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THREDR SUBPROBLEMS OF GLOBAL MODEL RECONSTRULCTION
FROM TIME SERIES AND THEIE PECULIARITIES

T, Dikanev, £3, Smirnov, V. Ponomarenko, and B, Bezruchko

We consider three main subproblems of global reconstrucion of dynamical models
trogz tyne series: selection of dvaamical variables, selection of medel function, and estimation
of model parameters. Special technigees for thelr selunon are presented. Then applicanons
and prospects of the further development of empinc modeing methods sre disousied, The
anprodaches are slosirated i mumerical and acotstic experiments.

5. Introduetion

A traditional way of obiatning a mathematical model of a complex phenomanon
from the Tirst principles cannot often be reabized in pracyce. Then, experimental dati may
hecome the main source of mformation about a system under Investigation and problem
of an empiric model construction may arise. Sineg observations of real-world processes
are: presenied, as a rale, in the form of time series {dhscrete ordered sequences of
sheervabde values), the problem is called modeling fromt vime series. s imporant i
physics, meteorology, medicing and physiclogy, sie. Since 1980s various medhods for
constructing deterministic Jow-dimensional models in the form of difference egualions
(smaps) [1-3} and ordinary differential equations (ODEs) {4-16] have appesred in
framework of nonlinear dynamics. In particular, significant s:.,ﬂmrﬂ'm%i{m fo this feld has
peers made by V.5, Anishchenko and his team [B-11],

in general, the problem of modeling fmm. time series can be tormulated ag follo

» There is & systern of our interest {«an object» 1.

o (ne picks oul some quantifies 1,,...n), Wich charactenze ??*zﬂ DEOUEEEeS

opcurrmg o the systern and which can be mmaumi experimentally {they are called
observables),

« A time series of these quantiiss (Le. the finite sequence [nli)} 7, wher
(e =0, (e o (a0, £=iAs, Acis a sampling interval ) is measured,

o 1t 18 kriown .1 rii the I}bjfiL'E possesses a set of properties P, .7 L

Based on the thime serieg, it is necessary (o consiruct a dvmmiml {I'I{Z}ﬁﬁl canabe of
reproducting this time series and as many of the properties (P,,....7, ] as possible. Muodels
are constructed in the form of differsntial eguations {1} or discrete maps (21

duldr = F(x{t).e). {13
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’ Irr--i g K {K;?‘E} {2}

where x={¥,....,x, JERY Is & state vector of the model, F 1 a smooth function, ¢&ER s a
parameer v%iﬂra é‘f iz continuous thme, # 18 diserete ome. I the funcdon F i expressed
analytically in terms of elementary functions (in a closed form) for the entire phase space,
then the model is called global, Further we consider only glebal models.

The success of modeling depends on several factors. It 18 excecdingty paporiant (o
seloct properly a model structure that involves the cholce of dynamical variables x, {that
i5 the relations between dynamical variables x, and observables *r;} aned choice ﬂi’ the
form of the function ¥,

So, the first subproblem of thme series modeling 18 selection of dynmmicat vanabies
and reconstruction of their time courses from the ohserved time series data, If there are
ton many observables then one should specify a subset of them © be used as model
variables. If the number of observables s not sufficient for model construction or they
canno! be used directly, then different combinations of available dawa are employed. Very
nopular methods are sequential derivatives and time delavs ({5] and [6], respectively),
both of them rest upon the celebrated Takens™ resules and their generalizations [17].
However, differant ways of obtaining dynamical variables realizations, which are based
on a prior information about the systern under investigation of some peculiantics of it
dynamics [8], may prove to be more appropriste for modeling. In Section 2 we present &
technigue for the selection of the best set of dynamical variables for wodeling, which
allows simultanesus conveniens testing for nonlinesryty,

The second subproblem is to specify the form of function ¥, Algebraic polynomiat
s 8 stendard recommendation [6], even though often inefficient [13]. To make
potynomial more feasible different methods for spurious terms defection and exciusion
were suggested which work well for a special sitvations [2,14.18-20] To Section 3 we
nresert & new method for spurious tenms detection.

Third subproblem is technological: o estimate model parameters ¢ (usually the
lpast-squares routine ts used). Finally, an obtained model shouid be validated. But even if
the model s not sufficiently sdequate, model cosfficients muy have their own value and
serve for the characterization of the system. In Section 4 we consider such @ situabion
where cosificients of a model maep desoribing phase dynamics are used © solve an
important problem of coupling characterization [21] and suggest extension of the kKnown
technigue for the case of short and notsy time series,

2. Selection of dynamical variables

As it as been already mentioned, to construct model sguations i the form

yif e }{E{f}} fromn o thme series { (2], one forms, first of 4ll, the series of state vectors
(x{2,}}. Then, the time series of quantities o enter the left-hand side of model equations
Ly{s }? is obtained from the time series (%{ )} according 1o the chosen model type:

» vig pumerical differentiation of Ek(?}} for GE’BE% since v p=da{fdr

* via the shift of [x(z }] along the time axis for discrete maps, since ¥(¢)=x{2,, )
Fially, the form of the function F is specified and s parameters are estimated,

Voluntary dyvnamical variables selection can maeke approximation of the
dependencies y{x) with a smooth funcron exiremely problematic [22,23] or even make
tiese ﬁiﬁg}ﬂﬁ{iuiﬂim muany-valused. Here, we desenibe the method Tor assessing sultabnlity
and convenence of the selected variables x,, for constructing a giobal iéfgihiﬁ'%ii&k
model, It is based on testing the time series {3(1‘ }? and [x{d 3 for s;mg}{iw—% sluednesy and
conpfinuity of each dependency ¥ {E} in the entire region of an observed motion, It
erucial here that we use local characteristics rather than the averaged ones as in 124]
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2.1, Description of fechrigue. ¥ a dependency v{x) 15 sgle-valued and
continuous in a domain V, then the difference Iy{(x)-v{x)! tends o zero when Hg-x >0
for each x, &V . In practice, violation of this condition may be viewed as a sign of many-
valuedness or discontinuity of the depermdency y{(x}. Since the lengih of an observable
time series is finHe, the sbove-mentioned Hmit cannol, sinctly speakmg, be found
However, it is possible to trace a tendency in vadations of the quangity (s {7}l when
the vectors x{¢) and x{{!) are made closer and closer, down 10 a certain fimie distance.
Given sufficiently large amount of data N, high accuracy of messurements, and low noise
level, the distance (e }-x{(e )i can be made sufficiently small for each local region of
ohserved motion. ’

The technique of testing consists in the following (Fig. 1, ¢). The domain V
cotitaining the set of vectors {x{z)}._ /™ is partitioned into identical hyperculne boxes of
the size &, Al boxes contalming st least two vectors are szlected. Let us denofe them
8, The difference between the Jargest and the smallest values of v inside a box s,
e y(x-ming vix). The largest local variation
£, 00maR, o e and ity greph g mﬁf are used as the maim characieristics of the
investigated dependency. Suitability of the considered guantities x and y for global
modeling is assessed using the following considerations {25}

- If & dependency y{(x) is single-valued and continuous, ¢, is sufficiently smakt for
smalt 8 and tends 1o zovo for &0 (Fig. 1, b, filled circles). The following statement 18
often correct: the less the stope of the graph e (8}, the better are the dynamical vanables
for modeling,
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Fip, 1. {¢) Hiustration for a iechnique of testing a dependency y{x} for single-valiedness and continmty in
the case D=2, (2] Peasible appesrance of plots e (8] for different variants of dvnamical variables
- ¥ a single-valued and continuous dependency has a region of very steep slope {a
Gumps), then ¢ remains rather big even for sufficiently small & However, further
decrease in 5 leads o decrease in g and the graph ¢ (0} exhibits 3 «kink» a1 the value
of & roughly egual (o the size of th steep slope region {e.g., Fig.1b, white circles). In
such a case, the dependency v{x) is difficult to approximate with a smooth function.
Af e, reraaing large and does not diminich for 80 (Fig, 1, b, filled squares) then
the considered variables are not appropriate for global modeling. Such siuation may be
related both to nonuniqueness of the dependency and high noise level.

2.2, Numerical example, refinement of technigue and testing for nonlinsarity.
The above technique was already published and suffigiently illustrated previously 23],
Here, we describe briefly an approach to refinement of the techoique and its use for
assessment of nonlinearity of a dependence y{x}. Besides, we present the application of
the refined fechnigue to the analysis of a biological e seyes.
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The procedure deseribed 1 Section 2.1 s a technigue wiath a fixed-location sel of
nonoverlapping boxes (independent of the distribution of data poinisi. It has the
disadvantage that s vector ¥ lving near a box boundary is never compared to the close
vectors from the neighboring boxes, but it sy be compared to more distant vectors from
its own box. It can lead to intengive osclllations in the e (8} for small § in the presence
of noise. The nonmonntony makes the assessment of the considered dvnanical varmabisg
more difficuit. An example of such situation 1s tHustrated in Fig, 2, ¢, where the results of
testing are preseuied for chaotie regime of the logistic map x =h-x ® at x=2.0. The
observable 18 v o= +E . where £ is 4 sequence of independent identically unitormly
distributed random values. We test the dependencies corresponding o the first eraie
7,41 ) 1o the second one v {n }, and to the third one v ,(n } using the time seres
»::mﬂi&mmg 1060 data points {(see F"s@; 2y 1, B for polse-free {E&m}

The disadvantage of the fechnicue may be obviated by using the set of overlapping
boxes centered at the vectors of the tme series {data-dependent location) instead of the
fixed-location set of boxes. In other words, for each vector x{z.) one should consider all
its S-neighbors, Le. to caleulate local variation of v in the box witl: the side 26 centered ot
xf f} The number of considered boxes is then equal to the number of vectors V. The
bay gaﬁt vadue of local variation obwained in such a way (Jet us denote o . '}
monotonically decreases with decrease in &, This advaniage of the modified procedure 13
ilstrated i Fig, 2, ¢, d for the above mentioned case of ‘éhﬁ fogistic map.

Due to this advantage, the plot e (8} is more reliable and informative. Note also,
that the plot e (8) is a straight line if ‘the system under mvmmgmzm is Hnear, Therstore
the piote {i’}} can serve as A fest for linearity, i ﬂ{:ﬂmvﬂy indicates noniinearity of the
EYRTeT under investigation {Fig. 2, 41 As an example of the proposed mahmgﬂﬁ
g@;ﬁ‘imz'mﬁ 10 & s:ﬁmpéﬂ real-workd system, let us brietly consider testing of an acoustic
me series. This iz g digitized I‘L{.‘fi}iﬂmg of the hwman voice (in fact, air pressure

variations), which was done when & man was pronouncing the sound iy Sampling
iit@ﬁﬂﬂw iyodd o kHr The recording length s 10008 date pomnts. A dependence
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Fig. 2. Comparison of testing technicues in g numericat experiment. {0} The first, the secomd, and the
third iterations of the chaotic logistic map. {8}, { ¢} Besuls of esting with the fivedwserofeboreas rechaigue
from nodse-Tree and nolsy dat, respectively, (@) Results of testing with the modified technigue from noisy data

P68



uuuuuuuuuuuuuuuuuuuuuu

################

B L N e
El
1
H
1
1
E]
1

[ 1
n nﬁﬂﬂ-#d-@wﬂv-i-—'ﬁ'wwﬁ-lﬂ-“lw

H I

T
C v
r F ? 1 1 1 -F“ TN 13

13 G4 &

Fig, 3. Testing vocal time series desoribed in Section 2.2 {g) The firsd-location set of boses technigue
indicares many-valuedness. (5} The modified techniyues indicates also nonlinesrity

(80, ) 18 tested. We present the plot e (8} in Fig. 3, o It does not mdicate
single-valuedness, Other conclusions can hardly be drawn from the figure becanse of the
shove-mentioned  disadvamages of the fized-location set of boxes technigue. The
medified technigue leads 1o the monotone plote (&) (Fig. 3, &1 11 i easily seen that the
dependence ¢ (8} Is significantly concave that allow a conclusion about nonlineartty of
the system under igvestigation.

3. Betection of spurious polynomial terms

Choice of the model function F &8 also very mnportant problem, which comes wlo
play after selection of dynanical vanables. In the typical case of absence of detatled a
sriort information about proper function Torm, one usually uses algebraic polynomials
relying upon many rigoreus mathematical results {Wederstrass theorem ). But model with
polynomials are often inefficient because of thelr very badd extrapolation properties that
are determined by the presence of «spurious» werms (basis functions ),

Theoretically, polynomial terms should be regarded as spurious if «irpes values of
their coefficients {coefficients of the «truer function expansion In a power series) are
saual to zero. Detection with subsequent exciusion of several spurious terms from the
model polynomial can lead to significant refinement of the model, But, different
spproaches 1o detection of spurious ternms have been suggested: small absolute values of
the corresponding coeffickents T2], small values of the coefficients with respect 10 theyr
standard deviation {Student’s criterion), intensive variation of coeflicients arcund zero
when different pars of a transient time series are used for reconstruction [14], slight
change of the approximation ervor when the tern 18 excluded from the model [191. Here
we develop a new (and, in our opinion, more general) approach to detection of spurious
{ETING.

Again, theoretically, rather fypical situarion is such that neither of terms s
spurious. If the true function is, o.g., exponential, #s sxpansion in a power series Involves
nonzero coefficients at gach power of a variable. In such a situation, when Lme seres s
analvzed, adding of each term to 4 model structre would Izad o decrense of the
approximation error. Nonetheless, some of the erms are undesirable Cpractically
spurions ). We state that those terms are practically spurious which affect approximation
ervors only i1 s narrow domain of the phase space. We conjectare that such fermns can be
deteried ay those terms whose coefficients depencd strongly on the distribution of the data
soints in the phase space. (If all coefficients slightly depend on the distribution of data
points, one may reasonably guess that such model Funciion describe an object not onty for
the doratn explored by the observed training time series, but aiso in ity neighburhood,
that is the function has good exirapolation properties. )

150



To determine how strongly a coefficient value depends on the distribution of
training data points, consider its change under variation of the weight function p(x ) if
coefficients values o, are found by minimizing the weighted squared sum of errors

fi H ,
Z=E plaF {x )2, :Iﬁkgi-(xi}ﬁ‘ (3)

Here F{x) are true (observed) values of the approximated function; g fx} are basis

functions (rerms). Weight function p(x,) is normalized to umty &l =1
1§ the set of basis functions is orthonormal, then coefficient values read

A
o, = & _ L) Flx)glx ). (4
Approximated function can be expressed as

Fe) =X, g, () + Fu), ()

where F(f) is approximation eror.
fet us consider now how the values of coefficients will change under slight

variations of the weight function p—=p'=p+p. Because of weight function normalization
the variation satisties

oo .

Z. plx) =0 (&)

Trpose also the condition of smaliness of variation in the form

ZpHx) = )

The change of coefficient in the lipear approxunation 18

A0

hexy = F () g, (e )Fx ). (®)

To estimate the inlensity of coefficient variation consider 4oy as functional of p. For s
rmasimum with supplementary conditions (6) and (7) we have

by . n ~ N |
- 5 (g ()FE) - (UNE,,8, () FLPT2 )

If we suppose that at the beginning the weight function was aniform for all {rainmg
Hme series points, that is plx =1/, then as a consequence of orthogonality of basis
functions and approximation error, we have

AN - -
4ﬁf‘lﬂ’;lf‘zz'.:ﬁ: = Efﬁle (gi (‘xi} 3 (':{i:}) EE i ' {I {}}

A a criterion for exclusion {or inclusion) of basis function we can use the ratio
between the maximum possible change of coefiicient value {10} and the coeffiCient value
itself

At

Itnak

e - Mo
{jg = [}:;_;j (gk ('}L.:) F(X‘.})z] : fzfiﬁz'x .{g.ﬂ: (If}ﬁl(xﬁ)j ) {]‘ hi }

Formula {11} was decived for orthonormal basis funictions. In practice this
asually not the case. However when we decide if the basis function is spurlous of not we
can consider only its projection orthogonal to all other basis functions g,'{x). After this
*we can freely use the method described above. We don't need to catculate this projectionin
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explicit form. Let F {x} be an error of approximation in the absence of the k-th basis
function, then the orthogonal projection of the £-th basis function is

&/ () = (F() - Fleey, (12)

where o, 18 coefficient for this projection, calculated with least squares method.
After substitution of (12) into (11) for coefficient instability we have

C. = [E (B (o) Foo)FE) PAE G ) F)Fo)l. (13)

Above we talked about exclusion of spurious terrs from initially large basis, but
adding the most spitable functions can also optimize the basis fonctions set. We can
choose them using the same methodology, according to minimal value of criterion (13}

Let us illostrate proposed method on test example. The realization of x variable
from Riussler system in chaotic regime is used as time series. Fig. 4, b shows phiase
trajectory of this system reconstructed with time delay method. Model 15 constricted in
the form
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Fig. 4. {a) Comparison of test part of hme series generated by Rossler system in chaotic regime with ume

serics generated by optimized model. Good prediction for about 6 quasi-periods is observed, @) Phase

rajectory of Ritssler system reconsiructed with delay method frop tme series of ¥ varisble. (¢} Phase

trajectory penerated by optimized model. §) Error of spproximation of wraining time series {thin curve)
and error of feer fme series prediction {bold curve) as & function of basis funchons mmher, added donng
process of busis functions set eptinization with new method. {¢} The sume as {cf} for old method
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dxl left = Xy |
dbe,/ dt = x5, | | 14

dufde.= v, )

i we transform the Réssler equations into the form {14y we will have rafional
faretion £, We will try to construct the model in.universdh Tom using pelynomial of e
44 order as function £ The short part of 200 data points {abeur 3 quasi-periads) is used
a% iratning time series. Let us add to initially .empty basis such Farionion for which the
rolutive variation of coefficient {13} is minimal, S

in Fig. 4. d the dependencies of training series approsimation error (thin curve)
ot ervor of prediction of st Qg senies (hold cdrve) on the number of added bugis
fovetiads are showrn Frrors we aormalizetd by the standard dewiation of the third
dortentive di, /ot of taliing DM warten (Oine catn ses That waining seres approximation
srivir decréises monotonous, while the prediction eoror Lo ws wart of time series has
i when the smpber of basis functions 19 50 and 4 B egaal o 0032 32% of
standard devigtion) Af fés moment the error on taining senies s 0.008. Before
opthmization (when we use fult solynemial of the 6th order) the behavior of the model
was diverpent. After optithization the model generstes wiable frajectonios and allows
sediction of abaut 68 quash-periods-ol eat dune series. In Fig, 4.¢ the phase trajectory
coneraied by te podel I shown, One can see that the majectory 18 iocated in the same
phase spece domain as the trajectory of Réssler systerm, but the cycle of period 218

evaniusily sstabished.
Yo Fio. 4 @ fob COMParison purposes e rowiits of orrnization of bass fanctions
B TV _ . k

st with previously known method 15 sherwn, In this method we add to the basis such

fancrons i allows maximal deerease of approximation error. One can see that the
cerreetice of adding basis nortions ' different from proposed method. The best bBasis

.

aceprding o fost series prediction prror includes 33 fanetions. This best erroris 0.U34

{ctiphaly worse than wairth new method), error of tralmmg oe seties approximaion (1.006.
The Behavier of the ophimal (from this pomt of view ) mudel turmg ou e Do divergent. 50
we cafl utate that i this example pew ploposed method of optimization sutperforms the

well.bnown one.

4. Derermining character of coupling belween
sechsystems From tme serles '

The problem of determinmng the presence st direotion of inforsction belween TWo
subsystanms 15 very Imponant m many fedds, felading physiplogy and medicine Where
reraction between human cardic-vascular wsl respiratory sysiens 126,27} and berween
Giferent Brain wress are of intepest (28301 Thus, rdcently Wosenbium and Pikovsky
sopmested & very delloate and nice Kea for charscrerizaion of weak coupling between

[P
Rl iy
<<<<<

suhsysiems Trom Hme series by sotimating coefficiems of a model map 211 But their
method works well Tor the aase ol very fong time series {for wreasonable» notse level,
sme aeries should contiln about TR ding pebars). o practice, nonstationarity of
pROCTESes, fripossibilivy to Afieet eufficient smduie of data, and significant noise often
recudes itimation of the Insmslon fooupding characteristics under conditions of short

sheervarion nterval. Hese, we develop an eRionsion of Rosenblum and Pikoviky
’ ) e Y . &:'\._ T e e - o s . a
approach o e case ol shon arsd poey Urne seriss. For a detailed consideration see [32].
5= - .. L e ; . H Le . . . . - H . e

T B vyploal guani-staligtiry SOgriis of slecrroencephalogram (EEG) is abouwt 5 secondd fong
{31‘{%: Ffbds are weoarded o fimons savsptiong vate of 200 Hz Thern, quasi-stationary segmeni {:{ﬁ'ﬁ{:@iﬁ% ahiot
0% dara péinks, Roughhy dponiing, svpdosd longeh of & shott time series in practice is of the ordex ol 18 gats
poinis, o - S ' '
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4. 1. Evolution map approach, The technique of Rosenbharm and Pikovsky 1 bused
on constructon of empiric model maps, describing phase dynamics of the subsystems,
and is called evolution map approack. Having an original ime series {n (031", where
Ty, Ty @re observables, =141 i=1,....N, Afis a sampling interval, one calculates the time
xﬁaﬁfatmﬂ% of phases {q}l ALH, I“ﬁq’ and construct a global model map, which characterizes
the dependlence of phase increments {over a fime interval *r:&r} on the phases of
subsystems’ psciliations, in the form

‘&LE(E} o i?;_;{%"l"fffﬁ} - {;‘;3(?) Efdlg'{-rgjl}*[ Iggf}ﬂig?l{ﬂsﬁlg}a {}.ﬁ}

where ¢ s positive integer; &, , are vectors of the coefficients of the functions & 1 &, are
trigonomettic polynomials

. i .
Fi{{é}f*{%} - E;m; fﬁ,s‘ﬁ;(@; '}{?g}k {iﬁ:}

with g =11 g=cos{mg +ng,) for even 22 gesinlm g g} for odd 223 L, 18 the
number of teyms of the polynomial F. Yor 122, mo=m, W nonnegative wHegesr,
Ay, GTE arbirary integer, and by {.ia,fmn;;ﬂﬁ 23 mi 7, w--{i

{sing the estimates of coefticients ﬂ@ @btmm{.i i;f:fm the time senies vig the least
scjuares routine, one compuies uilengities of nfluence of the second subsystem on the first

ane {(J—+] } L
2 e 12 [ FT(OF (000,38, )/00, Pdo,do, = X Sna 2 (17)

Everything is similar for the mdluence of the first ﬂtibﬁyﬁfﬂm on the second one (=2} ¢.,.
Directionality index is defined a3 &m{%-élﬁ {f?ﬁf;l}. Sinoe ¢ j_,;:i} o takes the values ﬂﬁ}ﬁﬁ
within the imterval [-1,1]: #=1 or d=-1 corresponds to unidirectional coupling (J-2 or
d-+1, respectively h, =0 for ideally svmmetric coupling.

4.2, Short fime series. For very long time series {V-»w} the estinaies ¢, ¢, and d
are unhiased and have practically no scatiering, in other words, the method gives correct
characterization of coupling. Hﬂ%ﬁﬁi if the time series is short, the followmyg mportant

Guestions arise. Are the estimazes ¢ f} biased or not? How can statistical significance of
the results be estimated? To zihm‘ram importance of the guestions, let us consider a
simple demonstrotive example, when two subsystems are uncoupled and linear, that 1s &

system of difference eguations
A, (£} = ¢, A1+dm) < (1) = L, + £, 44, {18}

where e, are Gatssian random pa'ﬁm%ﬁ independent of cach other wih vanances
2rly, . Obviously, correct values of coupling should be ¢ =c,=d=({} in this case.

WL have carried out numerical experiment in the f@iéﬁwéng way. Tine realizations
of original equations were simulated using the generator of pseudo-random DUMOErs
realized in the subroutine DRNNOR of the lbrary IMSL. Inital conditions for sach

realization are random numbers 4,(0), ¢,{0} distributed ﬂﬁ?iﬂﬂ}“ﬂy on the interval [0,2x].
We obiained 1000 shost time r{?&jiﬁﬂilﬁlﬁ*‘s (10068 pairs of scalar time serles) with the

fength N, =10, The values of estimates z::E 5 and d ave computed for each of them. From
the thﬂﬁi{i st of wiua we construct histograms,

The estinmates ¢ o a0 d appear misteading. Thew ﬂ%ﬂ;tri%}utiﬁnﬁ are shown in Flg 5
Thus, in the case of identical subsystesns (U=, and ©. mmﬁ} ¢, is always positive and
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Fig. 5. Histograms for the estimates of coupling, construcied as & resull of processing of 1000 time realiza-
tions of the eguations {iﬁ} wr.th we=o, =10 {a}, {5} ¢, (a bigsed estimare} andd for identical subsystems
with I =2 =14, (c}, {d) -.r: ¢, (exhibit different biases} andd (e:{hibiia pegative bias) for subsystems

 with t‘hf’fﬁmm TICHSE }we}aﬂ ::{} 4, D=1 {e), ), (g}, and A) }1, ’}fz, and & (unbiased estimates) for the
situations corresponding (o {a} {b), (E} st (d), respectively

takes sofficlently large values (Fig. 5, a}, ie. it is a biased estimate for ¢,=4); 4 is
- Ll Ll r 3 Ill‘l'

unbiased, but exhibits quite a large scattering; even the vakues of d=£0.4 are encountered

quite often (Fig. 5, b). Thas, it is very probable to get spurious indication of the presence

of interaction from a single realization. The situation becomes even more comphcaied

wher subsystems are nﬂni{iﬂﬂﬂaai. k is iHustrated in Fig. 3, ¢, 4 for the case D >0,

w, =0, 1116 estimates { ,, are biased, bias in ¢, being greater (Fig. 5, ¢}, This leads to

biasedness of d whose values are systemarically less than zero (Fig. 5, &), Hence,
predominant influence (2-=1} is diagnosed, even though coupling is absent in reality.

£.3. Corrections to evelulion maop approach and novel unbiased estimates of
coupding. By careful analytic consideration of the problem we found out the cause of
biases and developed corrected estimates of coupling {32]. Novel unbiased estimate of ¢,

1§ the guantity .
go= 2 Ehp25 2 (19)

=] ﬂ”

wiiere c}a ¢ gre unbiased estimates of variances o, «, Derivation of f;:n ® is not trivial.
Under sofe simplifying assumptions (noise s, 2(_1:) Are Graussian, muphng between stb-
svatems and thewr individual nonlinearities are very weak) we obtain the following

, g o fge e B
analyhic expression for o,

4
Ral

o 2= (20, YN + 22 7 (Lfle)eos((ma, +na, Yir)edmbamidand i1 (20)
W T 1 T T

M,

where o, 2. gre estimates of noise variances, their derivation is straightforward
Normalized index d is replaced by nonnormalized quantity 8=c.*- ¢,%, whose unbiased

estimator is 8 = 4,- 4,
. F ey aes A n : . \ .
To estimate reliability of numbers vy, , and & obtained from a single realization,

one needs the estimate of variance of v, {we denote it as o). After some algebra and
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ﬂ'ﬁ;}ﬁﬁfﬁﬁrﬁmim we derive a semiempiric formula [32] for :5::“‘E i terms of estimates
& ,; and &y ¢ derived earlier, we do not present it here for the sake of hrevity, Sinee - ?i
hﬁ&, a skewed distribution for low i.:;rdar rigonometnio poiynomiais £, typlcally used, we

take ssymmefric expression {’ﬂf% {1{3: 5 *fi«%-i’;{}“j as a confidence interval for ¢ 2 We found
congtants « and B empirically fo pii}“flﬁh necessary significance level; 95% confidernce
mterval is obtained f =16, B=1.8. Conclusion about the mresence of influence (2-4)
can be drawn with probability of error G025 provided

7, -y > (21}
The degree of belief can be adiusted by changing o {and, hence, confidence inferval

width).
Conclusion of predominant direction of infersction can be drawn after estimation

of the variance of & Y3 «goody estimate is o45=03 04 %, Our experiments show, that
a=1.0 aiso provides approximately 5% confidence mterval for & m the form & % aol,
More accurately, the vaines

h b ; o ~,

v -, > and 8- oo {22}
allow the statement abowt influence (J—2) with prohability of erpor D028 {amilaly for
{2»]Y]

Resuits of appication of the proposed estimaies y, | aﬁ{i 3 to the above mentioned

examypie {17} are presented in Fig. 5, e-h, Syatﬁmﬁm SLTOTS T fiz and & are absent. Fig, 6
demonsirates usefuinesy of the iﬂif:ﬂ Al estimales o ensure rebable conclusions of

couphing direction.

[
oy & a
d 60 + ﬁ : . 8
' aﬂﬁﬁa ¢ e Eﬁ & See
“{}_g%'.e“..w.r?ﬂ; G R *{}g S e A e
6 3 16 15 246 I3 0 5 g 15 0I5
a gxperment number b axperiment number

Fig, 6. Betimatey of coupling for exampls {17) resulis obtadned for the st 25 of the 100 ume
reglizations of ihe %iﬁ}w‘?ﬂf’i'ﬂ% with different noise levels =414, f,=011 {&) & takes predorpinantly

negative values, () 5 (oirclest ke negative oz well ag jgmmw-ﬂ vamies, estimated confidenve intervals am
shiowrl gs error bars sodd, 48 a rofe, ncinde zoro

K, Sununary

This paper Hlustrares some bmportant dewmls of the procedure of construcing
mathematical modet from @ fme series. Namely, three mamn subproblems are selected and
their pecultarities are shown. Special techniques for better solutions of two of them are
proposed:

« preliminary testing of time series of dynamical variables, which provides the
varignts which sre the most suitable for modeling and sliows convenient testing of
experimental dependencies for nonlinearity;

* a procedure of model structure optimization, which allows elmunation of
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spurious terms from the polynomial model, whereby model performance can be
significantly refined. |

finally, we have developed an approach to estimation of intensity and
directionality of coupling between two subsystems in the case of short and noisy time
series. Under certain agsumptions (nonlinearity of subsystems and coupling between them
are weak), unbiased estimates of intensity and directionality of interaction provided with
confidence intervals are derived. In our opinion, suggested estimates are applicable for
wide range of veal-world processes, including signals of biologic origin when it is
important to analyze shott time series segments due to nonstationarity.

The work was supported by the RFBR (grant Mo, 02-02-17578), CRDF {Award
REC-006), and the Russian Ministry of education.
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CEUHANLHREIE METONR! M HX peennsa. OOCYRMAToN IX TPUITOKCHIH ¥ NCPCHCKTHED]
TANEHEHILIErs PAsRITTHA METOROB SMIMPHYSCKOTO MONRIHPOBAHNSL [auuee HOEXONh
HIOCTPHPYIOTCH B SHCHEHARD ¥ aKYCTHICCKIX IKCNEPHMEHTAX.
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