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We propose the method for reconstructing time-delay systems with two coexisting delay times from
chaotic time series. The method is based on the characteristic location of extrema in time series of
time-delay systems and the projection of infinite-dimensional phase space of these systems to suitably
chosen low-dimensional subspaces. We verify our method by using it for the recovery of generalized
Mackey-Glass time-delay differential equation from its chaotic time series.
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1 Introduction

Systems, whose dynamics is affected not only by
the current state, but also by past states, are
wide spread in nature [1]. Usually these sys-
tems are modelled by delay-differential equations.
Such models are successfully used in many sci-
entific disciplines, like physics, physiology, biol-
ogy, economics and cognitive sciences. Typical
examples include population dynamics [2], where
individuals participate in the reproduction of a
species only after maturation, or spatially ex-
tended systems, where signals have to cover dis-
tances with finite velocities [3–5]. Within this
rather broad class of systems, one can find the
Mackey-Glass equation [6] modelling the produc-
tion of red blood cells, and many other models in
biosciences for different phenomena from glucose
metabolism to infectious diseases [7]. In general,
modelling the dynamics of time-delay systems it
could be necessary to take into account the de-
pendence of current state on several states in the
past. In this case, the model with several delay
times should be used [8–13].

To recover model equations of time-delay sys-

tems from time series several methods have been
proposed recently [14–22]. However, practically
all these methods have been applied for recon-
struction of delay-differential equations with sin-
gle delay time. Extension of these methods to
time-delay systems with several coexisting delays
is usually not possible. In this paper we de-
velop the method of recovery of time-delay sys-
tems with two different delay times from chaotic
time series. The paper is organized as follows.
Section 2 contains the method description. In
Section 3 the method efficiency is illustrated by
the reconstruction of generalized Mackey-Glass
equation from its chaotic time series. In Section
4 we summarize our results.

2 Method description

Let us consider a time-delay system with two dif-
ferent delay times τ1 and τ2

ẋ(t) = F (x(t), x(t− τ1), x(t− τ2)) . (1)

To recover the delay times τ1 and τ2 from the
temporal realization x(t) we exploit the method
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proposed recently in [20], where we have shown
that there are practically no extrema separated in
time by τ in the time series of time-delay system
ẋ(t) = G (x(t), x(t− τ)). We will show that this
method based on the characteristic location of ex-
trema in the time series of time-delay systems can
be successfully applied to time delay system (1)
with two delays. Differentiation of Equation (1)
with respect to t gives

ẍ(t) =
∂F

∂x(t)
ẋ(t) +

∂F

∂x(t− τ1)
ẋ(t− τ1)

+
∂F

∂x(t− τ2)
ẋ(t− τ2). (2)

The realization x(t) of Equation (1) has mainly
quadratic extrema and therefore ẋ(t) = 0 and
ẍ(t) 6= 0 at the extremal points. Hence, if ẋ(t) =
0, the condition

aẋ(t− τ1) + bẋ(t− τ2) 6= 0 (3)

must be fulfilled, where a =
∂F (x(t), x(t− τ1), x(t− τ2))/∂x(t− τ1) and
b = ∂F (x(t), x(t− τ1), x(t− τ2))/∂x(t− τ2).
The condition (3) can be satisfied only if
ẋ(t − τ1) 6= 0 or/and ẋ(t − τ2) 6= 0. By this is
meant that the derivatives ẋ(t) and ẋ(t− τ1), or
ẋ(t) and ẋ(t − τ2) do not vanish simultaneously.
As the result, the number of extrema separated
in time by τ1 and τ2 from a quadratic extremum
must be appreciably less than the number of
extrema separated in time by other values of τ .
Then, to define the delay times τ1 and τ2 one has
to determine the extrema in the time series and
after that to define for different values of time τ
the number N of pairs of extrema separated in
time by τ and to construct the N(τ) plot. The
N(τ) plot will demonstrate pronounced minima
at τ = τ1 and τ = τ2 corresponding to the delay
times.

We illustrate the procedure for estimating the
other characteristics of time-delay system with
two delays from time series for the system gov-
erned by the following equation

ε1ẋ(t) = −x(t) + f1 (x(t− τ1)) + f2 (x(t− τ2)) ,
(4)

where f1 and f2 are nonlinear functions and ε1 is
the parameter characterizing the inertial proper-
ties of the system. Time differentiation of Equa-
tion (4) gives

ε1ẍ(t) = −ẋ(t) +
∂f1 (x(t− τ1))

∂x(t− τ1)
ẋ(t− τ1)

+
∂f2 (x(t− τ2))

∂x(t− τ2)
ẋ(t− τ2). (5)

From Equation (5) it follows that if

ẋ(t− τ1) = ẋ(t− τ2) = 0, (6)

then ε1ẍ(t) = −ẋ(t) and

ε1 = − ẋ(t)
ẍ(t)

. (7)

Thus, to estimate the parameter ε1 one can
find the points of x(t) satisfying condition (6), de-
fine for them the first and the second derivatives,
calculate ε1 using Equation (7), and conduct av-
eraging.

To recover the nonlinear functions f1 and
f2 we project the trajectory generated by
Equation (4) to a three-dimensional space
(x(t− τ1), x(t− τ2), ε1ẋ(t) + x(t)). In this space
the projected trajectory is confined to a two-
dimensional surface since according to Equation
(4)

ε1ẋ(t)+x(t) = f1 (x(t− τ1))+f2 (x(t− τ2)) . (8)

The section of this surface with the x(t− τ2) =
const plane enables one to recover the nonlin-
ear function f1 up to a constant since the points
of the section are correlated via ε1ẋ(t) + x(t) =
f1 (x(t− τ1)) + c1, where c1 = f2 (x(t− τ2)) for
some fixed value of x(t−τ2). In a similar way one
can recover up to a constant the nonlinear func-
tion f2 by intersecting the trajectory projected
to the above-mentioned three-dimensional space
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with the x(t − τ1) = const plane. The points
of this section are correlated via ε1ẋ(t) + x(t) =
f2 (x(t− τ2)) + c2, where c2 = f1 (x(t− τ1)) for
fixed x(t− τ1).

3 Method application

We demonstrate the method efficiency with a gen-
eralized Mackey-Glass equation obtained by in-
troducing a further delay,

ẋ(t) = −bx(t) +
a1x(t− τ1)

2(1 + xc(t− τ1))
(9)

+
a2x(t− τ2)

2(1 + xc(t− τ2))
.

Division of Equation (9) by b reduces it to
Equation (4) with ε1=1/b. The parameters of the
system (9) are chosen to be a1 = 0.3, a2 = 0.2,
b = 0.1, c = 10, τ1 = 70 and τ2 = 300 to pro-
duce a dynamics on a high-dimensional chaotic
attractor. For various τ values we count the num-
ber N of situations when ẋ(t) and ẋ(t − τ) are
simultaneously equal to zero and construct the
N(τ) plot [Figure 1(a)]. The step of τ variation
in Figure 1(a) is equal to unity. The time deriva-
tives ẋ(t) are estimated from the time series by
applying a local parabolic approximation. The
first two most pronounced minima of N(τ) are
observed at τ ′1 = 69 and τ ′2 = 300. Another dis-
tinctive minimum of N(τ) is observed close to
τ = τ1 + τ2. Processing the points satisfying con-
dition (6) with the recovered values τ ′1 and τ ′2 we
obtain the averaged estimation ε′1 = 9.4 for the
parameter ε1 = 1/b = 10. To reduce inaccuracy
in ε1 determination by formula (7) we exclude
from consideration the points with very small val-
ues of ẍ(t).

Projecting the time series of Equa-
tion (9) to the three-dimensional space
(x(t− τ ′1), x(t− τ ′2), ε′1ẋ(t) + x(t)) and con-
structing the sections of this space with the
planes x(t− τ ′2) = const and x(t− τ ′1) = const we
obtain at these sections the nonlinear functions
f1 and f2 recovered up to a constant. However,
inaccuracy in estimation of τ1 and ε1 leads to

FIG. 1. (a) Number N of pairs of extrema in the
time series of Equation (9) separated in time by τ ,
as a function of τ . N(τ) is normalized to the total
number of extrema in the time series. (b) Length
L of a line connecting points ordered with respect
to abscissa in the x(t − τ ′2) = 1 section, as a func-
tion of τ1. Lmin(τ1) = L(70). (c) Length L of a
line connecting points ordered with respect to ab-
scissa in the x(t − τ̂1) = 1 section, as a function
of τ2. Lmin(τ2) = L(300). (d) Length L of a line
connecting points ordered with respect to abscissa
in the x(t − τ̂2) = 1 section, as a function of ε.
Lmin(ε) = L(10.1). (e) Nonlinear function f1 re-
covered up to the constant ĉ1 = f2 (x(t− τ̂2)), where
x(t−τ̂2) = 1. (f) Nonlinear function f2 recovered up to
the constant ĉ2 = f1 (x(t− τ̂1)), where x(t− τ̂1) = 1.

insufficient quality of the nonlinear function
recovery.

To achieve more high quality of the model
equation reconstruction we propose the following
procedure for the correction of the parame-
ters. Varying τ1 in a small vicinity of τ ′1 = 69
we project the time series to several three-
dimensional (x(t− τ1), x(t− τ ′2), ε′1ẋ(t) + x(t))
spaces and plot their sections with the
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x(t − τ ′2) = const plane, searching for a
section, which points contract to a curve demon-
strating almost single-valued dependence. As
a quantitative criterion of single-valuedness we
use the minimal length of a line L(τ1) con-
necting all points of the section ordered with
respect to abscissa. The L(τ1) plot demon-
strates the minimum at τ̂1 = 70 [Figure 1(b)].
Similarly, the correction of the delay time τ2

is performed. We project the time series to
(x(t− τ̂1), x(t− τ2), ε′1ẋ(t) + x(t)) spaces under
variation of τ2 in the vicinity of τ ′2 = 300 and
plot the sections x(t− τ̂1) = const. Note, that for
these sections the corrected delay time τ̂1 = 70
is used. The minimum of L(τ2) takes place at
τ̂2 = 300 [Figure 1(c)]. In the general case if
τ̂2 6= τ ′2, the procedure of τ1 revision is repeated
by plotting the sections of the embedding spaces
with the x(t − τ̂2) = const plane with the
corrected delay time τ̂2. Successive correction
of τ1 and τ2 is continued until the parameters
cease changing. For small deviations of initial
estimates τ ′1 and τ ′2 from the true delay times the
procedure is converging and allows one to define
both delay times accurately.

After revision of the delay times the parame-
ter ε1 should be corrected. Its new estimate ε̂1

can be obtained by formula (7). However, a more
reliable estimation is the one using all points of
one of the section. To obtain it we project the
time series to (x(t− τ̂1), x(t− τ̂2), εẋ(t) + x(t))
spaces under variation of ε in the vicinity of
ε′1, searching for a single-valued dependence in
the section x(t − τ̂1) = const or in the section
x(t − τ̂2) = const. The L(ε) plot shows the
minimum at ε̂1 = 10.1 [Figure 1(d)]. In Figure
1 the values of L(ε), L(τ1) and L(τ2) are nor-
malized to the number of points in the corre-
sponding section. Note, that the proposed pro-
cedure of the successive correction of the pa-
rameters needs in several orders of magnitude
smaller time of computation than the method of
simultaneous selection of the parameters ε1, τ1

and τ2 for the three-dimensional embedding space
(x(t− τ1), x(t− τ2), ε1ẋ(t) + x(t)).

Figures 1(e) and (f) illustrate the recon-

structed nonlinear functions of the system with
two coexisting delays (9) for the corrected pa-
rameters ε̂1 = 10.1, τ̂1 = 70 and τ̂2 = 300. The
nonlinear functions f1 and f2 are recovered up to
the constant by plotting the sections of the two-
dimensional surface described by Equation (8).
To investigate the method efficiency in the pres-
ence of noise we apply it to noisy data and found
that the method provides sufficiently accurate re-
construction of the investigated system for noise
levels up to 10%.

4 Conclusion

We have proposed the method for reconstruct-
ing time-delay systems with two coexisting de-
lay times from chaotic time series. The method
is based on the statistical analysis of time in-
tervals between extrema in the time series and
the projection of infinite-dimensional phase space
of the time-delay system to suitably chosen low-
dimensional subspaces. The procedure for the
successive correction of the model equation pa-
rameters is proposed.

The method can be applied to the systems
of different nature if these systems have similar
structure of model equations. The proposed tech-
nique allows one to estimate the delay times, the
parameter characterizing the inertial properties
of the system and the nonlinear functions even
in the case of noise presence. The method of
the delay time definition uses only operations of
comparing and adding. It needs neither ordering
of data, nor calculation of approximation error
or certain measure of complexity of the trajec-
tory and therefore it does not need significant
time of computation. The method efficiency is
illustrated by the reconstruction of generalized
Mackey-Glass equation from chaotic time series.
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