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Introduction.

 

 In recent years, the problem of recon-
struction of the equations of nonlinear dynamical sys-
tems with time-delay feedback (time-delay systems)
has received much attention [1–9]. The importance of
this problem is related to the fact that time-delay sys-
tems are frequently encountered in the nature. The
behavior of such systems is not entirely determined by
the present state, but depends on the preceding states as
well. Accordingly, the time-delay systems are usually
described in terms of differential equations with
delayed argument. Such models are successfully used
in various fields of physics, biology, physiology, and
chemistry. However, reconstruction of the model equa-
tions of a time-delay system from its time series in the
case when this system occurs under the action of other
system is still insufficiently studied, although this situ-
ation is encountered in solving many important practi-
cal problems.

In this paper, methods developed previously [6–8]
for the reconstruction of the model equations of time-
delay systems from their chaotic time series are
extended so as to include such systems occurring under
an external action.

 

Description of the method.

 

 Consider a time-delay
system

 

 X

 

 described in the absence of external actions
by a first-order differential equations with delayed
argument of the following general type:

(1)

where 

 

x

 

 is a dynamical variable describing the state of
the system at the time 

 

t

 

, 

 

f 

 

is a nonlinear function, 

 

τ

 

0

 

 is
the delay time, and 

 

ε

 

0

 

 is a dimensionless parameter
characterizing the inertia of the system. In the general
case, Eq. (1) represents the mathematical model of an
oscillatory system comprising a circuit with three ideal
elements: nonlinear device, inertial element, and delay

ε0 ẋ t( ) x t( )– f x t τ0–( )( ),+=

 

line. In Fig. 1, these elements of a circuit 

 

X

 

 are denoted
by 

 

f

 

, 

 

ε

 

0

 

, and 

 

τ

 

0

 

, respectively.
Now let another system 

 

Y

 

 to act upon system

 

 X

 

. This
action can be realized in different ways. We distinguish
between three methods of coupling, by which a variable
of system

 

 y

 

 is introduced with a certain coefficient into
various points of circuit 

 

X

 

 (denoted by Roman numer-
als I–III in Fig. 1). Depending on the point of applica-
tion of the system

 

 Y

 

 action upon system 

 

X

 

, the dynam-
ics of the latter system is described by one of the fol-
lowing equations:

(2)

(3)

(4)

where

 

 y

 

(

 

t

 

) is a dynamical variable describing the state
of system 

 

Y 

 

at the time 

 

t

 

 and 

 

k

 

y

 

 is the coupling coeffi-
cient characterizing the degree of the system 

 

Y 

 

action
upon 

 

X

 

.
The proposed method allows the time-delay system

 

X

 

 to be reconstructed, the coupling mode to be deter-
mined (i.e., the situations described by Eqs. (1)–(3) to

I: ε0 ẋ t( ) x t( )– f x t τ0–( ) kyy t τ0–( )+( ),+=

II: ε0 ẋ t( ) x t( )– f x t τ0–( ) kyy t( )+( ),+=
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Fig. 1. 

 

Schematic diagram of a time-delay system 

 

X

 

. Ele-
ments denoted by 

 

τ

 

0

 

, 

 

f

 

, and 

 

ε

 

0

 

 represent the delay line, non-
linear device, and inertial transformation of oscillations in
the system, respectively. Points I–III represent various
modes of introduction of the external action (system 

 

Y

 

) into
system 

 

X

 

.
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be distinguished), and the degree of external action
(i.e., the value of 

 

k

 

y

 

) to be estimated from the available
time series of oscillations in systems 

 

Y

 

 and 

 

X

 

. In order
to determine the delay time 

 

τ

 

0

 

 from the observed time
series 

 

x

 

(

 

t

 

), we use the method developed in [6], where
it was demonstrated that time series of the systems of
type (1) contain virtually no extrema spaced from each
other by 

 

τ

 

0

 

. In order to find 

 

τ

 

0

 

, we have to indicate
extrema in the initial time series, determine the num-
bers 

 

N

 

 of the pairs of extrema spaced by various times

 

τ

 

, and construct the 

 

N

 

(

 

τ

 

) dependence. Then, the delay
time τ0 is determined by the position of the absolute
minimum of the N(τ) function. The results of our inves-
tigations showed that this approach can be also success-
fully used in cases when system X occurs under the
action of another system Y, provided that this external
action does not lead to the appearance of a large number
of additional extrema in the time realizations of oscilla-
tions in system X.

For determining the parameter ε0 and the function f
of system X and the coupling coefficient ky , we propose
a method based on an analysis of the time series of both
observables x(t) and y(t). First, let us assume that the
mode of action of system Y upon system X (i.y., the
structure of equation describing dynamics of the time-
delay system under the external action) is known. For
example, consider the coupling mode I described by
Eq. (2), whereby the variable of system Y is introduced
into the feedback circuit of X after the inertial element.
As can be seen from Eq. (2), a manifold of points with
the coordinates (x(t – τ0) + kyy(t – τ0), ε0 (t) + x(t)) plot-
ted on the plane will reproduce the function f. Since the
quantities ε0 and ky are not known a priori, we have to
plot ε (t) + x(t) versus x(t – τ0) + ky(t – τ0) for various
ε and k in search for the single-valued relationship that
is possible only for ε = ε0 and k = ky . As a quantitative
criterion of such a unique relationship in the search for
ε0 and ky , we can use the minimum length of a segment
L(ε, k) connecting points (ordered with respect to
abscissa) on the above plane. A minimum of L(ε, k) will
correspond to ε = ε0 and k = ky , while the dependence
of ε (t) + x(t) on x(t – τ0) + ky(t – τ0) constructed for
these parameters will reproduce a certain nonlinear
function that can be approximated. The proposed
approach employs all points of the time series, which
allows short time series to be used for reconstruction of
the system parameters ε0 and ky and the nonlinear func-
tion f.

The same method can be used for reconstructing the
nonlinear function f and the parameters ε0 and ky in the
situations described by Eqs. (3) and (4) by plotting
ε (t) + x(t) versus x(t – τ0) + ky(t) and ε (t) + x(t) –
ky(t) versus x(t – τ0), respectively, for various ε and k. If
the point (I, II, or III) at which system Y acts upon
system X is not known a priori, it is necessary to per-
form reconstruction for each of the three model equa-

ẋ

ẋ

ẋ

ẋ ẋ

tions (1)–(3). The only correct structure of the model
equation will be indicated by single-valued form of the
reconstructed function and, accordingly, by lowest of
the three values of Lmin(ε, k). Thus, the proposed
method allows both the parameters of a time-delay sys-
tem under external action and the mode of this action
(i.e., the form of the model equation) to be recon-
structed from the observed time series.

Verification of the method. We will demonstrate
performance of the proposed reconstruction method by
applying the procedure outlined above to a time-delay
system X described by the Mackey–Glass equation,

(5)

under an external system Y producing a harmonic or
chaotic action. Equation (5) reduces to the form of
Eq. (1) with ε0 = 1/b and f(x(t – τ0)) = ax(t – τ0)/b(1 +
xc(t – τ0)).

Figure 2 shows the results of reconstruction of the
Mackey–Glass type system in a chaotic regime (a = 0.2,
b = 0.1, c = 10, τ0 = 300) under the action of system Y
performing sinusoidal oscillations y(t) = Asinωt with
an amplitude (A = 1) close to the amplitude of natural
oscillations in system (5) and with the oscillation
period T = 2π/ω = 130. The type of Y–X coupling cor-
responds to mode I described by Eq. (2) with a coupling
coefficient ky = 0.1. The map of N(τ) (Fig. 2a) was con-
structed using a time series (t) containing 5000 points.
The derivative x(t) was estimated from the time series
by means of a local parabolic approximation. The abso-
lute minimum of N(τ) allows the delay time to be
exactly estimated as τ0 = 300.

Figures 2b–2d illustrate reconstruction of the non-
linear function for the ε and k values corresponding to
a minimum of Lmin(ε, k) for the model equation selected
in the form (2), (3), or (4), respectively. These plots
were constructed using only 1000 points for each of the
x(t) and y(t) time series. In the search for Lmin(ε, k), the
parameter ε was varied at a step of 0.1 (ε0 = 1/b = 10)
and the parameter k, at a step of 0.01. For the model
reconstructed in the form of Eq. (2), a minimum length
of the L(ε, k) segment normalized to the number of
points was Lmin(ε, k) = L(10.1, 0.10) = 0.007. When the
model was selected n the form of Eq. (3), we obtained
Lmin(ε, k) = L(7.4, –0.05) = 0.1r53, while reconstruction
in the form of Eq. (4) yielded Lmin(ε, k) = L(7.3, 0.06) =
0.147. Of the three plots only Fig. 2b shows a nearly
single-valued relationship and the corresponding
Lmin(ε, k) value is significantly smaller than the two
other. These results indicate that the model equation is
correctly identified in the form (2) and shows that the
parameters ε0 and ky are determined with a good
accuracy.
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Fig. 2. Reconstruction of the Mackey–Glass system under external harmonic action: (a) plot of the number N of the pairs of extrema
in a time series of X spaced by various times τ, normalized to the total number of such extrema (Nmin(τ) = N(300); (b–d) reconstruc-
tion of the nonlinear function for a model equation selected in the form of Eqs. (2)–(4), respectively, with the parameters (b) ε =
10.1, k = 0.10; (c) ε = 7.41, k = –0.05; (d) ε = 7.3, k = –0.06.
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Fig. 3. Reconstruction of the Mackey–Glass system under the action of another Mackey–Glass system: (a) plot of the number N of
the pairs of extrema in a time series of X spaced by various times τ, normalized to the total number of such extrema (Nmin(τ) =
N(300); (b) L(ε, k) function for the model equation selected in the form of Eq. (4) normalized to the number of points (Lmin(ε, k) =
L(10.1, 0.10) = 0.026); (c) reconstruction of the nonlinear function for ε = 10, k = 0.1.

For the parameters of systems X and Y indicated
above, the proposed method allows the type of the
model equation to be determined and system X to be
reconstructed for 0.01 ≤ |ky| ≤ 0.5. In comparison to the

other methods [10, 11] of determining the coupling
between systems from their time series, out procedure
has a number of advantages. In contrast to the method
of directivity indices [11], the proposed procedure is
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applicable to synchronized systems and allows the
magnitude of coupling (rather than only its direction) to
be estimated even in the case of fundamentally different
systems.

In order to check the performance of the proposed
method in the presence of perturbations, we applied it
to a system with noise. The procedure has proved to be
more sensitive to noise in the time-delay system, but it
still works when a noise level in system X is on the
order of 10%. The level of noise in system Y can be sev-
eral times greater than that in system X.

Finally, we have considered the case when the exter-
nal action upon system X is produced by another time-
delay system Y. Figure 3 shows the results of recon-
struction for a Mackey–Glass type system with a = 0.2,
b = 0.1, c = 10, τ0 = 300 in the presence of another
Mackey–Glass type system with the same values of a,
b, c, and τ0 = 400. The coupling between Y and x corre-
sponded to mode III described by Eq. (4) with ky = 0.1.
In addition, both systems were perturbed by a Gaussian
white noise with zero mean and an rms deviation
amounting to 10% of that for the time series without
noise. Despite the presence of noise the plot of N(τ)
allows the delay time to be precisely estimated (Fig. 3a)
and the L(ε, k) map restores the values of ε0 and ky

(Fig. 3b). The L(ε, k) plot was constructed using 2000
points of x(t) and y(t) time series at a step of 0.1 for ε
and 0.01 for k. The presence of noise significantly
impairs the quality of reconstruction of the nonlinear
function (Fig. 3c). For the model reconstructed in the
form of Eq. (2), we obtain Lmin(ε, k) = L(10.1, 0.01) =
0.042, while reconstruction in the form of Eq. (3) gives
Lmin(ε, k) = L(10.0, –0.02) = 0.039. This analysis indi-
cates that the model equation should be identified in the
form (4) that yields the minimum value of Lmin(ε, k) =
L(10.1, 0.10) = 0.026.

Conclusion. We proposed a new method for recon-
structing a time delay system under an external action
from the observable time series. The method was veri-
fied for various types of external action and different
ways of its introduction into the given system. The pro-

posed method can be successfully applied to the analy-
sis of short time series even at a rather high noise level.
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