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Reconstruction of time-delayed feedback
systems from time series
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Abstract

For various classes of time-delay systems we propose the methods of their model delay-differential equation reconstruction
from time series. The methods are based on the characteristic location of extrema in the time series of time-delay systems and
the projection of infinite-dimensional phase space of these systems to suitably chosen low-dimensional subspaces. We verify
our methods by using them for the recovery of time-delay differential equations from their chaotic solutions and for modelling
experimental systems with delay-induced dynamics from their chaotic time series.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Systems, whose dynamics is affected not only by the
urrent state, but also by past states, are wide spread
n nature[1]. Usually these systems are modelled by
elay-differential equations. Such models are success-

ully used in many scientific disciplines, like physics,
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physiology, biology, economics and cognitive scien
Typical examples include population dynamics[2],
where individuals participate in the reproduction o
species only after maturation, or spatially extended
tems, where signals have to cover distances with fi
velocities [3]. Within this rather broad class of sy
tems, one can find the Ikeda equation[4] modelling the
passive optical resonator system, the Lang–Kobay
equations[5] describing semiconductor lasers with
tical feedback, the Mackey–Glass equation[6] mod-
elling the production of red blood cells, and many o
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models in biosciences for different phenomena from
glucose metabolism to infectious diseases[7].

Generally, the time-delay systems are described by
the following equation

εnx
(n)(t) + εn−1x

(n−1)(t) + · · · + ε1ẋ(t)

= F (x(t), x(t − τ1), . . . , x(t − τk)), (1)

wherex(t) is the system state at timet,x(n)(t) is the time
derivative of ordern, τ1, . . ., τk are the delay times and
ε1, . . ., εn are the parameters characterizing the inertial
properties of the system. To uniquely define the sys-
tem (1) behaviour it is necessary to prescribe the initial
conditions in the entire time interval [−τk, 0]. There-
fore, the phase space of the system has to be considered
as infinite-dimensional. In fact, even first-order delay-
differential equations can possess high-dimensional
chaotic dynamics[8]. Thus, the direct reconstruction
of the system by the time-delay embedding techniques
runs into severe problems. For a successful recovery
of the time-delay systems one has to use special meth-
ods. The most of them are based on the projection of
the infinite-dimensional phase space of time-delay sys-
tems onto low-dimensional subspaces. These methods
use different criteria of quality for the reconstructed
equations, for example, the minimal forecast error of
constructed model[9–12], the minimal value of infor-
mation entropy[13] or various measures of complexity
of the projected time series[14–18]. Several methods
of time-delay system recovery exploit regression anal-
y

f the
d aly-

sis of time intervals between extrema in the time series
and develop further the methods of time-delay system
parameter estimation from time series proposed by us
recently[22,23] for a more wide class of time-delay
systems including time-delay systems of high order
and with several coexisting delays. We propose also
the methods for reconstructing ring-type time-delay
systems from time series of various dynamical vari-
ables obtained from different points of the time-delay
system.

2. Peculiarities of time-delay system time series

Statistical analysis of time intervals between ex-
trema in time series of various model and real time-
delay systems reveals the following general regulari-
ties. If the system has inertial properties, the depen-
dence of numberNof pairs of extrema in its time series
separated in time byτ on the value ofτ demonstrates
a pronounced minimum at the level of the delay time
of the system (Fig. 1(a)). Let us explain the qualitative
features ofN(τ) with one of the most popular delay-
differential equation

ε1ẋ(t) = −x(t) + f (x(t − τ1)). (2)

In general case Eq.(2) is a mathematical model of an
oscillating system composed of a ring with three ideal
elements: nonlinear, delay, and inertial ones (Fig. 2).
I
c
c

F otic tim f
τ the ab of
e

sis[19–21].
In this paper we present the original procedure o

elay time reconstruction based on a statistical an

ig. 1. Typical dependence of numberN of pairs of extrema in cha
in the presence of inertial properties in the system (a) and in
xtrema in time series.
n the presence of inertial properties (ε1 > 0), which
orresponds to real situations, the extrema inx(t) are
lose to quadratic ones and therefore ˙x(t) = 0 and

e series of a time-delay system separated in time byτ on the value o
sence of inertial properties (b).N(τ) is normalized to the total number
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Fig. 2. Block scheme of a ring system with nonlinear time-delayed
feedback. Arabic numerals designate points where a dynamical vari-
able can be measured.

ẍ(t) �= 0 at the extremal points. In fact, the condition
ẋ(t) = ẍ(t) = 0 is satisfied for a point, which is a point
of inflection, or a non-quadratic extremum, or belongs
to an interval of constant value of the dynamical vari-
able. But the presence of inertial properties in the sys-
tem prevents the implementation of these conditions.
It can be shown that in this case there are practically
no extrema inx(t) separated in time by the delay time
τ1. Differentiation of Eq.(2) with respect tot gives

ε1ẍ(t) = −ẋ(t) + df (x(t − τ1))

dx(t − τ1)
ẋ(t − τ1). (3)

If for ẋ(t) = 0 in a typical case ¨x(t) �= 0, then, as
it can be seen from Eq.(3), for ε1 �= 0 the condition
ẋ(t − τ1) �= 0 must be fulfilled. Thus, there must be
no extremum separated in time byτ1 from a quadratic
extremum and, hence,N(τ1) → 0.

Similar properties are inherent in a more general
class of time-delay systems

ẋ(t) = F (x(t), x(t − τ1)). (4)

Time differentiation of Eq.(4) gives

ẍ(t) = ∂F (x(t), x(t − τ1))

∂x(t)
ẋ(t) + ∂F (x(t), x(t − τ1))

∂x(t − τ1)

× ẋ(t − τ1). (5)

Similarly to Eq.(3), Eq.(5) implies that in a typical
case of quadratic extrema derivatives ˙x(t) and ẋ(t −
τ1) do not vanish simultaneously, i.e., if ˙x(t) = 0, then
x

e

x

x

f e
r

the system has a bounded bandpass (ε1 > 0), the most
probable value of the time interval between extrema
in x(t) shifts fromτ1 to larger values and the extrema
can be found most often at the distanceτ1 + τs apart
(Fig. 1(a)).

The presence of noise in time series brings into ex-
istence spurious extrema that are not caused by the in-
trinsic dynamics of a time-delay system. Thus, owing
to high-frequency noise a probability to find a pair of
extrema in time series separated in time byτ has to
increase in general. As a result, with noise increasing
the averageN value becomes greater. The probability
to find a pair of extrema separated by the intervalτ1
also increases. However, for moderate noise levels this
probability is still less than the probability to find a
pair of extrema separated in time byτ �= τ1. Hence, the
qualitative features of theN(τ) plot specified by the
delay-induced dynamics are retained for a moderate
noise level.

3. Reconstruction of first-order time-delay
systems

Let us consider the procedure of first-order time-
delay system recovery with Eq.(2) as an example. To
define the delay timeτ1 one has to determine the ex-
trema in the time series and after that to define for dif-
ferent values of timeτ the numberNof pairs of extrema
s
T o-
l
d y on
t on-
s

c-
t
a

ε

nc-
t or-
d er
ε

v r
a
x -
˙(t − τ1) �= 0.
In the absence of inertial properties (ε1 = 0) differ-

ntiation of Eq.(2) with respect tot gives

˙(t) = df (x(t − τ1))

dx(t − τ1)
ẋ(t − τ1). (6)

From Eq.(6) it follows that if ẋ(t − τ1) = 0, then
˙(t) = 0. Thus, forε1 = 0 every extremum ofx(t) is
ollowed within the timeτ1 by the extremum. As th
esult,N(τ) shows a maximum forτ = τ1 (Fig. 1(b)). If
eparated in time byτ and to construct theN(τ) plot.
he absolute minimum ofN(τ) located near the abs

ute maximum is observed at the delay timeτ1. The
ependence of accuracy of the delay time recover

he step ofτ variation and the time series length is c
idered in Ref.[22].

To recover the parameterε1 and the nonlinear fun
ion f from the chaotic time series let us rewrite Eq.(2)
s

1ẋ(t) + x(t) = f (x(t − τ1)). (7)

Thus, it is possible to reconstruct the nonlinear fu
ion by plotting in a plane a set of points with co
inates (x(t − τ1), ε1ẋ(t) + x(t)). Since the paramet
1 is a priori unknown, one needs to plotεẋ(t) + x(t)
ersusx(t− τ1) under variation ofε, searching fo
single-valued dependence in the (x(t − τ1), εẋ(t) +

(t)) plane, which is possible only forε = ε1. As a quan
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titative criterion of single-valuedness in searching for
ε1 we use the minimal length of a lineL(ε) connect-
ing all points ordered with respect tox(t− τ1) in the
plane (x(t − τ1), εẋ(t) + x(t)). The minimum ofL(ε)
is observed atε = ε1. The set of points constructed for
the definedε1 in the plane (x(t − τ1), ε1ẋ(t) + x(t)) re-
produces the nonlinear function, which can be approx-
imated if necessary. In contrast to methods presented
in Refs. [15,16], which use only extremal points or
points selected according to a certain rule for the non-
linear function recovery, the proposed technique uses
all points of the time series. It allows one to estimate the
parameterε1 and to reconstruct the nonlinear function
from short time series even in the regimes of weakly
developed chaos.

To test the efficiency of the proposed technique we
have used it to reconstruct the equations of various
time-delay systems having the form of Eq.(2) from
the time series gained from their numerical solution. In
particular, we apply the method to a time series of the
Ikeda equation[4]

ẋ(t) = −x(t) + µ sin(x(t − τ1) − x0) (8)

modelling the passive optical resonator system. The
Ikeda Eq.(8) has the form of Eq.(2) with ε1 = 1.
The parameters of the system(8) are chosen to be
µ = 20, τ1 = 2, x0 =π/3 to produce a dynamics on a

high-dimensional chaotic attractor[3]. Part of the time
series is shown inFig. 3(a). The time series is sampled
in such a way that 200 points in time series cover a
period of time equal to the delay timeτ1 = 2. The data
set consists of 20,000 points and exhibits about 1100
extrema.

For variousτ values we count the numberNof situ-
ations when ˙x(t) andẋ(t − τ) are simultaneously equal
to zero and construct theN(τ) plot (Fig. 3(b)). The
step ofτ variation in Fig. 3(b) is equal to the inte-
gration steph= 0.01. The time derivatives ˙x(t) are esti-
mated from the time series by applying a local parabolic
approximation. The absolute minimum ofN(τ) takes
place exactly atτ = τ1 = 2.00. To construct theL(ε) plot
(Fig. 3(c)) the step ofε variation is also set by 0.01. The
minimum ofL(ε) takes place accurately atε = ε1 = 1.00.
In Fig. 3(d) the recovered nonlinear function is shown.
It coincides practically with the true function of Eq.
(8). Note, that for the construction of theL(ε) plot and
for the recovery of the multimodal functionf we use
only 2000 points of the time series. For the approxi-
mation of the recovered function we use polynomials
of different degree. The sinusoid amplitude (Fig. 3(d))
allows one to define the parameterµ of Eq.(8). The pa-
rameterx0 can be calculated from the function value at
x(t− τ1) = 0. The approximation of the recovered func-
tion with a polynomial of degree 20 allows us to obtain

F of ext
i ) =N(2 ect
t L(ε) is
( n reco e for noise
l

ig. 3. (a) The time series of the Ikeda Eq.(8). (b) NumberNof pairs
s normalized to the total number of extrema in the time series.Nmin(τ
o x(t− τ1) in the (x(t − τ1), εẋ(t) + x(t)) plane, as a function ofε.
d) The recovered nonlinear function. (e) The nonlinear functio
evel of 20%.
rema in the time series separated in time byτ, as a function ofτ.N(τ)
.00). (c) LengthL of a line connecting all points ordered with resp
normalized to the number of points in the plane.Lmin(ε) =L(1.00).
vered from the data corrupted by additive Gaussian white nois
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the following estimation:µ′ = 19.94 andx′
0 = 1.046

(π/3≈ 1.047).
To investigate the robustness of the method to per-

turbations we apply it to the data produced by adding
a zero-mean Gaussian white noise to the time series of
Eq.(8). For the case where the additive noise has a stan-
dard deviation of 20% of the standard deviation of the
data without noise (the signal-to-noise ratio is about 14
dB) the location of the minimum ofN(τ) still allows us
to estimate the delay time accurately,τ′

1 = 2.00. The
minimum of L(ε) takes place atε′

1 = 0.98. The non-
linear function recovered using the estimated valuesτ′

1
and ε′

1 is shown inFig. 3(e). In spite of sufficiently
high noise level and inaccuracy of estimation ofε1 the
recovery of the nonlinear function has a good quality,
which is significantly higher than that reported in Ref.
[21] for the same parameter values of the Ikeda equa-
tion with noise.

The second example is the method application to ex-
perimental time series of the electronic oscillator with
delayed feedback. In the block representation of this
oscillator (Fig. 2) a delay for timeτ1 is provided by a
delay line, the role of nonlinear element is played by
an amplifier with the transfer functionf and the sys-
tem inertial properties are defined by a filter, which
parameters specifyε1. For the case when the filter is

a low-frequency first-orderRC-filter such oscillator is
given by

RCV̇ (t) = −V (t) + f (V (t − τ1)), (9)

whereV(t) andV(t− τ1) are the delay line input and
output voltages, respectively;RandCare the resistance
and capacitance of the filter elements. Eq.(9) is of form
(2) with ε1 =RC.

At τ1 = 31.7 ms andε1 = 1.007 ms we record the sig-
nalV(t) (Fig. 4(a)) using an analog-to-digital converter
with the sampling frequencyfs = 4 kHz. Since the de-
lay time τ1 is not a multiple of the sampling time
Ts = 0.25 ms, the recovery ofτ1 cannot be absolutely
accurate. For the step ofτ variation equal toTs, the ab-
solute minimum ofN(τ) takes place atτ′

1 = 31.75 ms
(Fig. 4(b)). TheL(ε) plot, constructed withτ′

1 and the
step of ε variation equal to 0.025 ms, demonstrates
the minimum atε′

1 = 1.000 ms (Fig. 4(c)). The recov-
ered nonlinear function (Fig. 4(d)) coincides practically
with the true transfer function of the amplifier.

Besides theL(ε) plot we use two another criteria
of quality for the system recovery. The first of them
exploits synchronization of unidirectionally coupled
time-delay systems. We try to synchronize the recov-
ered model equation with the experimental system(9)

F r with ies
s e total e
L 00 ms
ig. 4. (a) Experimental time series of the electronic oscillato
eparated in time byτ, as a function ofτ. N(τ) is normalized to th
(ε) plot.L(ε) is normalized to the number of points.Lmin(ε) =L(1.0
delayed feedback. (b) NumberN of pairs of extrema in the time ser
number of extrema in the time series.Nmin(τ) =N(31.75 ms). (c) Th
). (d) The recovered nonlinear function.
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Fig. 5. (a) Synchronization error∆ as a function ofτ′
1. (b) Synchronization error∆ as a function ofε′

1. From bottom to top, the curves refer to
the additive noise level of 0%, 1% and 10%, respectively.

applying the following synchronization scheme[24]:

ε′
1ẏ(t) = −y(t) + f ′(y(t − τ′

1)) + k(V (t) − y(t)),

(10)

wherey(t) is the model variable,τ′
1 andε′

1 are the recov-
ered parameters,f ′ is the polynomial approximation of
the reconstructed nonlinear function andk is the cou-
pling coefficient. If the recovered model parameters are
close to the true ones and the coupling coefficientk is
sufficiently large, the response system(10)rapidly syn-
chronizes with the driving system(9). To quantify the
measure of synchronization we calculate the synchro-
nization error∆ = 〈|V(t) − y(t)|〉, where〈·〉 denotes a
time average.

Fig. 5(a) shows the dependence of∆ on the model
parameterτ′

1 varied in the vicinity ofτ′
1 = 31.75 ms

with the step of variation equal toTs. To construct this
plot we usek= 0.5,ε′

1 = 1.000 ms and approximation
of the recovered functionf ′ with a polynomial of degree
11. The value of∆ is computed after transients and is
averaged over 2.5 s. The minimum of∆ is observed
at τ′

1 = 31.75 ms as well as the minimum ofN(τ). We
also calculate the dependence of∆ on τ′

1 after adding
Gaussian white noise to the time series of the driving
system. For the noise level of 1% and 10% the minimum
of ∆(τ′

1) still takes place atτ′
1 = 31.75 ms (Fig. 5(a)).

Note that for the construction of∆(τ′
1) in the presence

of noise we useε′
1 and f ′ recovered from noisy time

series.

t
1 ms

(Fig. 5(b)). The minimum of∆(ε′
1) is observed at

ε′
1 = 0.975 ms which is slightly below the estimation

of ε′
1 obtained from theL(ε) plot. This distinction be-

tweenε′
1 estimations can result from inaccuracy off ′

approximation performed for calculation of∆. For the
driving signal corrupted by additive Gaussian white
noise of 1% and 10% the minimum of∆(ε′

1) is again
observed atε′

1 = 0.975 ms (Fig. 5(b)). As can be seen
fromFig. 5, the inaccuracy of the delay time estimation
gives a greater synchronization error than the inaccu-
racy of estimation ofε1.

The next quantitative measure of accuracy used in
our paper for the recovered model is the one-step fore-
cast errorσ = 〈|V(t) − y(t)|〉, whereV(t) is the experi-
mentally measured variable,y(t) is the variable of the
model having the form of Eq.(10) with k= 0, and〈·〉
denotes a time average. This measure shows how the
model with the recoveredτ′

1, ε′
1, and f ′ fits the ob-

served data if the initial conditions for the one-step
prediction are chosen from the experimental time se-
ries. The dependencies ofσ on the parametersτ′

1 and
ε′

1 are qualitatively similar to the dependencies∆(τ′
1)

and ∆(ε′
1) (Fig. 5), respectively, and are not shown

here.

4. Peculiarities of ring time-delay system
reconstruction

In the ring time-delay systems described by Eq.(2)a
d oints
i it
s not
In a similar way we plot the dependence of∆ on
he model parameterε′

1 varied in the vicinity ofε′
1 =

.000 ms with the step of variation equal to 0.025
ynamical variable can be measured at different p
ndicated inFig. 2 by the numerals 1–3. However,
hould be mentioned that in the real systems it is
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always possible to localize the elements depicted in
Fig. 2 or to choose the point of measurement because
of the integrity of the system. The delayed feedback
system recovery for the case when the observed dy-
namical variable isx(t) measured at the point 1 has
been considered in Section3.

In the case, when the observed dynamical variable
is x(t− τ1) measured at the point 2 (Fig. 2), one can
use the same procedure for estimation of the system
parameters as in the case ofx(t) measurement since the
observable is simply shifted in time by the delay timeτ1
aboutx(t). For example, reconstructing the electronic
oscillator with delayed feedback described by Eq.(9)
from experimental time series of voltageV(t− τ1) at
the delay line output we obtain the results qualitatively
similar to those presented inFig. 4 for the case of the
system recovery from the time series ofV(t).

Let us consider a technique of the time-delay system
(2) reconstruction for the third possible case, when the
observed variable isf(x(t− τ1)) measured at the point
3 (Fig. 2). As well as in the time series ofx(t), there are
practically no extrema separated in time byτ1 in the
time series of the variablef(x(t− τ1)), since df (x(t −
τ1))/dt = (df (x(t − τ1))/dx)ẋ(t − τ1). Then, the de-
lay time τ1 can be estimated by the location of the
absolute minimum in theN(τ) plot constructed from
the variablef(x(t− τ1)).

The nonlinear functionf can be recovered by plot-
ting f(x(t− τ1)) versusx(t− τ1). To obtain the unknown
values ofx(t− τ1) one has to filter the chaotic time se-
r
fi
t y
t
r e
fi e
fi
s r
o d
d
s
a pro-
d c-
e ess
i of
a
f
i

We apply the method to time series of the variable
f(x(t− τ1)) of the Mackey–Glass equation[6]

ẋ(t) = −bx(t) + ax(t − τ1)

1 + xc(t − τ1)
, (11)

which can be converted to Eq.(2)by division byb. The
parameters of the system(11)are chosen to bea= 0.2,
b= 0.1,c= 10 andτ1 = 300 to produce a dynamics on a
high-dimensional chaotic attractor[8]. Part of the time
series is shown inFig. 6(a). The location of the absolute
minimum ofN(τ) (Fig. 6(b)) allows us to recover the
delay time,τ′

1 = 300. The step ofτ variation inFig. 6(b)
is equal to the integration steph= 1. The minimum of
L(ε) (Fig. 6(c)) takes place atε′

1 = 10.0 (ε1 = 1/b= 10).
To construct theL(ε) plot we use the step ofε variation
equal to 0.1. The nonlinear function recovered using
the estimatedτ′

1 andε′
1 (Fig. 6(d)) coincides practically

with the true nonlinear function.

5. Reconstruction of time-delay systems of high
order

The method of the delay time definition based on the
statistical analysis of time intervals between extrema in
the time series can be extended to time-delay systems
of high order

εnx
(n)(t) + εn−1x

(n−1)(t) + · · · + ε1ẋ(t)

= F (x(t), x(t − τ1)). (12)

ε

i If
a Eq.
(
q rent
i ons
s

al-
u e
a e
ies of the variablef(x(t− τ1)) with a low-frequency
rst-order filter with the cut-off frequencyν1 = 1/ε1 and
o shift the signalx(t) at the filter output by the dela
imeτ1 defined earlier. Since the parameterε1 and cor-
espondingly the value ofν1 are a priori unknown, w
lter the time series off(x(t− τ1)) under variation of th
lter cut-off frequencyν = 1/ε and plotf(x(t− τ1)) ver-
usu(t− τ1), whereu(t− τ1) is the signal at the filte
utput shifted by the timeτ1. Note, that a single-value
ependence in the plane (u(t− τ1), f(x(t− τ1))) is pos-
ible only forε = ε1. In this caseu(t− τ1) =x(t− τ1)
nd the set of points constructed in the plane re
uces the functionf, which can be approximated if ne
ssary. As a quantitative criterion of single-valuedn

n searching forε1 we use again the minimal length
lineL(ε) connecting all points in the plane (u(t− τ1),

(x(t− τ1))) ordered with respect tou(t− τ1). The min-
mum ofL(ε) is observed atε = ε1.
Time differentiation of Eq.(12)gives

nx
(n+1)(t) + εn−1x

(n)(t) + · · · + ε1ẍ(t)

= ∂F (x(t), x(t − τ1))

∂x(t)
ẋ(t) + ∂F (x(t), x(t − τ1))

∂x(t − τ1)

× ẋ(t − τ1). (13)

For ẋ(t) = 0 the condition ˙x(t − τ1) �= 0 will be sat-
sfied if the left-hand side of Eq.(13)does not vanish.

probability to obtain zero in the left-hand side of
13) is very small for the extremal points, theN(τ) plot
ualitatively must have a shape similar to that inhe

n the case of first-order delay-differential equati
uch as Eqs.(2) and(4).

We have found out that for sufficiently small v
es ofεi , i = 1,. . .,n, theN(τ) plot demonstrates th
bsolute minimum atτ = τ1 as well in the case of th
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Fig. 6. (a) The time series of the variablef(x(t− τ1)) of the Mackey–Glass system. (b) NumberN of pairs of extrema in the time series of
f(x(t− τ1)) separated in time byτ, as a function ofτ. N(τ) is normalized to the total number of extrema in the time series.Nmin(τ) =N(300). (c)
LengthL of a line connecting points ordered with respect tou(t − τ′

1) in the plane (u(t − τ′
1), f (x(t − τ1))), as a function ofε. L(ε) is normalized

to the number of points.Lmin(ε) =L(10.0). (d) The recovered nonlinear function.

first-order time-delay systems. The distribution of the
values of the left-hand side of Eq.(13)at the extremal
points has a pronounced minimum in the neighbour-
hood of zero in this case. As the parametersεi increase,
the absolute minimum ofN(τ) shifts fromτ1 to larger
values. The greater areεi characterizing the influence
of the system inertial elements, the greater is the shift.
This time shift ofN(τ) minimum does not depend on
τ1. Note that in the first-order time-delay systems the
location of the absolute minimum in theN(τ) plot does
not depend onε1.

The proposed method of the parameterε1 estima-
tion and the nonlinear function recovery based on the
projection of infinite-dimensional phase space of the
time-delay system to suitably chosen two-dimensional
subspaces can be also applied to a variety of time-delay
systems of order higher than that of Eq.(2). For in-
stance, if the dynamics of a time-delay system is gov-
erned by the second-order delay-differential equation

ε2ẍ(t) + ε1ẋ(t) = −x(t) + f (x(t − τ1)), (14)

the nonlinear function can be reconstructed by plot-
ting in a plane a set of points with coordinates (x(t −
τ1), ε2ẍ(t) + ε1ẋ(t) + x(t)). Since the parametersε1

andε2 are a priori unknown, one needs to plotε̂2ẍ(t) +
ε̂1ẋ(t) + x(t) versusx(t− τ1) under variation of̂ε1 and
ε̂2, searching for a single-valued dependence, which is
possible only for̂ε1 = ε1, ε̂2 = ε2. In this search for
ε1 andε2 we calculate the length of a lineL(ε̂1, ε̂2)
connecting points ordered with respect tox(t− τ1) in
the plane (x(t − τ1), ε̂2ẍ(t) + ε̂1ẋ(t) + x(t)). The min-
imum of L(ε̂1, ε̂2) is observed at̂ε1 = ε1, ε̂2 = ε2.
The set of points constructed in the plane for these
defined values ofε1 andε2 reproduces the nonlinear
function.

The methods of reconstruction of second-order
time-delay systems from scalar time series have been
considered in Refs.[10,17,18]. However, these meth-
ods deal only with the recovery of the delay time and
the nonlinear function. For the recovery of the latter
one they use only the points of the phase space sec-
tion. As the result, these methods need long time series
for qualitative reconstruction of the nonlinear function.
The proposed by us procedure of the delay time estima-
tion based on the statistical analysis of time intervals
between extrema in the time series needs significantly
smaller time of computation than the methods of the
delay time definition based on calculation of the fill-
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Fig. 7. Reconstruction of the electronic oscillator with delayed feedback with a two-section filter. (a) NumberN of pairs of extrema in the
experimental time series separated in time byτ normalized to the total number of extrema.Nmin(τ) =N(31.75 ms). (b) TheL(ε̂1, ε̂2) plot
normalized to the number of points.Lmin(ε̂1, ε̂2) = L(1.48 ms, 0.48 ms2). (c) The recovered nonlinear function.

ing factor of the projected time series[17] and mini-
mization of the one-step forecast error of the recovered
model equation[10,18].

To verify the method efficiency we have applied
it to experimental time series gained from the elec-
tronic oscillator with delayed feedback that is similar
to that considered in Section3, but contains two iden-
tical low-frequency in-seriesRC-filters. The dynamics
of this oscillator is governed by Eq.(14), wherex(t)
andx(t− τ1) are the delay line input and output volt-
ages, respectively,ε1 =R1C1 +R2C2, ε2 =R1C1R2C2,
andR1, R2, C1 andC2 are respectively the resistances
and capacitances of the first and the second filters.

Using the analog-to-digital converter we record
with the sampling frequency 4 kHz the time series
of voltage at the delay line input forτ1 = 31.7 ms,
R1C1 = 1.007 ms andR2C2 = 0.479 ms (ε1 = 1.486 ms
andε2 = 0.482 ms2). The absolute minimum ofN(τ) is
observed atτ′

1 = 31.75 ms (Fig. 7(a)). TheL(ε̂1, ε̂2)
plot, constructed with the step ofε̂1 variation equal
to 0.01 ms and the step of̂ε2 variation equal to
0.01 ms2, demonstrates the minimum atε′

1 = 1.48 ms
and ε′

2 = 0.48 ms2 (Fig. 7(b)). Theseε′
1 and ε′

2 val-
ues give the following estimation of the filter parame-
ters: (R1C1)′ = 1.00 ms and (R2C2)′ = 0.48 ms. The re-
covered nonlinear function (Fig. 7(c)) coincides with
a good accuracy with the true transfer function of the
nonlinear element.

With the recovered parametersε′
1 andε′

2 we plot the
distribution of the sumε′ �x(t) + ε′ ẍ(t) using all points

of the time series (Fig. 8(a)). The maximum of this
distribution is observed close to zero. The distribution
of the same sum constructed using only the extremal
pointsẋ(t) = 0 demonstrates a pronounced minimum
in the vicinity of zero (Fig. 8(b)). This result counts in
favour of the conclusion that the probability to obtain
zero in the left-hand side of Eq.(13)is sufficiently small
at the extremal points. The presence of minimum in
the vicinity of zero inFig. 8(b) agrees well with the
existence of minimum at the delay time of the system
in theN(τ) plot (Fig. 7(a)).

Fig. 8. DistributionD of the sumε′
2�x(t) + ε′

1ẍ(t) for all points of the
e
2 1
 xperimental time series (a) and for the extremal points (b).
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Fig. 9. (a) NumberN of pairs of extrema in the time series of Eq.(15)separated in time byτ, as a function ofτ. N(τ) is normalized to the total
number of extrema in the time series.Nmin(τ) =N(301). (b) The recovered nonlinear function.S = ε′

3�x(t) + ε′
2ẍ(t) + ε′

1ẋ(t) + x(t).

The next example is the method application to time
series of the third-order time-delay system

ε3�x(t) + ε2ẍ(t) + ε1ẋ(t) = −x(t) + f (x(t − τ1))
(15)

with quadratic nonlinear functionf(x) =λ − x2, whereλ
is the parameter of nonlinearity. The parameters of the
system(15) are chosen to beτ1 = 300,λ = 1.9,ε1 = 4,
ε2 = 5 andε3 = 2. TheN(τ) plot, constructed with the
step ofτ variation equal to unity, shows the absolute
minimum at τ′

1 = 301 (Fig. 9(a)). The minimum of
N(τ) tends toτ1 = 300 as the parametersεi decrease and
shifts to largerτ asεi increase. For example, we obtain
τ′

1 = 300 atε1 = 2.5,ε2 = 2 andε3 = 0.5, andτ′
1 = 302

atε1 = 8,ε2 = 17 andε3 = 10. The higher is the order of
the time-delay system(12), the more parameters are to
be fitted. This problem is typical in high-dimensional
search space[25]. As the result, the time of compu-
tation significantly increases. Since our procedure of
the parameters estimation involves numerical calcula-
tion of the derivatives, the quality of reconstruction de-
teriorates with the increase of the time-delay system
order, resulting in the necessity to calculate more high-
order derivatives. InFig. 9(b) the recovered nonlinear
function of Eq.(15) is shown. The quality of this func-
tion recovery is worse than the quality of reconstruc-
tion for the first-order time-delay systems(8) and(11)
(Figs. 3 and 6).

6
c

two
d

x

Differentiation of Eq.(16)with respect tot gives

ẍ(t) = ∂F

∂x(t)
ẋ(t) + ∂F

∂x(t − τ1)
ẋ(t − τ1)

+ ∂F

∂x(t − τ2)
ẋ(t − τ2). (17)

Similarly to temporal realization of Eq.(4), the re-
alizationx(t) of Eq.(16)has mainly quadratic extrema
and therefore ˙x(t) = 0 and ẍ(t) �= 0 at the extremal
points. Hence, if ˙x(t) = 0, the condition

aẋ(t − τ1) + bẋ(t − τ2) �= 0 (18)

must be fulfilled, where a= ∂F(x(t), x(t− τ1),
x(t− τ2))/∂x(t− τ1) and b= ∂F(x(t), x(t− τ1),
x(t− τ2))/∂x(t− τ2). The condition (18) can be
satisfied only if ẋ(t − τ1) �= 0 or/and ẋ(t − τ2) �= 0.
By this is meant that the derivatives ˙x(t) andẋ(t − τ1),
or ẋ(t) and ẋ(t − τ2) do not vanish simultaneously.
As the result, the number of extrema separated in
time by τ1 and τ2 from a quadratic extremum must
be appreciably less than the number of extrema
separated in time by other values ofτ and hence, the
N(τ) plot will demonstrate pronounced minima at
τ = τ1 andτ = τ2. Compared to the method of optimal
transformations used in Ref.[19] for the recovery of
two delays our method requires longer time series,
but it is significantly more simple and does not need
preprocessing of the data as for example, adaptive
p

ther
c ays
f fol-
l

ε

. Recovery of time-delay systems with two
oexisting delays

Let us consider now a time-delay system with
ifferent delay timesτ1 andτ2

˙(t) = F (x(t), x(t − τ1), x(t − τ2)). (16)
artitioning of data used in Ref.[19].
We illustrate the procedure for estimating the o

haracteristics of time-delay system with two del
rom time series for the system governed by the
owing equation

1ẋ(t) = − x(t) + f1(x(t − τ1)) + f2(x(t − τ2)). (19)
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Differentiation of Eq.(19)with respect tot gives

ε1ẍ(t) = −ẋ(t) + ∂f1(x(t − τ1))

∂x(t − τ1)
ẋ(t − τ1)

+ ∂f2(x(t − τ2))

∂x(t − τ2)
ẋ(t − τ2). (20)

From Eq.(20) it follows that if

ẋ(t − τ1) = ẋ(t − τ2) = 0 (21)

thenε1ẍ(t) = −ẋ(t) and

ε1 = − ẋ(t)

ẍ(t)
. (22)

Thus, to estimate the parameterε1 one can find the
points ofx(t) satisfying condition(21), define for them
the first and the second derivatives, calculateε1 us-
ing Eq.(22), and conduct averaging. Note that one can
also use Eq.(22) for the recovery ofε1 in the case
of a single delay, but such estimation uses only the
points withẋ(t − τ1) = 0 and is not so accurate as the
method considered in Section3. To reduce the compu-
tation time we use Eq.(22) for the first approximation
of the parameterε1 and improve this estimation later
on.

To recover the nonlinear functionsf1 and f2 we
project the trajectory generated by Eq.(19) to a three-
dimensional space (x(t − τ1), x(t − τ2), ε1ẋ(t) + x(t)).
In this space the projected trajectory is confined to
a Eq.
(

ε

t
p unc-
t ec-
t
c f
x to
a
t ree-
d e
p
f

x
ner-

a cing

a further delay,

ẋ(t) = −bx(t) + 1

2

a1x(t − τ1)

1 + xc(t − τ1)
+ 1

2

a2x(t − τ2)

1 + xc(t − τ2)
.

(24)

Division of Eq.(24)byb reduces it to Eq.(19)with
ε1 = 1/b. Fig. 10(a) shows theN(τ) plot for a1 = 0.2,
a2 = 0.3,b= 0.1,c= 10,τ1 = 70 andτ2 = 300. The first
two most pronounced minima ofN(τ) are observed at
τ′

1 = 69 andτ′
2 = 300. Another distinctive minimum

of N(τ) is observed close toτ = τ1 + τ2. Processing
the points satisfying condition(21)with the recovered
valuesτ′

1 and τ′
2 we obtain the averaged estimation

ε′
1 = 9.4 for the parameterε1 = 1/b= 10. To reduce in-

accuracy inε1 determination by formula(22) we ex-
clude from consideration the points with very small
values ofẍ(t).

Projecting the time series of Eq.(24) to the three-
dimensional space (x(t − τ′

1), x(t − τ′
2), ε′

1ẋ(t) + x(t))
and constructing the sections of this space with the
planesx(t − τ′

2) = const andx(t − τ′
1) = const we ob-

tain at these sections the recovered nonlinear func-
tions f1 and f2 (Fig. 10(b) and (c)). However, as the
result of inaccuracy in estimation ofτ1 and ε1 the
quality of the nonlinear function recovery is not good
enough.

To achieve more high quality of the model equa-
tion reconstruction we propose the following proce-
dure for the correction of the parameters. Varyingτ1
i e
s
τ ith
t on,
w ost
s rion
o of a
l red
w s
t -
r ct
t
s
a r
t
u
( -
d s of
two-dimensional surface since according to
19)

1ẋ(t) + x(t) = f1(x(t − τ1)) + f2(x(t − τ2)). (23)

The section of this surface with thex(t− τ2) = cons
lane enables one to recover the nonlinear f

ion f1 up to a constant since the points of the s
ion are correlated viaε1ẋ(t) + x(t) = f1(x(t − τ1)) +
1, where c1 = f2(x(t− τ2)) for some fixed value o
(t− τ2). In a similar way one can recover up

constant the nonlinear functionf2 by intersecting
he trajectory projected to the above-mentioned th
imensional space with the (t− τ1) = const plane. Th
oints of this section are correlated viaε1ẋ(t) + x(t) =
2(x(t − τ2)) + c2, where c2 = f1(x(t− τ1)) for fixed
(t− τ1).

We demonstrate the method efficiency with a ge
lized Mackey–Glass equation obtained by introdu
n a small vicinity of τ′
1 = 69 we project the tim

eries to several three-dimensional (x(t − τ1), x(t −
′
2), ε′

1ẋ(t) + x(t)) spaces and plot their sections w
he x(t − τ′

2) = const plane, searching for a secti
hich points contract to a curve demonstrating alm
ingle-valued dependence. As a quantitative crite
f single-valuedness we use the minimal length

ine L(τ1) connecting all points of the section orde
ith respect to abscissa. TheL(τ1) plot demonstrate

he minimum at̂τ1 = 70 (Fig. 11(a)). Similarly, the cor
ection of the delay timeτ2 is performed. We proje
he time series to (x(t − τ̂1), x(t − τ2), ε′

1ẋ(t) + x(t))
paces under variation ofτ2 in the vicinity ofτ′

2 = 300
nd plot the sectionsx(t − τ̂1) = const. Note, that fo

hese sections the corrected delay timeτ̂1 = 70 is
sed. The minimum ofL(τ2) takes place at̂τ2 = 300
Fig. 11(b)). In the general case ifτ̂2 �= τ′

2, the proce
ure ofτ1 revision is repeated by plotting the section
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Fig. 10. (a) NumberN of pairs of extrema in the time series of Eq.(24)separated in time byτ, as a function ofτ.N(τ) is normalized to the total
number of extrema in the time series. (b) The recovered nonlinear functionf1. (c) The recovered nonlinear functionf2.

Fig. 11. (a) LengthL of a line connecting points ordered with respect to abscissa in thex(t − τ′
2) = 1 section, as a function ofτ1.Lmin(τ1) =L(70).

(b) LengthL of a line connecting points ordered with respect to abscissa in thex(t − τ̂1) = 1 section, as a function ofτ2. Lmin(τ2) =L(300).
(c) LengthL of a line connecting points ordered with respect to abscissa in thex(t − τ̂2) = 1 section, as a function ofε. Lmin(ε) =L(10.1).
(d) Nonlinear functionf1 recovered up to the constant ˆc1 = f2(x(t − τ̂2)), wherex(t − τ̂2) = 1. (e) Nonlinear functionf2 recovered up to the
constant ˆc2 = f1(x(t − τ̂1)), wherex(t − τ̂1) = 1.



M.D. Prokhorov et al. / Physica D 203 (2005) 209–223 221

the embedding spaces with thex(t − τ̂2) = const plane
with the corrected delay timêτ2. Successive correction
of τ1 and τ2 is continued until the parameters cease
changing. For small deviations of initial estimatesτ′

1
andτ′

2 from the true delay times the procedure is con-
verging and allows one to define both delay times ac-
curately.

After revision of the delay times the parameterε1
should be corrected. Its new estimateε̂1 can be ob-
tained by formula(22). However, a more reliable es-
timation is the one using all points of one of the
section. To obtain it we project the time series to
(x(t − τ̂1), x(t − τ̂2), εẋ(t) + x(t)) spaces under varia-
tion of ε in the vicinity of ε′

1, searching for a single-
valued dependence in the sectionx(t − τ̂1) = const or
in the sectionx(t − τ̂2) = const. TheL(ε) plot shows
the minimum atε̂1 = 10.1 (Fig. 11(c)). In Fig. 11
the values ofL(ε), L(τ1) and L(τ2) are normalized
to the number of points in the corresponding section.
Note, that the proposed procedure of the successive
correction of the parameters needs in several orders
of magnitude smaller time of computation than the
method of simultaneous selection of the parametersε1,
τ1 andτ2 for the three-dimensional embedding space
(x(t − τ1), x(t − τ2), ε1ẋ(t) + x(t)).

Fig. 12. Block diagram of the electronic oscillator with two delays.

Fig. 11(d) and (e) illustrate the reconstructed nonlin-
ear functions of the system with two coexisting delays
(24) for the corrected parametersε̂1 = 10.1, τ̂1 = 70
and τ̂2 = 300. The nonlinear functionsf1 and f2 are
recovered up to the constant by plotting the sections
of the two-dimensional surface described by Eq.(23).
To investigate the method efficiency in the presence
of noise we apply it to noisy data and found that the
method provides sufficiently accurate reconstruction of
the investigated system for noise levels up to 10% (the
signal-to-noise ratio is 20 dB).

As another example, we consider the method appli-
cation to experimental time series produced by a setup
with two delays. A block diagram of the electronic
scheme is shown inFig. 12. This electronic oscilla-
tor is governed by Eq.(23), wherex(t) is the voltage
at the input of the delay lines,x(t− τ1) andx(t− τ2)

F f the e
n (b) LenL in the
V to the r
f (t − τ nt
c

ig. 13. (a) NumberN of pairs of extrema in the time series o
ormalized to the total number of extrema in the time series.
(t − τ′

1) = −1.1 V section, as a function ofε. L(ε) is normalized
unction f1 recovered up to the constantc1 = f2(V (t − τ′

2)), whereV

2 = f1(V (t − τ′
1)), whereV (t − τ′

1) = −1.1 V.
xperimental system with two delays separated in time byτ. N(τ) is
gthof a line connecting points ordered with respect to abscissa
number of points in the section.Lmin(ε) =L(1.01 ms). (c) Nonlinea

′
2) = −0.8 V. (d) Nonlinear functionf2 recovered up to the consta
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are the output voltages of the first and the second de-
lay lines, respectively, andε1 =RC. The time series
of V(t) are recorded atτ1 = 23.0 ms,τ2 = 31.1 ms and
ε1 = 1.007 ms with the sampling frequencyfs = 4 kHz.
TheN(τ) plot, constructed with the step ofτ variation
equal to the sampling timeTs = 0.25 ms, demonstrates
the first two most pronounced minima atτ′

1 = 23.0 ms
andτ′

2 = 31.0 ms (Fig. 13(a)). These values of the de-
lay times allow us to obtain the estimationε′

1 = 1.16 ms
from Eqs.(21)and(22). To obtain the estimation ofε1
using more number of points we project the time series
to (V (t − τ′

1), V (t − τ′
2), εV̇ (t) + V (t)) spaces under

variation ofε in the vicinity ofε′
1, searching for a single-

valued dependence in the sectionV (t − τ′
1) = const.

The L(ε) plot, constructed with the step ofε varia-
tion equal to 0.01 ms, demonstrates the minimum at
ε̂1 = 1.01 ms (Fig. 13(b)). The recovered nonlinear
functions f1 and f2 are presented inFig. 13(c) and
(d), respectively, forτ′

1 = 23.0 ms,τ′
2 = 31.0 ms and

ε̂1 = 1.01 ms. These functions are recovered up to a
constant and are sufficiently close to the true transfer
functions of the nonlinear elements of the scheme.

7. Conclusion

We have proposed the methods for reconstructing
various classes of time-delay systems from chaotic
time series. These methods are based on the statisti-
cal analysis of time intervals between extrema in the
t nal
p cho-
s n be
a sys-
t The
p elay
t rop-
e en in
t d of
t om-
p , nor
c ure
o not
n ems
w for
t the
p f the
s one

to successively apply the method to short time series
even in the regimes of weakly developed chaos.

It is shown that the model equations of the ring
time-delay systems can be reconstructed from time se-
ries of various dynamical variables measured at differ-
ent points of the time-delay system. The methods effi-
ciency is illustrated by the reconstruction of time-delay
differential equations from their time series including
the case of noise presence and by modelling real time-
delayed feedback systems from experimental data.
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