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RECOVERY OF DYNAMICAL MODELS OF TIME-DELAY

SYSTEMS FROM TIME SERIES

V.I. Ponomarenko, M.D. Prokhorov, A.S. Karavaev,
Ye.P. Seleznev, T.V. Dikanev

We develop the method for the estimation of the parameters of time-delay systems
from time series. The method is based on the statistical analysis of time intervals between
extrema in the time series and the projection of the infinite-dimensional phase space of a
time-delay system to suitably chosen low-dimensional subspaces. We verify our method by
using it for the reconstruction of different time-delay differential equations from their chaotic
solutions.

Introduction

The present paper deals with the problem of reconstruction of nonlinear dynamical
models of time-delay systems from time series. The importance of this problem is
determined by the fact that time-delay systems are wide spread in nature. The behavior of
such systems is affected not only by the present state, but also by past states. These
systems are usually modeled by delay-differential equations. Such models are
successfully used in many scientific disciplines, such as physics, physiology, biology,
economic, and cognitive sciences. Typical examples include population dynamics [1],
where individuals participate in the reproduction of a species only after maturation, or
spatially extended systems, where signals have to cover distances with finite velocities.
Within this rather broad class of systems, one can find the Ikeda equation [2] modeling
the passive optical resonator system, the Lang-Kobayashi equations [3] describing
semiconductor lasers with optical feedback, the Mackey-Glass equation [4] modeling the
production of red blood cells, and various models describing different phenomena from
glucose metabolism to infectious diseases. The advantage of methods proposed in the
paper is that they can be applied to the systems of different nature if these systems have
similar structure of model equations.

In the most general case the time-delay systems are described by the following
equation

x(n)(t) + εn-1x
(n-1)(t) + … + ε1x

(1)(t) = F(x(t),x(t-τ1),…,x(t-τk)),                (1)

where x(n)(t) is the derivative of order n; ε1,…,εn-1 are the coefficients; and τ1,…,τk are the
delay times. To uniquely define the system (1) state it is necessary to prescribe the initial
conditions in the entire time interval [-τk,0]. Therefore, the phase space of the system has
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to be considered as infinite-dimensional. In fact, for large delay times even scalar delay-
differential equations can possess high-dimensional chaotic dynamics. Thus, the direct
reconstruction of the system by the time-delay embedding techniques runs into severe
problems. For a successful recovery of the time-delay systems one has to use special
methods. The most of them are based on the projection of the infinite-dimensional phase
space of time-delay systems onto low-dimensional subspaces. These methods use
different criteria of quality for the reconstructed equations, for example, the minimal
forecast error of constructed model [5-8], the minimal value of information entropy [9],
or various measures of complexity of the projected time series [10-14]. Several methods
of time-delay system analysis exploit regression analysis [15,16] and correlation function
construction [17,18]. In this paper we further develop the methods proposed by us
recently [19,20] for the estimation of the parameters of time-delay systems from time
series for a more wide class of time-delay systems.

Reconstruction of scalar time-delay systems

Let us consider one of the most popular first-order delay-differential equation
                                            .

ε0x(t) = -x(t) + f(x(t-τ0)),                                               (2)

where x(t) is the system state at time t, function f defines nonlocal correlations in time, τ0
is the delay time, and parameter ε0 characterizes the inertial properties of the system. In
general case Eq. (2) is a mathematical model of an oscillating system composed of a ring
with three ideal elements: nonlinear, delay, and inertial ones (Fig. 1). In the present paper
we develop a technique for estimating τ0, f, and ε0 from the time series.

It should be noted that available for
measurement dynamical variable could be
obtained from different points of the time-
delay system (2), indicated in Fig. 1 by the
numerals 1-3. Let us consider first the case
when the observed dynamical variable is
x(t) measured at the point 1. To estimate
the delay time τ0 we exploits the features of
extrema shape and location in the system (2) temporal realization x(t). The peculiarities
of extrema location in time are clearly illustrated by N(τ) plot in Fig. 2. To construct it
one has to define for different τ values the number N of pairs of extrema in x(t), that are
separated in time by τ. If N is normalized to the total number of extrema, then for
sufficiently large extrema number it can be used as an estimation of probability to find a
pair of extrema in x(t) separated by the interval τ. Let us explain the qualitative features
of N(τ) for various values of parameter ε0.

In the absence of inertial properties (ε0=0) time differentiation of Eq. (2) gives
                                        .         .

x(t) = x(t-τ0)df(x(t-τ0))/dx(t-τ0).                                     (3)

                                         .                         .
From Eq. (3) it follows that if x(t-τ0)=0, then x(t)=0. Thus, for ε0=0 every extremum of
x(t) is followed within the time τ0 by the extremum1. As the result, N(τ) shows a
maximum for τ=τ0 in Fig. 2, a.

In the presence of inertial properties (ε0>0), which corresponds to real situations,

————
1 For chaotic temporal realizations of the systems under investigation practically all critical

                    .                                                                                                                .
points with x(t)=0 are the extremal ones, and therefore we call the points with  x(t)=0 the extremal points
throughout this paper.

Fig. 1. Delayed nonlinear feedback system. Arabic
numerals designate points where a dynamical
variable is measured
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the most probable value of the time interval between extrema in x(t) shifts from τ0 to
larger values. This effect can be explained using the ring system shown in Fig. 1: the filter
introduces a certain additional delay in the system. As the result, the extrema in x(t) can
be found most often at the distance τ0+τs apart (Fig. 2, b). For instance, the computational
investigation of Eq. (2) with quadratic nonlinear function f(x)=λ-x2 allows us to obtain
an estimation τs ε0/2 for large values of the parameter of nonlinearity λ.

                                                                                                                            .For ε0>0 the extrema in x(t) are close to quadratic ones and therefore x(t)=0
and x(t) 0 at the extremal points. It can be shown that in this case there are practically no
extrema in x(t) separated in time by τ0. To prove this let us differentiate Eq. (2) with
respect to t:                        ..             .         .

ε0x(t) = -x(t) + x(t-τ0)df(x(t-τ0))/dx(t-τ0).                              (4)
 .                                      ..

If for x(t)=0 in a typical case x(t) 0, then, as it can be seen from Eq. (4), for ε0 0 the
                 .
condition x(t-τ0) 0 must be fulfilled. Thus, there must be no extremum separated in time
by τ0 from a quadratic extremum and hence N(τ0)→0. For τ τ0, the derivatives
 .             .
x(t) and x(t-τ) can be simultaneously equal to zero, i.e., it is possible to find extrema
separated in time by τ. The specific configuration presented in Fig. 2, b in the
neighborhood of τ=τ0 is duplicated at larger τ in the neighborhood of τ=2τ0,3τ0,…

The procedure of the delay time estimation from the N(τ) plot considered with
systems like (2) can be successfully applied to time series gained from a more general
class of time-delay systems

                                            .
x(t) = F(x(t),x(t-τ0)).                                                   (5)

Time differentiation of Eq. (5) gives
           ..        .                                            .

x(t) = x(t)<F(x(t),x(t-τ0))/<x(t) + x(t-τ0)<F(x(t),x(t-τ0))/<x(t-τ0).             (6)

Similarly to Eq. (4), Eq. (6) implies that in the case of quadratic extrema derivatives
 .            .                                                                      .                   .
x(t) and x(t-τ0) do not vanish simultaneously, i.e., if x(t)=0, then x(t-τ0) 0.

Thus, for τ0 definition one has to determine the extrema in the time series and after
that to define for different values of time τ the number N of pairs of extrema separated in
time by τ and to construct the N(τ) plot. The absolute minimum of N(τ) is observed at the
delay time τ0.

To recover the parameter τ0 and the nonlinear function f of system (2) from the
chaotic time series let us rewrite Eq. (2) as

Fig. 2. Number N of pairs of extrema in a realization of Eq. (2) separated in time by  τ, as a function of τ.
N(τ) is normalized to the total number of extrema in time series. (�a) ε0=0. N(τ) has a sharp maximum at
the level of the delay time of the system. (�b) ε0>0. N(τ) has a pronounced minimum at the level of the
delay time of the system. The location of maximum is determined by the parameter   ε0
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                                          .
ε0x(t) + x(t) = f(x(t-τ0)).                                                   (7)

Thus, it is possible to reconstruct the nonlinear function by plotting in a plane a set of
                                                        .
points with coordinates (x(t-τ0), ε0x(t)+x(t)). According to Eq. (7), the constructed set of
points reproduces the function f. Since the parameter ε0 is a priori unknown, one
                        .
needs to plot εx(t)+x(t) versus x(t-τ0) under variation of ε, searching for a single-valued
                                                            .
dependence in the plane (x(t-τ0),εx(t)+x(t)), which is possible only for ε=ε0. As a
quantitative criterion of single-valuedness in searching for ε0 we use the minimal length
of a line L(ε), connecting all points ordered with respect to x(t-τ0) in the plane
                 .
(x(t-τ0), εx(t)+x(t)). The minimum of L(ε) is observed at ε=ε0. The set of points
                                                                                        .
constructed for the defined ε0 in the plane (x(t-τ0), ε0x(t)+x(t)) reproduces the nonlinear
function, which can be approximated if necessary. In contrast to methods presented in
[11,12] which use only extremal points or points selected according to a certain rule for
the nonlinear function recovery, the proposed technique uses all points of the time series.
It allows one to estimate the parameter ε0 and to reconstruct the nonlinear function from
short time series even in the regimes of weakly developed chaos.

To test the efficiency of the proposed technique we apply it to a time series
produced by numerical integration of the passive optical resonator system of Ikeda [2]

                                         .
x(t) = -x(t) + µsin(x(t-τ0)-x0)                                         (8)

with µ=20, τ0=2, x0=π/3, ε0=1. Note that the nonlinear function in the Ikeda equation is
multimodal one. Part of the time series is shown in Fig. 3, a. The time series is sampled in
such a way that 200 points in time series cover a period of time equal to the delay time

Fig. 3.  (�a) time series of the Ikeda equation (8);  (�b) number N of pairs of extrema in the time series
separated in time by τ, as a function of τ. N(τ) is normalized to the total number of extrema in the time
series. Nmin(τ)=N(2.00); (�c) - length L of a line connecting points ordered with respect to x(t-τ0) in the
plane (x(t-τ0), ε0x(t)+x(t)) as a function of ε. L(ε) is normalized to the number of points.
Lmin(ε)=L(1.00); (�d) - the recovered nonlinear function
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τ0=2. The data set consists of 25000 points and exhibits about 1000 extrema. Figure 3, b
illustrates the τ-dependence of the number N of pairs of extrema separated in time by τ.
                                   .
The time derivatives x(t) are estimated from the time series by applying a local parabolic
approximation. The step of τ variation in Fig. 3, a is equal to the integration step h=0.01.
The absolute minimum of N(τ) takes place exactly at τ=τ0=2.00. To construct the L(ε)
plot (Fig. 3, c) the step of ε variation was also set by 0.01. The minimum of L(ε) takes
place accurately at ε=ε0=1.00. In Fig. 3, d the nonlinear function is shown. This recovered
function coincides practically with the true function of Eq. (8).

To investigate the robustness of the method to additional noise we analyze the data
produced by adding to the time series of Eq. (8) zero-mean Gaussian white noise. The
presence of noise in time series brings into existence spurious extrema. These extrema are
not caused by the intrinsic dynamics of a system and temporal distances between them
are random. With the extrema number increasing, a probability to find a pair of extrema
in time series separated in time by τ has to increase in general. The extrema number
increasing induced by noise is also followed by the increase of probability to find a pair
of extrema separated by the interval τ0. However, for moderate noise levels this
probability is still less than the probability to find a pair of extrema separated in time by
τ τ0. Since the absolute minimum of N(τ) is very well pronounced in the absence of
noise, it can be clearly distinguished even in the noise presence if the noise level is not
very high. Hence, the qualitative features of the N(τ) plot specified by the delay-induced
dynamics are retained for a moderate noise level. The presence of noise is more critical
for the parameter ε0 estimation and the nonlinear function recovery.

Figure 4 illustrates the results of the Ikeda equation reconstruction from the time
series corrupted with zero-mean Gaussian white noise with a standard deviation of 20%
of the standard deviation of the data without noise. The location of the absolute minimum
of N(τ) (Fig. 4, a) allows one to estimate the delay time accurately, τ0′=2.00. The
minimum of L(ε) (Fig. 4, b) takes place at ε0′=0.98. The nonlinear function recovered
using the estimated τ0′ and ε0′ is shown in Fig. 4, c. In spite of sufficiently high noise level
and inaccuracy of ε0 estimation the recovery of the nonlinear function has a good quality
which is significantly higher than that reported in [21] for the same parameter values of
the Ikeda equation with noise.

In the second case, when the observed dynamical variable is x(t-τ0) measured at
the point 2 (Fig. 1), one can use the described above procedure for estimation of the
system parameters since the observable is simply shifted in time by the delay time τ0. For
the third possible case, when the observed variable is f(x(t-τ0)) which is measured at the
point 3 (Fig. 1), one needs another technique for reconstruction of the time-delay system.

As well as in the time series of x(t), there are also practically no extrema separated
in time by τ0 in the time series of the system (2) variable f(x(t-τ0)), since, df(x(t-τ0))/dt=

Fig. 4. Reconstruction of the Ikeda equation from its time series  x(t) with additive Gaussian white noise
for noise level of 20%. (a) The N(τ) plot. Nmin(τ)=N(2.00). (b) The L(ε) plot. Lmin(ε)=L(0.98). (c) The
recovered nonlinear function
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   .
=x(t-τ0)df(x(t-τ0))/dx. Then, the delay time τ0 can be estimated by the location of the
absolute minimum in the N(τ) plot constructed from the variable f(x(t-τ0)).

To recover the parameter ε0 and the function f we filter the chaotic signal f(x(t-τ0))
with a first-order low-pass filter and plot f(x(t-τ0)) versus u(t-τ0), where u(t-τ0) is the
signal at the filter output, shifted by the time τ0 defined earlier. If the filter inertial
properties are characterized by the parameter ε=ε0, then u(t-τ0)=x(t-τ0) and the set of
points constructed in the plane (x(t-τ0)),f(x(t-τ0))) reproduces the nonlinear function f.
Since the parameter ε0 is a priori unknown, one needs to plot f(x(t-τ0)) versus u(t-τ0),
under variation of the filter parameter ε, searching for a single-valued dependence in the
plane (u(t-τ0),f(x(t-τ0))), which is possible only for ε=ε0. As a quantitative criterion of
single-valuedness in searching for ε0 we use the minimal length of a line L(ε), connecting
all points ordered with respect to u(t-τ0) in the plane (u(t-τ0),f(x(t-τ0))). The minimum of
L(ε) is observed at ε=ε0. The set of points constructed for the defined ε0 in the plane
(u(t-τ0),f(x(t-τ0))) reproduces the nonlinear function, which can be approximated if
necessary.

We apply the method to a time series of the variable f(x(t-τ0)) of the Mackey-
Glass equation [4]

                                   .
x(t) = -bx(t) + ax(t-τ0)/(1+xc(t-τ0)),                                     (9)

which can be converted to Eq. (2) with ε0=1/b and the function

f(x(t-τ0)) = ax(t-τ0)/(b(1+xc(t-τ0))).                                  (10)

The parameters of the system (10) are chosen to be a=0.2, b=0.1, c=10, τ0=300 to
produce a dynamics on a high-dimensional chaotic attractor. The sampling time is set by 1.

Figure 5 illustrates the reconstruction of the Mackey-Glass system parameters.
Figure 5, a shows the number N of pairs of extrema in the time series of f(x(t-τ0)),
separated in time by τ. The step of τ variation in Fig. 5, a is equal to the integration step
h=1. The location of the absolute minimum of N(τ) allows us to estimate the delay time,
τ0′=300. To construct the L(ε) plot (Fig. 5, b) we use the step of ε variation equal to 0.1.
The minimum of L(ε) takes place at ε0′=10.0 (ε0=1/b=10). The nonlinear function
recovered using the estimated τ0′ and ε0′ is shown in Fig. 5, c. This recovered function
coincides practically with the true function (10).

Reconstruction of nonscalar time-delay systems

The method of τ0 definition from time series described above for scalar time-delay
systems can be extended to high-dimensional time-delay systems having the following
for

Fig. 5. Reconstruction of the Mackey-Glass system from the variable  f(x(t-τ0)). (a) The N(τ) plot.
Nmin(τ)=N(300). (b) The L(ε) plot. Lmin(ε)=L(10.0). (c) The recovered nonlinear function
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                                                                     .
x(n)(t) + εn-1x

(n-1)(t) + …+ ε1x(t) = F(x(t),x(t-τ0)),                        (11)

Differentiation of Eq. (11) with respect to t gives
                                                                                ..

x(n+1)(t) + εn-1x
(n)(t) + … + ε1x(t) =

(12)
                            .                                           .

= x(t)<F(x(t),x(t-τ0))/<x(t) + x(t-τ0)<F(x(t),x(t-τ0))/<x(t-τ0).
              .                     .

The condition x(t-τ0) 0 for x(t)=0 will be satisfied if the left-hand side of Eq. (12) does
not vanish. In general, a probability to obtain zero in the left-hand side of Eq. (12) is very
small and therefore, the N(τ) plot qualitatively must have a shape similar to that inherent
in the case of first-order delay-differential equations like (2) and (5).

The proposed method of estimation of the parameter ε0 and the nonlinear function
can be also applied to a variety of time-delay systems of order higher than that of (2). For
instance, if the dynamics of a time-delay system is governed by the second-order delay-
differential equation

                                         ..            .
ε2x(t) + ε1x(t) = -x(t) + f(x(t-τ0)),                                   (13)

the nonlinear function can be reconstructed by plotting in a plane a set of points with
                                      ..          .
coordinates (x(t-τ0), ε2x(t)+ε1x(t)+x(t)). The constructed set of points reproduces the
function f. Since the parameters ε1 and ε2 are a priori unknown, one needs to plot
^ ......   ^    .. .                                                                  ^             ^ε2x(t)+ε1x(t)+x(t) versus x(t-τ0) under variation of ε1 and ε2, searching for a single-valued
                                                         ^  ..      ^  .     ^dependence in the plane (x(t-τ0), ε2x(t)+ε1x(t)+x(t)), which is possible only for ε1=ε1,
^ε2=ε2. As a quantitative criterion of single-valuedness in searching for ε1 and ε2 we use
                                                   ^   ^the minimal length of a line L(ε1,ε2) connecting all points ordered with respect to x(t-τ0)
                                                           ^  ^                                               ^              ^in this plane. The minimum of L(ε1,ε2) is observed at ε1=ε1, ε2=ε2. The set of points
                                                                                                   ..         .
constructed for the defined ε1 and ε2 in the plane (x(t-τ0), ε2x(t)+ε1x(t)+x(t)) reproduces
the nonlinear function. However, the quality of reconstruction deteriorates, since the
procedure involves numerical calculation of the second derivative.

Recovery of the delay times for time-delay systems
with two coexisting delays

Let us consider now a time-delay system with two different delay times τ1 and τ2
                                         .

x(t) = F(x(t),x(t-τ1),x(t-τ2)).                                         (14)

Time differentiation of Eq. (14) gives
              ..         .                       .                               .

x(t) = x(t)<F/<x(t) + x(t-τ1)<F/<x(t-τ1) + x(t-τ2)<F/<x(t-τ2).                 (15)

Similarly to temporal realization of Eq. (5), the realization x(t) of Eq. (15) has
                                                                  .                  ..
mainly quadratic extrema and therefore x(t)=0 and x(t) 0 at the extremal points. Hence,
    .
if x(t)=0, the condition must be fulfilled,

                                            .               .
ax(t-τ1) + bx(t-τ2)   0                                                  (16)

                                                                                           .                 .
where a=<F(x(t),x(t-τ1),x(t-τ2))/<x(t-τ1) and b=<F(x(t),x(t-τ1),x(t-τ2))/<x(t-τ2). The
condition (16) can be satisfied if x(t-τ1) 0 or/and x(t-τ2) 0. By this is meant that in the
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         .                                                                  .
case of quadratic extrema derivatives x(t)
        .                .             .
and x(t-τ1), or x(t) and x(t-τ2) do not
vanish simultaneously. As the result, the
number of extrema separated in time by τ1
and τ2 from a quadratic extremum must be
appreciably less than the number of
extrema separated in time by other values
of τ and hence the N(τ) plot will
demonstrate minima at τ=τ1 and τ=τ2. But
these minima are not so pronounced as in
the case of a single delay time, since only
one of the terms of Eq. (16) is necessary
not equal to zero.

As an example, we demonstrate the method efficiency with a generalization of the
Mackey-Glass equation by introducing a further delay,

              .
x(t) = -bx(t) + 1/2 ax(t-τ1)/(1+xc(t-τ1)) + 1/2ax(t-τ2)/(1+xc(t-τ2))           (17)

with a=0.2, b=0.1, c=10, τ1=70, and τ2=300. The N(τ) plot is presented in Fig. 6. The
most pronounced minima of N(τ) are observed at τ=70 and τ=299 providing a good
estimation of both the delay times τ1 and τ2.

Conclusion

We have proposed the methods for reconstructing different time-delay systems
from time series. These methods are based on the statistical analysis of time intervals
between extrema in the time series and the projection of the infinite-dimensional phase
space of a time-delay system to suitably chosen low-dimensional subspaces. The methods
allow one to estimate the delay time, the parameter characterizing the inertial properties
of the system, and the nonlinear function even in the presence of sufficiently high noise.
The method of the delay time definition uses only operations of comparing and adding. It
needs neither ordering of data, nor calculation of approximation error or certain measure
of complexity of the trajectory and therefore it does not need significant time of
computation. The proposed techniques of the nonlinear function recovery and estimation
of the parameter characterizing the system inertial properties use all points of the time
series what allows one to apply the method to short time series even in the regimes of
weakly developed chaos.
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ê‡·ÓÚ‡ ÔÓÒ‚fl˘ÂÌ‡ ‡Á‚ËÚË˛ ÏÂÚÓ‰‡ ÓˆÂÌÍË Ô‡ ‡ÏÂÚ Ó‚ ÒËÒÚÂÏ Ò
Á‡Ô‡Á‰˚‚‡ÌËÂÏ ÔÓ ‚ ÂÏÂÌÌ˚Ï fl‰‡Ï. åÂÚÓ‰ ÓÒÌÓ‚‡Ì Ì‡ ÒÚ‡ÚËÒÚË˜ÂÒÍÓÏ ‡Ì‡ÎËÁÂ
‚ ÂÏÂÌÌ˚ı ËÌÚÂ ‚‡ÎÓ‚ ÏÂÊ‰Û ˝ÍÒÚ ÂÏÛÏ‡ÏË ‚ ÂÏÂÌÌÓ„Ó fl‰‡ Ë Ô ÓÂˆË Ó‚‡ÌËË
·ÂÒÍÓÌÂ˜ÌÓÏÂ ÌÓ„Ó Ù‡ÁÓ‚Ó„Ó Ô ÓÒÚ ‡ÌÒÚ‚‡ ÒËÒÚÂÏ˚ Ò Á‡Ô‡Á‰˚‚‡ÌËÂÏ ‚
ÒÓÓÚ‚ÂÚÒÚ‚Û˛˘ËÏ Ó· ‡ÁÓÏ ‚˚· ‡ÌÌ˚Â ÔÓ‰Ô ÓÒÚ ‡ÌÒÚ‚‡ Ï‡ÎÓÈ ‡ÁÏÂ ÌÓÒÚË.
ê‡·ÓÚÓÒÔÓÒÓ·ÌÓÒÚ¸ ÏÂÚÓ‰‡ Ô Ó‰ÂÏÓÌÒÚ Ë Ó‚‡Ì‡ Ô Ë ÂÍÓÌÒÚ ÛÍˆËË ‡ÁÎË˜Ì˚ı
‰ËÙÙÂ ÂÌˆË‡Î¸Ì˚ı Û ‡‚ÌÂÌËÈ Ò Á‡Ô‡Á‰˚‚‡ÌËÂÏ ÔÓ Ëı ı‡ÓÚË˜ÂÒÍËÏ Â¯ÂÌËflÏ.



66

Seleznev Yevgeny Petrovich was born in Saratov (1960) and graduated
from Saratov State University (1982). He defended a dissertation for the degree of
Ph.D. on Physics and Mathematics (1990). Now, he is a senior researcher in
Saratov Department of the Institute for RadioEngineering and Electronics of
Russian Academy of Sciences and associated professor in Department of Nonlinear
Processes of Saratov State University. Fields of scientific activity: experimental and
numerical investigation of nonlinear dynamical systems. He is an author  of about
90 publications.

Dikanev Taras Viktorovich was born in Saratov (1979). He graduated from
Department of Nonlinear Processes, Saratov State University (2002). Now, he is a
graduate student of Saratov State University. He was selected as Soros Student in
1997-2001 and received several Russian awards for young scientists. He was a
research fellow in projects supported by RFFI and CRDF. Fields of scientific
activity: nonstationary time series analysis, dynamical modelling from time series.
He is an author  of 20 publications.


