pairs of the

segments and the standard deviation of these distances.

Such a choice usually allows obtaining good contrast on

the diagram. Furthermore, relative distances are actually

shown in this case, which allows one to compare matrices

of distances obtained with the use of different distance

measures.
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The two dark squares along the diagonal in Fig. 1c should

be interpreted as two quasi-stationary regions in the time

series within which the distribution of points does not

change significantly. There are no changes in the statistical

distribution right after the parameter change at nZ1000.

The c2 criterion identifies the changes only after the new

dynamical regime settles down at nZ1500.

The matrices of distances between vectors of coefficients

of global models are shown in Fig. 1b and Fig. 2. Different

pictures correspond to model maps with polynomials of

different orders.

One can see that for small polynomial order PZ2

(Fig. 1b) global models detect changes only after new

regime settles down. If the model structure is not adequate

to the object (e.g. it is not an accurate description of the

dynamics) the coefficients depend significantly on the

distribution of data points in the reconstructed phase

space. Thus, one should not be surprised with the similarity

of these results as compared to those obtained using

comparison of probability distributions (Fig. 1c).

Increase in the order of the polynomial (Fig. 2a and b)

makes the models more capable of accurate approximation
Fig. 2. The matrices of distances between segments of time series shown in

Fig. 1a. As in Fig. 1b, the distances are Euclidean distances between vectors

model coefficients. The orders of model polynomials are equal to 4 (a) and 6

(b). One can see that refinement of the model (increase in the polynomial

order) leads to the detection of quasi-stationary parts that exactly

correspond to different constant values of the cosine map parameter r.
of the object dynamics. As a result, the dependence of the

measures on probability distributions disappears and the

correct detection of the change in dynamics is observed at

nZ1000 (Fig. 2b).

Thus, by considering this simple numerical test example,

we show that transient processes in dynamical systems can

lead to a situation where dynamical nonstationarity is not

accompanied by immediate changes of statistical properties

of the time series. The change of statistical properties can

take place much later than the change in the evolution

operator. In many technical areas it is important to detect

changes as early as possible. Hence, the development of

special techniques for the detection and analysis of

dynamical nonstationarity can be of great importance.

At the same time, the test example shows that special

methods for dynamical nonstationarity detection are useful

only if the reconstructed dynamical model is adequate to the

object (describes its dynamics to high accuracy). Otherwise,

they detect only statistical changes in the time series. When

this method is applied to real-world signals, one cannot hope

for a complete adequacy of the model, because a purely

deterministic system is a mathematical idealization while

real-world systems are noisy. The map of the form (5),

reconstructed from real-world signals, will actually describe

the conditional mean value M(xnC1jxn). Then, the model

should be considered adequate if a good approximation to

this ‘dynamical’ relation is achieved. In this case the results

of the analysis do not depend on the distribution of points in

the reconstructed phase space, thereby reflecting only

‘dynamical’ properties of the signal (dependence of the

future on the past and present).

2.4. Clustering algorithm for detection

of quasi-stationary segments

Note that the detection of quasi-stationary segments can

be considered as clustering of the parts of the original time

series based on the matrix of distances. In the above

example such clustering is done simply by eye, which is

possible due to the rather high contrast of the diagram. But

in general this process can be made automatic and less

subjective by using one of the many clustering techniques

(Kaufmann, 1990). For example, for EEG processing

discussed below, we use the clustering method similar to

Schreiber’s approach (Schreiber, 1999) where one itera-

tively groups together the closest segments according to the

introduced distance.

Namely, we start with the number of clusters equal to the

number of segments, i.e. each cluster corresponds to a single

vector of model coefficients for clustering based on the

global models construction. Then, we iteratively decrease

the number of clusters one by one. To accomplish this, we

find in every step the two closest vectors (clusters) and

replace them with their sample mean. After that we

recalculate the matrix of distances. In this way, each cluster

is represented always by a single vector - the sample mean
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of the vectors included in the cluster. The stopping criterion

(and the final number of clusters) can be chosen from

different considerations, which are inevitably more or less

subjective. For example, one can specify a certain threshold

and stop when the distance between the two currently

closest clusters exceeds the threshold. Below, we calculate

the intra-cluster variance (the sum of squared distances

between all pairs of vectors belonging to the same cluster)

for EEG segment clustering. An abrupt increase of this

quantity indicates that two significantly different clusters are

joined together. This most probably is a sign of error, such

that we undo this joining and stop at that point.
2.5. EEG recordings

We have used intracranial human EEG recordings with

epileptic seizures from 3 different subjects with medically

intractable temporal lobe epilepsy, obtained as part of their

clinical investigation prior to treatment with resective

epilepsy surgery. The EEG signals were recorded from

depth electrodes implanted orthogonally, bilaterally,

through the second temporal gyrus, with the deepest

recording contacts situated in the region of the amygdala

and anterior hippocampus. Superficial contacts recorded

from the neocortex of the overlying second temporal gyrus.
Fig. 3. Intracranial EEG recording of a seizure from patient 1. Depth electrode co

filter with cut-off frequency 70 Hz. The time instants when seizure starts and stops

stages are indicated with rows of gray-colored bars above the time series plot. Diffe

of clustering (upper row of bars) is obtained through spectral analysis (spectrogram

coefficients of linear models (8), and the third version (lower row) through the co

segments are different for each case, indicating that construction of dynamical

traditional spectral techniques.
The EEG signal was digitized at either 200 Hz (Stellate

Systems, Montreal, Canada; patients 1 and 2) or 250 Hz

(XLTEK, Oakville, Canada; patient 3). All patients

subsequently underwent unilateral anterior temporal lobe

resection with amygdalohippocampectomy after their

intracranial EEG recordings and have been seizure free

with follow-up from 6 months to 3 years.
3. Results

3.1. Analysis of the structures of epileptic seizures

from EEG recordings

Patient 1. In our first example, the seizure was recorded

in a 28 year-old man with right temporal lobe epilepsy. The

data we considered for analysis is recorded from an

electrode contact within the epileptogenic focus, situated

in the right hippocampus. The time series analyzed is shown

in Fig. 3.

The nonstationarity of the spectral properties of EEG

during seizures has been reported previously (e.g. Franaszczuk

et al., 1998; Jouny et al., 2003; Schiff et al., 2000). We also

began with analysis of the spectrograms and wavelet spectra

of the observed signal (Fig. 4). Spectrograms were
ntact situated in right anterior hippocampus. Average reference. Low-pass

are shown with arrows. Different variants of the division of the seizure into

rent intensities of gray color correspond to different stages. The first version

and wavelet transform, Fig. 4), the second version (middle row) through the

efficients of nonlinear models. Note that the boundaries of quasi-stationary

models of different complexity provides information complementary to



Fig. 4. (a) The spectrogram of the EEG time series from patient 1 shown in Fig. 3. (b) Wavelet spectrum obtained with Morlet wavelet (2), u0Z6. The time

scale s (the ordinate) corresponds to a characteristic period of the wavelet function, see the expression (2). For the chosen value of u0, it corresponds almost

exactly to 1/f where f is the frequency in power spectrum (the ordinate in Fig. 4a). Both pictures allow rough detection of four segments with increasing,

decreasing, and constant frequency (20th–40th sec; 40th–60th sec; 60th–75th sec; 80th–120th sec).
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constructed for moving windows of 5 s length with 4.8 s

overlap between successive windows (Fig. 4a). The results

do not change qualitatively under significant variation of the

moving window length. Their robustness is confirmed also

by qualitative similarity (in respect of quasi-stationary

segments) of spectrograms and wavelet spectra for Morlet

wavelet (Lachaux et al., 2000) (2) with different parameters

u0;u0Z6 in Fig. 4b. Namely, the results of the spectral

analysis can be summarized as follows. In Fig. 4 one can see

the segment with growing characteristic frequency

(approximately from 16th to 37th sec), then the gradual

decrease of the frequency (from 37th to 56th sec) and then

two segments with roughly constant frequencies. These four

segments are shown in Fig. 3 with upper row of gray-

colored bars above the time series plot. The picture shows

the results similar to those obtained in the study of

Franaszczuk et al. (1998) for patients with mesial temporal

lobe epilepsy.

Then we applied the methods based on comparison

between dynamics in different time series segments with

calculation of the matrices of distances (see Section 2).

Fig. 5a shows the results of comparison with use of c2 as

the measure of distance. The length of each segment that is
compared to the others is 400 data points (2 s) that appears

already more or less sufficient for obtaining a good estimate

of the probability distribution for the number of bins LZ50.

As one can see from the figure, the seizure is divided into

two quasi-stationary parts: from the 20th sec to the 80th sec,

and the segment from the 80th sec to the 128th sec. The

segments before the 20th sec and after the 128th sec are

indistinguishable from the background (interictal) EEG

according to this criterion. The change in the distribution

function takes place around the 80th sec, which corresponds

to the time instant of the frequency change. Other changes in

frequency are not accompanied by changes of distributions,

thus the results of probability distributions comparison

appear to be less informative here than the spectrogram or

wavelet transform.

A more detailed picture can be obtained with the analysis

of dynamical nonstationarity by comparing coefficients of

the global models. Note that it is desirable to specify the

moving window length as small as possible to enhance

temporal resolution of the analysis. Since global models

involve relatively small number of parameters, it appears

possible to use windows of the length of 400 data points,

which is less than required, e.g. for estimation of Fourier



Fig. 5. The matrices of distances between the segments of the EEG time series recorded in patient 1 (a–c) and patient 2 (d–f) corresponding to the epileptic

seizures. The distances are calculated using c2 criterion (a,d), Euclidean distances between vectors of coefficients of 6D global linear models (b,e) and between

coefficients of 3D global nonlinear models with third order polynomial (c,f). The time series analyzed are shown at the bottom, the arrows indicate the onset and

offset of the EEG seizure. Analysis through model coefficients gives additional information in both cases as compared to c2 criterion and to spectral techniques

(see Fig. 3 for patient 1). Namely, different number and boundaries of quasi-stationary segments.

T. Dikanev et al. / Clinical Neurophysiology 116 (2005) 1796–1807 1803
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spectra. The matrix of distances between vectors of

coefficients of linear 6-dimensional models of the form

xnC1 Z
XK

iZ1

aixnKiC1 Ca0 (8)

is shown in Fig. 5b. One can see that clear changes start

approximately 10 s earlier than those observed through the

previous criterion (Fig. 5a) or through the spectrogram

(Fig. 4). The detection of quasi-stationary segments is

performed with a clustering algorithm (Section 2.4) which

finds two clusters in a set of time series parts. The obtained

segments are indicated in Fig. 3 with the middle row of

gray-colored bars.

The division of a time series parts into clusters does not

depend significantly on the dimension K of the model (8)

(when KR4 the picture remains similar to Fig. 5b and the

boundaries of the clusters are almost the same). One can see

that the structure of quasi-stationary segments does not

correspond completely to the one that can be obtained from

spectrograms.

However, as demonstrated with the test example, the

reconstruction of models those are not completely adequate

leads to detection of only statistical nonstationarity of the

time series. EEG recordings during epileptic seizures have

been shown to contain nonlinearities (Andrzejak, 2001a,b;

Palus, 1996; Schiff, 1999; Theiler, 1995) so we may presume

that a linear model cannot be completely adequate. There-

fore, the observed division into quasi-stationary parts does

not correspond exactly to dynamical nonstationarity, but also

reflects changes in a multidimensional distribution function.

Taking into consideration the nonlinearities inherent in

EEG time series, we added nonlinear terms to our model (8).

One of the fundamental problems that arise in this situation

is the appropriate choice of the form of nonlinear function in

model equations. We used polynomial nonlinearities

(recalling that every continuous function can be approxi-

mated with an algebraic polynomial according to Weier-

strass’ theorem), but it is still possible that other, more

accurate, forms exist. The number of coefficients in the

polynomial function rises rapidly with model dimension and

polynomial order. This can make the results unstable and

sensitive to small deviations in the time series. Therefore,

we used relatively low-order and low-dimensional models.

When dealing with nonlinear models, we should take into

account that the coefficients corresponding to nonlinear

terms depend on the normalization of the time series

(or units of x). For example, if a quadratic term is present in

the model ðxnC1Z.Cax2
nC.Þ and all values in the time

series are multiplied by some constant c (change of the units

of x), then the value of the coefficient a changes inversely

proportional to c. To avoid this ambiguity, we normalize the

EEG time series to unit variance, i.e. divide all values by the

standard deviation of the time series. However, if the time

series contains parts with significantly different amplitudes,

their comparison becomes problematic and the results of
the formal application of the procedures described above are

questionable. Therefore when applying nonlinear models

we will compare only time series segments within the

seizure, where the amplitudes are approximately equal.

An example of nonlinear analysis of stationarity using a

nonlinear model is shown in Fig. 5c. We used the model

with dimension 3 and polynomial of order 3. The clustering

algorithm leads to the detection of three types of time series

segments which are denoted in Fig. 3 with the lower row of

gray bars. In addition, there are a number of segments where

the coefficients of nonlinear models are quickly changing.

These parts are different from each other, so that after

application of clustering algorithm, they form many

individual clusters. They correspond to the white gaps in

the lower row of bars.

The use of slightly different (lower) values of dimension

or polynomial order does not change the picture. The use of

more complicated models (with greater dimension or order

of the polynomial) leads to the strong instability of the

coefficients (in part, due to the large number of them).

Within the seizure they change continuously and no

segments with constant properties are detected.

Patient 2. The second recording was taken from a 33

year-old woman with right temporal lobe epilepsy. The

depth electrode recording contact analyzed was situated in

the right hippocampus within the epileptogenic focus and

the time series studied corresponded to the seizure from

EEG onset through offset. The spectrogram in this case did

not allow detection of a clear structure of the seizure (figure

not shown because it is not informative). Stationarity

analysis through the c2 criterion (Fig. 5d) is also unsuitable

for this purpose. The only pronounced change in distribution

takes place around the 70th sec and corresponds to a sharp

change in amplitude of the oscillations.

Analysis with global linear models (8) (Fig. 5e) allows

easy detection of three quasi-stationary segments: before

the 24th sec, from the 24th to 70th, and after the 70th sec.

An even more detailed picture can be obtained with

nonlinear models (dimension 3, third order polynomial)

(Fig. 5f). The ictal segment before the 24th sec is now

divided into two parts, and the last part of the seizure after

the 70th sec is seen to precede the permanent post-ictal

changes after the 82nd sec.

Patient 3. The third recording was recorded from a 46

year-old woman with left temporal lobe epilepsy. The seizure

had started in the left temporal neocortex and subsequently

spread to the ipsilateral hippocampus. Fig. 6 shows the results

of analysis of the data recorded from the left temporal

neocortex. Changes start at approximately the 98th sec,

closely corresponding to seizure onset. The only change in

the spectrogram consisted of an increase of the characteristic

frequency of the oscillations between the 130th and 185th

sec. The stationarity analysis based on c2 criterion did not

show any pronounced changes in the time series.

At the same time, the analysis based on the linear

(Fig. 6a) and nonlinear (Fig. 6b) models allowed for



Fig. 6. The matrices of distances between the segments of the third EEG

recording with epileptic seizure, which starts approximately at tZ98 s. The

distances are calculated as Euclidean distances between vectors of

coefficients of 6D global linear models (a) and between coefficients of

3D nonlinear models with third order polynomial (b). The arrows on EEG

trace indicate the onset and offset of the seizure. Note, on the one hand, the

‘more stable’ structure detected through the linear model, and, on the other

hand, the changes at 90th sec captured with coefficients of the nonlinear

model, when the seizure onset is not yet identified both by eye and linear

model coefficients.
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a clearer detection of changes and detected several

quasistationary segments obtained with the linear models.

The fact that changes in the coefficients of the linear models

start even before the changes in EEG can be detected by

eye suggests that this method could be used for precise

seizure localization in time, and also for localization of
the epileptogenic focus when multichannel recording is

performed.
4. Discussion

Most studies consider nonstationarity a hindrance and an

obstacle for analysis of a system’s behavior. However, the

analysis of the character of nonstationarity itself can provide

useful information about the system under study. In

particular, in this work, we can see different dynamical

regimes in such a complicated system as the epileptogenic

human brain. We discuss different methods of nonstatio-

narity analysis, both statistical (spectrogram, wavelet

transform, comparison of probability distribution functions

in moving windows) and dynamical ones (comparison of

global dynamical models constructed from parts of epileptic

EEG recording). Using dynamical methods, one can obtain

more detailed information about changes in the system.

The visualization of the results of the comparison

between time series segments (matrices of distances

between different parts) in the form of diagrams similar to

recurrence plots (Eckmann et al., 1987) allows detection of

quasi-stationary segments where dynamical or statistical

properties remain approximately constant. To make this

detection less subjective a clustering algorithm is applied.

In particular, the epileptic seizures in all considered

examples can be divided into 3–4 stages. At the present

time, we cannot provide a clear neurophysiologic interpret-

ation for these stages, but the presence of several dynamical

regimes during seizures has been reported using other

dynamical methods (Perez Velazquez et al., 2003). The fact

that the characteristic regimes that have been found near

seizure onset and offset represent the unstable dynamics of

type-III intermittency and period doubling (typically found

near bifurcation points in a dynamical system, where phase

states change abruptly from one regime to another, e.g.

periodic or quasi-periodic to chaotic, or vice versa),

suggests that seizures start and stop in direct relation to

these rapid transitions in state (Perez Velazquez et al., 1999,

2003). Nonstationarity analysis may provide a way to

predict the occurrence of impending state changes in a

simple and accurate fashion. Future work can be directed

toward the investigation and classification of different

seizure stages in the case of specific epileptic syndromes.

Furthermore, and importantly, when applying any method

based on nonlinear dynamics (or chaos theory), the

dynamical stationarity of the time series becomes a crucial

point. Hence, it is advisable to detect, as a first step, the

dynamically quasi-stationary parts of the time series and

then to restrict the application of such methods to these

quasi-stationary segments to make interpretation of the

results more clear and reliable.

As it is clear from the considered examples, the changes

in dynamics often start before they can be detected by visual

inspection. Hence, the proposed nonstationarity analysis can
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potentially provide a new method for seizure identification

and help to understand the global, network mechanisms of

seizure onset and termination.

The observations reported here are also interesting from

a practical, possibly clinical, perspective, considering the

current pursuit of methods to control brain activity,

specifically the transition to the ictal event (Khosravani

et al., 2003). A precise knowledge of the dynamics may be

imperative for the application of possible ‘chaos control’

methods (Ott et al., 1990).

Even the use of simple models in the form of maps

provides additional information about such complex

processes as brain activity. In spite of the simplicity of the

model form, the changes in model coefficients allow us to

obtain additional information about epileptic seizure

structure, which is not accessible through traditional

statistical methods. At the same time, a careful selection

of the structure of the model equations is necessary for

successful analysis of dynamical nonstationarity (see the

test example in Section 2.2). This study represents some

initial steps in this investigation and demonstrates the

potential applicability and usefulness of dynamical

methods.
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