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Abstract

For various classes of time-delay systems we propose the methods of their model delay-differential equation reconstruction
from time series. The methods are based on the characteristic location of extrema in the time series of time-delay systems and
the projection of infinite-dimensional phase space of these systems to suitably chosen low-dimensional subspaces. We verify
our methods by using them for the recovery of time-delay differential equations from their chaotic solutions and for modelling
experimental systems with delay-induced dynamics from their chaotic time series.
© 2005 Elsevier B.V. All rights reserved.

PACS: 05.45—a; 05.45.Tp

Keywords: Parameter estimation; Delay-differential equations; Time series analysis; Nonlinear delayed feedback system

1. Introduction physiology, biology, economics and cognitive sciences.
Typical examples include population dynami(y,
Systems, whose dynamics is affected not only by the where individuals participate in the reproduction of a
current state, but also by past states, are wide spreadspecies only after maturation, or spatially extended sys-
in nature[1]. Usually these systems are modelled by tems, where signals have to cover distances with finite
delay-differential equations. Such models are success-velocities[3]. Within this rather broad class of sys-
fully used in many scientific disciplines, like physics, tems, one can find the Ikeda equatidhmodelling the
passive optical resonator system, the Lang—Kobayashi
"+ Corresponding author. Tel.: +7 8452 511 180; e_-quatlon:{S] describing semiconductor lasers with op-
fax: +7 8452 261 156. tical feedback, the Mackey—Glass equat[6h mod-
E-mail addresssbire@sgu.ru (M.D. Prokhorov). elling the production of red blood cells, and many other
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models in biosciences for different phenomena from sis of time intervals between extrema in the time series

glucose metabolism to infectious diseafgs and develop further the methods of time-delay system
Generally, the time-delay systems are described by parameter estimation from time series proposed by us
the following equation recently[22,23] for a more wide class of time-delay

() (1-1) . systems including time-delay systems of high order
Enx (1) + En-1x (0) + -+ e1x(0) and with several coexisting delays. We propose also
= F(x(t), x(t — 1), ..., x(t — ™)), (1) the methods for reconstructing ring-type time-delay

systems from time series of various dynamical vari-

wherex(t) is the system state at timed")(t) isthe time  ahjes obtained from different points of the time-delay
derivative of orden, t1,.. ., 7 are the delay times and system

€1,...,&n are the parameters characterizing the inertial
properties of the system. To uniquely define the sys-
tem (1) behaviour it is necessary to prescribe the initial
conditions in the entire time intervakfy, 0]. There-
fore, the phase space of the system has to be considered
as infinite-dimensional. In fact, even first-order delay-
differential equations can possess high-dimensional
chaotic dynamic$8]. Thus, the direct reconstruction

of the system by the time-delay embedding techniques
runs into severe problems. For a successful recovery
of the time-delay systems one has to use special meth-

ods. The most of them are based on the projection of . . oD
P . : of the systemKig. 1(a)). Let us explain the qualitative
the infinite-dimensional phase space of time-delay sys- .
features ofN(z) with one of the most popular delay-

tems onto low-dimensional subspaces. These methods . . .
. o . differential equation
use different criteria of quality for the reconstructed

2. Peculiarities of time-delay system time series

Statistical analysis of time intervals between ex-
trema in time series of various model and real time-
delay systems reveals the following general regulari-
ties. If the system has inertial properties, the depen-
dence of numbeX of pairs of extrema in its time series

separated in time by on the value off demonstrates

a pronounced minimum at the level of the delay time

equations, for example, the minimal forecast error of () = —x(¢) + f(x(r — 72)). )
constructed modgb-12], the minimal value of infor- '
mation entropy13] or various measures of complexity Ingeneral case EQR) is a mathematical model of an

of the projected time serig$4—18] Several methods  oscillating system composed of a ring with three ideal
of time-delay system recovery exploit regression anal- elements: nonlinear, delay, and inertial onEggy( 2).
ysis[19-21] In the presence of inertial properties; & 0), which
Inthis paper we present the original procedure ofthe corresponds to real situations, the extrema(ih are
delay time reconstruction based on a statistical analy- close to quadratic ones and thereforg) = 0 and
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Fig. 1. Typical dependence of numbéof pairs of extrema in chaotic time series of a time-delay system separated in timantipe value of
7 in the presence of inertial properties in the system (a) and in the absence of inertial properti€s) (is)normalized to the total number of
extrema in time series.
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Fig. 2. Block scheme of a ring system with nonlinear time-delayed
feedback. Arabic numerals designate points where a dynamical vari-
able can be measured.

X(¢) # 0 at the extremal points. In fact, the condition
x(¢) = X(¢) = O'is satisfied for a point, which is a point
of inflection, or a non-quadratic extremum, or belongs
to an interval of constant value of the dynamical vari-
able. But the presence of inertial properties in the sys-
tem prevents the implementation of these conditions.
It can be shown that in this case there are practically
no extrema irx(t) separated in time by the delay time
71. Differentiation of Eq(2) with respect td gives
drete =)
dx(r — 71)

If for x(r) = 0 in a typical case(?) # 0, then, as
it can be seen from Ed3), for 1 # 0 the condition
x(t — 11) # 0 must be fulfilled. Thus, there must be
no extremum separated in time byfrom a quadratic
extremum and, hencbl(z1) — 0.

Similar properties are inherent in a more general
class of time-delay systems

x(1) = F(x(1), x(r — 71)).
Time differentiation of Eq(4) gives

_OF(x(0), x(t — Tl))jc AF (x(1), x(t — 1))
B ox(r) ox(t — 11)
x x(t — 11).

e1x(t) = —x(r) + 3

(t — 7).

(4)

x(1) () +

®)

Similarly to Eq.(3), Eq.(5) implies that in a typical
case of quadratic extrema derivative@) ‘and x(r —
71) do not vanish simultaneously, i.e. xft) = 0, then
x(t —t1) #0.

In the absence of inertial propertieg € 0) differ-
entiation of Eq(2) with respect td gives

: df(x(r — 1)) .
x(t) = mx (6)

From Eq.(6) it follows that if x(r — t1) = 0, then
x(t) = 0. Thus, fore; =0 every extremum ok(t) is
followed within the timer; by the extremum. As the
result,N(t) shows a maximum for = 71 (Fig. 1(b)). If

(t — 7).
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the system has a bounded bandpasgs Q), the most
probable value of the time interval between extrema
in X(t) shifts fromt, to larger values and the extrema
can be found most often at the distanget s apart
(Fig. 1(a)).

The presence of noise in time series brings into ex-
istence spurious extrema that are not caused by the in-
trinsic dynamics of a time-delay system. Thus, owing
to high-frequency noise a probability to find a pair of
extrema in time series separated in timebfas to
increase in general. As a result, with noise increasing
the averagé\ value becomes greater. The probability
to find a pair of extrema separated by the intemal
also increases. However, for moderate noise levels this
probability is still less than the probability to find a
pair of extrema separated in time by 1. Hence, the
gualitative features of th&l(z) plot specified by the
delay-induced dynamics are retained for a moderate
noise level.

3. Reconstruction of first-order time-delay
systems

Let us consider the procedure of first-order time-
delay system recovery with E(R) as an example. To
define the delay time; one has to determine the ex-
trema in the time series and after that to define for dif-
ferent values of time the numbeN of pairs of extrema
separated in time by and to construct thal(z) plot.
The absolute minimum dfl(z) located near the abso-
lute maximum is observed at the delay time The
dependence of accuracy of the delay time recovery on
the step of variation and the time series length is con-
sidered in Ref[22].

To recover the parameter and the nonlinear func-
tion f from the chaotic time series let us rewrite E2j)
as
e1x(t) + x(1) = f(x(r — 1)) (7

Thus, itis possible to reconstruct the nonlinear func-
tion by plotting in a plane a set of points with coor-
dinates £(r — t1), e1x(¢) + x(z)). Since the parameter
&1 is a priori unknown, one needs to plet(r) + x(z)
versusx(t— 1) under variation ofe, searching for
a single-valued dependence in thét(— 11), ex(¢) +
x(z)) plane, which is possible only fer=¢1. As a quan-
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titative criterion of single-valuedness in searching for high-dimensional chaotic attractf®]. Part of the time
&1 we use the minimal length of a linge) connect- series is shown ifrig. 3(@). The time series is sampled
ing all points ordered with respect ¢t — t1) in the in such a way that 200 points in time series cover a
plane (¢t — t1), ex(¢) + x(¢)). The minimum ofL(¢) period of time equal to the delay timg = 2. The data
is observed at =¢1. The set of points constructed for set consists of 20,000 points and exhibits about 1100
the defined in the plane £(t — 1), e1x(¢) + x(¢)) re- extrema.
produces the nonlinear function, which can be approx-  For variousr values we count the numbisrof situ-
imated if necessary. In contrast to methods presentedations whernx(z) andx(s — t) are simultaneously equal
in Refs.[15,16] which use only extremal points or to zero and construct thi(z) plot (Fig. 3b)). The
points selected according to a certain rule for the non- step ofr variation inFig. 3(b) is equal to the inte-
linear function recovery, the proposed technique uses gration stegh=0.01. The time derivativeg) are esti-
all points of the time series. It allows one to estimate the mated from the time series by applying alocal parabolic
parametee; and to reconstruct the nonlinear function approximation. The absolute minimum Nfz) takes
from short time series even in the regimes of weakly place exactly at =1 =2.00. To construct thig(e) plot
developed chaos. (Fig. 3(c)) the step of variation is also set by 0.01. The
To test the efficiency of the proposed technique we minimum ofL(¢) takes place accuratelyat ¢1 = 1.00.
have used it to reconstruct the equations of various In Fig. 3(d) the recovered nonlinear function is shown.
time-delay systems having the form of &) from It coincides practically with the true function of Eq.
the time series gained from their numerical solution. In (8). Note, that for the construction of thge) plot and
particular, we apply the method to a time series of the for the recovery of the multimodal functidnwe use

Ikeda equatiof4] only 2000 points of the time series. For the approxi-
. . mation of the recovered function we use polynomials
X(r) = —=x(1) + psin(e(t — 71) — xo) (8) of different degree. The sinusoid amplitudég. 3d))
modelling the passive optical resonator system. The allows one to define the parameteof Eq.(8). The pa-
lkeda Eq.(8) has the form of Eq(2) with e1=1. rameteixg can be calculated from the function value at

The parameters of the systef®) are chosen to be  x(t — r1) =0. The approximation of the recovered func-
w=20, t11=2, Xo=n/3 to produce a dynamics on a tion with a polynomial of degree 20 allows us to obtain
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Fig. 3. (a) The time series of the Ikeda E8). (b) Numbem of pairs of extrema in the time series separated in time, lag a function of. N(z)

is normalized to the total number of extrema in the time seNgg(t) = N(2.00). (c) Length. of a line connecting all points ordered with respect

to x(t — 71) in the (x(r — 1), ex(r) + x(¢)) plane, as a function of. L(¢) is normalized to the number of points in the plabgin(¢) =L(1.00).

(d) The recovered nonlinear function. (e) The nonlinear function recovered from the data corrupted by additive Gaussian white noise for noise
level of 20%.
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the following estimationy’=19.94 andx; = 1.046 a low-frequency first-ordeRCHilter such oscillator is
(/3~ 1.047). given by

To investigate the robustness of the method to per- _
turbations we apply it to the data produced by adding RCV(f) = —V(t) + f(V(t — 11)), 9

a zero-mean Gaussian white noise to the time series of
Eq.(8). For the case where the additive noise has a stan-whereV(t) andV(t — 1) are the delay line input and
dard deviation of 20% of the standard deviation of the output voltages, respectivelgandC are the resistance
data without noise (the signal-to-noise ratio is about 14 and capacitance of the filter elements. §is of form
dB) the location of the minimum d¥(z) still allows us (2) with e1 =RC.
to estimate the delay time accuratety,= 2.00. The At 71 =31.7 ms and; = 1.007 ms we record the sig-
minimum of L(¢) takes place at; = 0.98. The non- nalV(t) (Fig. 4(@)) using an analog-to-digital converter
linear function recovered using the estimated valjes  with the sampling frequenclt =4 kHz. Since the de-
ande¢) is shown inFig. 3(e). In spite of sufficiently lay time 71 is not a multiple of the sampling time
high noise level and inaccuracy of estimatiorepthe Ts=0.25ms, the recovery af; cannot be absolutely
recovery of the nonlinear function has a good quality, accurate. For the step efvariation equal td, the ab-
which is significantly higher than that reported in Ref.  solute minimum oiN(r) takes place at; = 31.75ms
[21] for the same parameter values of the Ikeda equa- (Fig. 4(b)). TheL(¢) plot, constructed with; and the
tion with noise. step ofe variation equal to 0.025ms, demonstrates
The second example is the method application to ex- the minimum at;, = 1.000 ms Fig. 4(c)). The recov-
perimental time series of the electronic oscillator with ered nonlinear functiorFig. 4(d)) coincides practically
delayed feedback. In the block representation of this with the true transfer function of the ampilifier.
oscillator Fig. 2) a delay for timer; is provided by a Besides the_(¢) plot we use two another criteria
delay line, the role of nonlinear element is played by of quality for the system recovery. The first of them
an amplifier with the transfer functiohand the sys-  exploits synchronization of unidirectionally coupled
tem inertial properties are defined by a filter, which time-delay systems. We try to synchronize the recov-
parameters specify;. For the case when the filter is  ered model equation with the experimental sys(éin
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Fig. 4. (a) Experimental time series of the electronic oscillator with delayed feedback. (b) Ndhatbgrairs of extrema in the time series
separated in time by, as a function of. N(z) is normalized to the total number of extrema in the time seNgg(t) =N(31.75ms). (c) The
L(¢) plot. L(¢) is normalized to the number of pointsyin(e) =L(1.000 ms). (d) The recovered nonlinear function.
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Fig. 5. (a) Synchronization errat as a function of;. (b) Synchronization erran as a function ot’. From bottom to top, the curves refer to

the additive noise level of 0%, 1% and 10%, respectively.

applying the following synchronization scherji2g]:

e1y() = —y(O) + £ (e — 1) + k(V(1) = (1)),
(10)

wherey(t) is the model variabler; ands’ are the recov-
ered parameter§) is the polynomial approximation of
the reconstructed nonlinear function aki the cou-
pling coefficient. If the recovered model parameters are
close to the true ones and the coupling coefficleist
sufficiently large, the response systéfd) rapidly syn-
chronizes with the driving syste(®). To quantify the
measure of synchronization we calculate the synchro-
nization errorA = (|V(t) — y(t)|), where(-) denotes a
time average.

Fig. 5a) shows the dependence sfon the model
parameterr] varied in the vicinity ofr; = 31.75ms
with the step of variation equal . To construct this
plot we usek=0.5,¢; = 1.000 ms and approximation
of the recovered functidii with a polynomial of degree
11. The value ofA is computed after transients and is
averaged over 2.5s. The minimum gdfis observed
atz) = 31.75ms as well as the minimum 8fr). We
also calculate the dependencewobn 7] after adding
Gaussian white noise to the time series of the driving
system. For the noise level of 1% and 10% the minimum
of A(ry) still takes place at; = 31L75ms Fig. 5a)).
Note that for the construction af(z;) in the presence
of noise we use’ andf’ recovered from noisy time
series.

In a similar way we plot the dependence sfon
the model parameter; varied in the vicinity ofe; =
1.000 ms with the step of variation equal to 0.025 ms

(Fig. 5(b)). The minimum ofA(e}) is observed at
&1 = 0.975ms which is slightly below the estimation
of & obtained from the.(¢) plot. This distinction be-
tweeneg; estimations can result from inaccuracyfof
approximation performed for calculation g4f For the
driving signal corrupted by additive Gaussian white
noise of 1% and 10% the minimum af(s}) is again
observed at; = 0.975ms Fig. 5b)). As can be seen
fromFig. 5, the inaccuracy of the delay time estimation
gives a greater synchronization error than the inaccu-
racy of estimation of;.

The next quantitative measure of accuracy used in
our paper for the recovered model is the one-step fore-
cast erroro = (|V(t) — y(t)|), whereV(t) is the experi-
mentally measured variablg(t) is the variable of the
model having the form of Eq10) with k=0, and(-)
denotes a time average. This measure shows how the
model with the recovered;, ¢}, andf’ fits the ob-
served data if the initial conditions for the one-step
prediction are chosen from the experimental time se-
ries. The dependencies @fon the parameters and
¢} are qualitatively similar to the dependenciéér;)
and A(g}) (Fig. 5), respectively, and are not shown
here.

4. Peculiarities of ring time-delay system
reconstruction

Inthe ring time-delay systems described by @ja
dynamical variable can be measured at different points
indicated inFig. 2 by the numerals 1-3. However, it
should be mentioned that in the real systems it is not
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always possible to localize the elements depicted in
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We apply the method to time series of the variable

Fig. 2 or to choose the point of measurement because f(x(t — 71)) of the Mackey—Glass equati¢@]

of the integrity of the system. The delayed feedback
system recovery for the case when the observed dy-x(r) = —bx(t) +

namical variable isx(t) measured at the point 1 has
been considered in Secti@n

ax(t — 1)
1+ x(t —11)°
which can be converted to E@) by division byb. The

(11)

In the case, when the observed dynamical variable parameters of the systefhl) are chosen to ba=0.2,

is X(t — 1) measured at the point Fig. 2), one can

b=0.1,c=10 andr1 = 300 to produce a dynamics on a

use the same procedure for estimation of the systemhigh-dimensional chaotic attract{®]. Part of the time

parameters as in the casexth measurement since the
observable is simply shifted in time by the delay titae
aboutx(t). For example, reconstructing the electronic
oscillator with delayed feedback described by E).
from experimental time series of voltay#t — 71) at
the delay line output we obtain the results qualitatively
similar to those presented Fig. 4 for the case of the
system recovery from the time series\f).

Let us consider a technique of the time-delay system
(2) reconstruction for the third possible case, when the

observed variable i&x(t — 1)) measured at the point
3 (Fig. 2. As well as in the time series &ft), there are
practically no extrema separated in time tyyin the
time series of the variabléx(t — t1)), since df (x(r —
71))/dt = (df(x(t — 71))/dx)x(r — 71). Then, the de-
lay time t1 can be estimated by the location of the
absolute minimum in thé&l(z) plot constructed from
the variablef(x(t — t1)).

The nonlinear functior can be recovered by plot-
tingf(x(t — 1)) versu(t — t1). To obtain the unknown
values ofx(t — r1) one has to filter the chaotic time se-
ries of the variabld(x(t — r1)) with a low-frequency
first-order filter with the cut-off frequenay = 1/¢1 and
to shift the signak(t) at the filter output by the delay
time 71 defined earlier. Since the parameteand cor-
respondingly the value of; are a priori unknown, we
filter the time series dfx(t — t1)) under variation of the
filter cut-off frequency = 1/e and plotf(x(t — 1)) ver-
susu(t — 1), whereu(t — 71) is the signal at the filter
output shifted by the time;. Note, that a single-valued
dependence in the plang{— 1), f(x(t — 71))) is pos-
sible only fore =¢1. In this caseu(t — 1) =x(t — 1)

and the set of points constructed in the plane repro-

duces the functiofy which can be approximated if nec-

series is shown iRig. 6(a). The location of the absolute
minimum of N(z) (Fig. 6(b)) allows us to recover the
delaytimez] = 300. The step of variation inFig. 6(b)

is equal to the integration stép=1. The minimum of
L(e) (Fig. 6(c)) takes place at, = 10.0 (¢1 = 1/b=10).

To construct thé(¢) plot we use the step efvariation
equal to 0.1. The nonlinear function recovered using
the estimated; andg’ (Fig. 6(d)) coincides practically
with the true nonlinear function.

5. Reconstruction of time-delay systems of high
order

The method of the delay time definition based on the
statistical analysis of time intervals between extremaiin
the time series can be extended to time-delay systems
of high order

enx () 4 £, 1"V + - + e1k(0)

= F(x(1), x(t — 71)). (12)

Time differentiation of Eq(12) gives
enx (@) + £, 1D (@) + - - + £1(r)

SF(t), x(t — 1)) . . OF(x(t), x(t — 11))
= P O I L e e

X x(t — 11).

(13)

Forx(¢) = 0 the condition{r — 1) # 0 will be sat-
isfied if the left-hand side of Eq13)does not vanish. If
a probability to obtain zero in the left-hand side of Eq.
(13)is very small for the extremal points, thiz) plot
qualitatively must have a shape similar to that inherent

essary. As a quantitative criterion of single-valuedness in the case of first-order delay-differential equations

in searching foe1 we use again the minimal length of
a lineL(e) connecting all points in the plana(f — 1),
f(x(t — t1))) ordered with respect ta(t — z1). The min-
imum of L(e) is observed at =¢;.

such as Eqq2) and(4).

We have found out that for sufficiently small val-
ues ofgj, i=1,...,n, the N(z) plot demonstrates the
absolute minimum at =1 as well in the case of the
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Fig. 6. (a) The time series of the varialf(g(t — r1)) of the Mackey—Glass system. (b) Numb¢iof pairs of extrema in the time series of
f(x(t — 71)) separated in time by, as a function ot. N(z) is normalized to the total number of extrema in the time seNg(7) = N(300). (c)
LengthL of a line connecting points ordered with respeatto— 77) in the plane(r — 77), f(x(r — 71))), as a function of. L(¢) is normalized
to the number of pointd.min(¢) =L(10.0). (d) The recovered nonlinear function.

first-order time-delay systems. The distribution of the andes; are a priori unknown, one needs to pdek(r) +
values of the left-hand side of E(L3) at the extremal  £1x(¢) + x(¢) versusx(t — t1) under variation of; and
points has a pronounced minimum in the neighbour- &, searching for a single-valued dependence, which is
hood of zero in this case. As the parametgiscrease, possible only forg1 = e1, £2 = &2. In this search for
the absolute minimum dfl(z) shifts fromt1 to larger g1 and e, we calculate the length of a linB(g1, £2)
values. The greater arg characterizing the influence  connecting points ordered with respect{p— 1) in

of the system inertial elements, the greater is the shift. the plane £(r — 1), £2x(t) + £1x(¢) + x(¢)). The min-
This time shift ofN(z) minimum does not depend on imum of L(g1, &) is observed ag; = ¢1, & = e.

71. Note that in the first-order time-delay systems the The set of points constructed in the plane for these
location of the absolute minimum in tiNét) plot does defined values of1 ande2 reproduces the nonlinear
not depend om1. function.

The proposed method of the parameterestima- The methods of reconstruction of second-order
tion and the nonlinear function recovery based on the time-delay systems from scalar time series have been
projection of infinite-dimensional phase space of the considered in Ref410,17,18] However, these meth-
time-delay system to suitably chosen two-dimensional ods deal only with the recovery of the delay time and
subspaces can be also applied to a variety of time-delaythe nonlinear function. For the recovery of the latter
systems of order higher than that of €8). For in- one they use only the points of the phase space sec-
stance, if the dynamics of a time-delay system is gov- tion. As the result, these methods need long time series
erned by the second-order delay-differential equation for qualitative reconstruction of the nonlinear function.

The proposed by us procedure of the delay time estima-

£2X(1) + e2x(t) = —x(t) + f(x(t — 7)), (14) tion based on the statistical analysis of time intervals
the nonlinear function can be reconstructed by plot- between extrema in the time series needs significantly
ting in a plane a set of points with coordinate (— smaller time of computation than the methods of the

11), £2%(t) + 1x(t) + x(1)). Since the parameters delay time definition based on calculation of the fill-
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Fig. 7. Reconstruction of the electronic oscillator with delayed feedback with a two-section filter. (a) NNmb@airs of extrema in the
experimental time series separated in timetbgormalized to the total number of extrem¥min(t) =N(31.75ms). (b) Thel. (&1, &2) plot
normalized to the number of pointsmin(81, £2) = L(1.48 ms 0.48 m). (c) The recovered nonlinear function.

ing factor of the projected time seri§k7] and mini-

of the time seriesKig. 8@)). The maximum of this

mization of the one-step forecast error of the recovered distribution is observed close to zero. The distribution

model equatioifil0,18]

To verify the method efficiency we have applied
it to experimental time series gained from the elec-
tronic oscillator with delayed feedback that is similar
to that considered in Secti@) but contains two iden-
tical low-frequency in-serieRCHilters. The dynamics
of this oscillator is governed by E@14), wherex(t)
andx(t — 1) are the delay line input and output volt-
ages, respectively; =R1C1 + RoCyp, e2=R1C1R2Co,
andRy, Ry, C1 andC; are respectively the resistances
and capacitances of the first and the second filters.

Using the analog-to-digital converter we record
with the sampling frequency 4 kHz the time series
of voltage at the delay line input for; =31.7 ms,
R1C1=1.007 ms andr;C,=0.479ms £ =1.486 ms
andes, =0.482 m3). The absolute minimum df(z) is
observed at; = 31.75ms Fig. 7(a)). TheL(¢1, €2)
plot, constructed with the step &f variation equal
to 0.01ms and the step df variation equal to
0.01 mg, demonstrates the minimum gt = 1.48 ms
and e, = 0.48m¢ (Fig. 7(b)). Theses) ande), val-
ues give the following estimation of the filter parame-
ters: R1C1) =1.00 ms andR,C,) =0.48 ms. The re-
covered nonlinear functior{g. 7(c)) coincides with
a good accuracy with the true transfer function of the
nonlinear element.

With the recovered parametefsands’, we plot the
distribution of the suna’x(r) + &} x(r) using all points

of the same sum constructed using only the extremal
pointsx() = 0 demonstrates a pronounced minimum
in the vicinity of zero Fig. §b)). This result counts in
favour of the conclusion that the probability to obtain
zerointhe left-hand side of E(L3)is sufficiently small

at the extremal points. The presence of minimum in
the vicinity of zero inFig. 8b) agrees well with the
existence of minimum at the delay time of the system
in theN(t) plot (Fig. 7(a)).

%O+ & ¥ (1)

Fig. 8. DistributionD of the sume’,x(r) + ¢7X(r) for all points of the
experimental time series (a) and for the extremal points (b).
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The next example is the method application to time
series of the third-order time-delay system

£3%(1) + £23(r) + 1x(r) = —x(t) + f(x(t — 1)) (15)

with quadratic nonlinear functidix) = A — X2, wherex

is the parameter of nonlinearity. The parameters of the
system(15) are chosen to be; =300, =1.9,¢1 =4,
g2=5 ande3z=2. TheN(z) plot, constructed with the
step oft variation equal to unity, shows the absolute
minimum attj = 301 Fig. Y(a)). The minimum of
N(z) tends tor1 = 300 as the parametesiglecrease and
shifts to larger asej increase. For example, we obtain
7, = 300 ate; =2.5,62=2 ande3 = 0.5, andr} = 302
ate; =8,62=17 ande3 = 10. The higher is the order of
the time-delay systeifi2), the more parameters are to
be fitted. This problem is typical in high-dimensional
search spacf25]. As the result, the time of compu-
tation significantly increases. Since our procedure of
the parameters estimation involves numerical calcula-
tion of the derivatives, the quality of reconstruction de-
teriorates with the increase of the time-delay system
order, resulting in the necessity to calculate more high-
order derivatives. Iirig. 9(b) the recovered nonlinear
function of Eq.(15) is shown. The quality of this func-
tion recovery is worse than the quality of reconstruc-
tion for the first-order time-delay syster(® and(11)
(Figs. 3and b

6. Recovery of time-delay systems with two
coexisting delays

Let us consider now a time-delay system with two
different delay times1 andzz

x(1) = F(x(1), x(r — 1), x(r — 72)). (16)

Differentiation of Eq.(16) with respect td gives

. oF . oF .
X(r) = Mx(t) + mx(f — 11)

oF

+ ox(t — o) e -

72). a7

Similarly to temporal realization of E¢4), the re-
alizationx(t) of Eq.(16) has mainly quadratic extrema
and thereforex(r) = 0 and x{¢r) # 0 at the extremal
points. Hence, ifc(r) = 0, the condition

ax(t — 1)+ bx(t —12) #0 (18)
must be fulfilled, where a=dF(x(t), X(t— 1),
X(t—r2))ox(t—71) and b=0aF(x(), x(t— 1),

X(t — 12))/ox(t — z2). The condition (18) can be
satisfied only ifx(t — t1) £ 0 or/fandx(r — t2) # O.

By this is meant that the derivative§) andx(r — 1),

or x(r) and x(t — 72) do not vanish simultaneously.
As the result, the number of extrema separated in
time by r; and t> from a quadratic extremum must
be appreciably less than the number of extrema
separated in time by other valueswoénd hence, the
N(z) plot will demonstrate pronounced minima at
t=11 andt =t2. Compared to the method of optimal
transformations used in RgfL9] for the recovery of
two delays our method requires longer time series,
but it is significantly more simple and does not need
preprocessing of the data as for example, adaptive
partitioning of data used in R€f19].

We illustrate the procedure for estimating the other
characteristics of time-delay system with two delays
from time series for the system governed by the fol-
lowing equation

e1x(1) = — x(t) + f1(x(r — 1)) + fo(x(t — 72)). (19)
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Differentiation of Eq.(19) with respect td gives
Afa(x(r — 71)) .

e1x(t) = —x(1) + mx(f — 11)
Af2(x(t — 12)) .
mx([ — 'L'Z). (20)
From Eq.(20)it follows that if
X(t—t)=x(t—12)=0 (21)
thenex(r) = —x(r) and
e = _% (22)

Thus, to estimate the parametgrone can find the
points ofx(t) satisfying conditior(21), define for them
the first and the second derivatives, calculateus-
ing Eq.(22), and conduct averaging. Note that one can
also use Eq(22) for the recovery ofs1 in the case
of a single delay, but such estimation uses only the
points withx(z — 1) = 0 and is not so accurate as the
method considered in Secti@nTo reduce the compu-
tation time we use Eq22) for the first approximation
of the parametet; and improve this estimation later
on.

To recover the nonlinear functiorfs and f, we
project the trajectory generated by Ef9)to a three-
dimensional spacea(t — 11), x(r — 12), e1x(t) + x(r)).

In this space the projected trajectory is confined to
a two-dimensional surface since according to Eq.
(19)

e1x(r) + x(1) = falx(r — 1)) + f2(x(t — 72)).  (23)

The section of this surface with tixé& — 72) = const
plane enables one to recover the nonlinear func-
tion f; up to a constant since the points of the sec-
tion are correlated viayx(¢) + x(t) = fi(x(t — 1)) +
c1, Wherecy =fo(X(t — 72)) for some fixed value of
X(t—12). In a similar way one can recover up to
a constant the nonlinear functida by intersecting
the trajectory projected to the above-mentioned three-
dimensional space with thé t1) = const plane. The
points of this section are correlated vig(r) + x(t) =
Sf2(x(t — 12)) + c2, where co =f1(X(t — 71)) for fixed
X(t— 71).

We demonstrate the method efficiency with a gener-
alized Mackey—Glass equation obtained by introducing
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a further delay,

1 axx(t — 1)
214 x(t — 12)°
(24)

oy 1 ax(t — )
x(t) = —bx(t) + > TR p——

Division of Eq.(24) by b reduces it to Eq(19) with
e1=1Mb. Fig. 1Qa) shows theN(z) plot for a3 =0.2,
a;=0.3,b=0.1,c=10,71 =70 andr, = 300. The first
two most pronounced minima &f(z) are observed at
71 = 69 andr;, = 300. Another distinctive minimum
of N(z) is observed close t@ =11 +12. Processing
the points satisfying conditiof21) with the recovered
valuest] and r, we obtain the averaged estimation
&1 = 9.4 for the parameter; = 1/o=10. To reduce in-
accuracy ins1 determination by formul22) we ex-
clude from consideration the points with very small
values ofx{(z).

Projecting the time series of E(R4) to the three-
dimensional spacex(r — 17), x(t — 15), £7x(r) + x(¢))
and constructing the sections of this space with the
planest(r — 5) = const and(r — ;) = const we ob-
tain at these sections the recovered nonlinear func-
tions f; andfy (Fig. 1Qb) and (c)). However, as the
result of inaccuracy in estimation afi and ¢1 the
quality of the nonlinear function recovery is not good
enough.

To achieve more high quality of the model equa-
tion reconstruction we propose the following proce-
dure for the correction of the parameters. Varying
in a small vicinity of r; = 69 we project the time
series to several three-dimensionalz(— t1), x(t —

15), £1x(r) + x(r)) spaces and plot their sections with
the x(r — 75) = const plane, searching for a section,
which points contract to a curve demonstrating almost
single-valued dependence. As a quantitative criterion
of single-valuedness we use the minimal length of a
line L(r1) connecting all points of the section ordered
with respect to abscissa. Thé¢r1) plot demonstrates
the minimumat; = 70 (Fig. 11(a)). Similarly, the cor-
rection of the delay time is performed. We project
the time series tox(r — 1), x(t — 12), &1x(r) + x(1))
spaces under variation o in the vicinity ofr/2 = 300
and plot the sections(r — 71) = const. Note, that for
these sections the corrected delay tile= 70 is
used. The minimum of(z2) takes place at; = 300
(Fig. 11(b)). In the general case i # 1, the proce-
dure ofrq revisionis repeated by plotting the sections of
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constants = f1(x(t — 71)), wherex(t — 7;) = 1.
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the embedding spaces with th@ — 72) = const plane
with the corrected delay tim. Successive correction
of r1 andty is continued until the parameters cease
changing. For small deviations of initial estimatgs
andr, from the true delay times the procedure is con-
verging and allows one to define both delay times ac-
curately.

After revision of the delay times the parameter
should be corrected. Its new estimatecan be ob-
tained by formula22). However, a more reliable es-
timation is the one using all points of one of the
section. To obtain it we project the time series to
(x(t — 1), x(r — 72), ex(r) + x(r)) spaces under varia-
tion of ¢ in the vicinity of ¢, searching for a single-
valued dependence in the sectigqn— 71) = const or
in the sectionx(r — 72) = const. Thel (¢) plot shows
the minimum atg; = 10.1 (Fig. 11(c)). In Fig. 11
the values ofL(¢), L(zr1) and L(z2) are normalized
to the number of points in the corresponding section.

Note, that the proposed procedure of the successive
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Fig. 12. Block diagram of the electronic oscillator with two delays.

Fig. 11(d) and (e) illustrate the reconstructed nonlin-

ear functions of the system with two coexisting delays
(24) for the corrected parametefs = 10.1, 71 = 70
and 7, = 300. The nonlinear function§ andf, are
recovered up to the constant by plotting the sections
of the two-dimensional surface described by E8).
To investigate the method efficiency in the presence
of noise we apply it to noisy data and found that the
method provides sufficiently accurate reconstruction of
the investigated system for noise levels up to 10% (the
signal-to-noise ratio is 20 dB).

As another example, we consider the method appli-

correction of the parameters needs in several orderscation to experimental time series produced by a setup

of magnitude smaller time of computation than the
method of simultaneous selection of the parametgrs
71 andt; for the three-dimensional embedding space
(x(r — 71), x(t — 2), £2X(t) + x(1)).

with two delays. A block diagram of the electronic
scheme is shown ifrig. 12 This electronic oscilla-
tor is governed by Eq23), wherex(t) is the voltage
at the input of the delay lineg(t — r1) andx(t — 72)
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Fig. 13. (a) NumbeN of pairs of extrema in the time series of the experimental system with two delays separated in tmi(byis
normalized to the total number of extrema in the time series. (b) Ldngtha line connecting points ordered with respect to abscissa in the
V(t — 77) = —1.1V section, as a function af. L(¢) is normalized to the number of points in the sectibgin(¢) =L(1.01 ms). (c) Nonlinear
functionf; recovered up to the constant= f>(V(r — 75)), whereV(r — t5) = —0.8 V. (d) Nonlinear functiorf, recovered up to the constant

c2 = fi(V(r — 17)), whereV(t — 77) = —1.1V.
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are the output voltages of the first and the second de-to successively apply the method to short time series
lay lines, respectively, and; =RC. The time series  even in the regimes of weakly developed chaos.

of V(t) are recorded at; =23.0ms,r=31.1 ms and It is shown that the model equations of the ring
£1=1.007 ms with the sampling frequenty~ 4 kHz. time-delay systems can be reconstructed from time se-
The N(7) plot, constructed with the step ofvariation ries of various dynamical variables measured at differ-

equal to the sampling tim&=0.25ms, demonstrates ent points of the time-delay system. The methods effi-
the first two most pronounced minimagt= 23.0 ms ciency isillustrated by the reconstruction of time-delay
andt, = 31.0ms Fig. 13a)). These values of the de-  differential equations from their time series including
lay times allow us to obtain the estimatign= 1.16 ms the case of noise presence and by modelling real time-
from Egs.(21) and(22). To obtain the estimation af delayed feedback systems from experimental data.
using more number of points we project the time series

to (V(r—1), V(r —15), eV(t) + V(r)) spaces under

variation ofe inthe vicinity ofe’, searchingforasingle-  acknowledgements

valued dependence in the sectigir — ;) = const.

The L(¢) plot, constructed with the step ef varia- This work is supported by the Russian Founda-
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