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Estimation of interaction strength and direction from short and noisy time series
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A technique for determination of character and intensity of interaction between the elements of complex
systems based on reconstruction of model equations for phase dynamics is extended to the case of short and
noisy time series. Corrections, which eliminate systematic errors of the estimates, and expressions for confi-
dence intervals are derived. Analytic results are presented for a particular case of linear uncoupled systems, and
their validity for a much wider range of situations is demonstrated with numerical examples. The technique
should be useful for the analysis of nonstationary processes in real time, including the situations of significant
noise and restrictions on the observation time.
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I. INTRODUCTION

One of the very important problems, which arises wh
complex multielement systems~in particular, biological
ones! are investigated, is that of determining the prese
and direction of interaction~coupling! between two sub-
systems from an experimental time series of their oscillati
@1–14#. Such information allows better understanding
mechanisms of a complex system behavior. Thus, a g
deal of attention is paid nowadays to the investigation
interaction between human cardiovascular and respira
systems@7,11,15–20#. The problem of coupling characteriza
tion is also of applied importance for the purposes of med
diagnostics, e.g., for localization of epileptic focus based
the analysis of electroencephalogram and magnetoence
logram recordings@12,21–28#. Nonstationarity of investi-
gated processes, impossibility to collect sufficient amoun
data, and necessity of analysis in real time require estima
of coupling characteristics under the condition of a short
servation interval. The task is complicated by the presenc
noise, especially if coupling is weak. Here, we develop
approach for estimation of weak coupling with a given d
gree of belief from short1 segments of noisy time series.

A very nice and delicate idea for the detection of we
coupling was proposed by Rosenblum and Pikovsky@10,11#.
Their technique is based on empirical construction of mo
maps, describingphase dynamicsof the two subsystems, an
is called an evolution map approach~EMA!. Having an
original time series$x1,2(t i)% i 51

Nx , where x1 ,x2 are observ-
ables,t i5 iDt, i 51, . . . ,Nx , Dt is a sampling interval, one

1In practice one must often deal with time series segments
about 1000 data points that appear too short for many ana
techniques. E.g., electroencephalograms are recorded at a ty
sampling rate of 250 Hz. The duration of quasistationary segm
is about 4 s@29#, which corresponds to 1000 data points of reco
ing. Roughly speaking, in this paper we deal with time ser
lengths of about 1000 data points. The notions of ‘‘short’’ a
‘‘long’’ time series in the context of coupling characterization a
formulated more accurately in Sec. III C.

*Corresponding author. Email address: smirnovda@info.sgu.
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calculates time realizations of phases$f1,2(t i)% i 51
Nf and con-

structs a global model map, which characterizes the dep
dence of phase increments~over a time intervaltDt) on the
phases of subsystems’ oscillations, in the form

D1,2~ t ![f1,2~ t1tDt !2f1,2~ t !5F1,2„f1,2~ t !,f2,1~ t !,a1,2…,

~1!

wheret is a positive integer,F1,2 are trigonometric polyno-
mials, anda1,2 are vectors of their coefficients. Using th
estimates of coefficientsâ1,2, obtained from the time serie
via the least-squares routine~LSR!, one computes intensitie
of influence of the second subsystem on the first one
→1) ĉ1 and of the first subsystem on the second one

→2) ĉ2 and directionality indexd̂5( ĉ22 ĉ1)/( ĉ21 ĉ1).

Since ĉ1,2>0, d̂ takes the values within the interva

@21,1# only: d̂51 or d̂521 corresponds to unidirectiona

coupling 1→2 or 2→1, respectively, andd̂50 for ideally
symmetric coupling.

Numerical experiment showed@10# that a very large
amount of data~typically about 104–105 data points! is nec-
essary for correct and reliable determination of coupl
character if noise is considerable. As shown in Secs. II A a
II B of the present paper, this is because the estimatorsĉ1,2

and d̂ are biased~systematic errors take place general!

while both bias and variance ofĉ1,2 and d̂ decrease with
increase in time series length. In Sec. II C, we modify t
EMA for correct estimation of coupling from short time s

ries; namely, we do not use characteristicsĉ1,2 andd̂ directly,

but proposeunbiasedestimatesĝ1,2 and d̂ of different quan-
tities, which are more suitable in the situation consider
Besides, working equations for the confidence intervals
derived~Secs. II C and II D!. The suggestedinterval statis-
tical estimatesallow the inference about statistical signifi
cance of the obtained results. The shorter the accessible
series and the higher the noise level, the more necessary
become. Results of Sec. II are derivedanalytically for a par-
ticular case of linear uncoupled processes. In Sec. III th
validity is demonstratednumerically for more complex and
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realistic situations. Conclusions are presented in Sec.
Analytic derivations are shown in the appendices.

II. DESCRIPTION OF THE APPROACH TO
DETERMINATION OF COUPLING CHARACTER FROM

SHORT TIME SERIES

A. Problem setting

For convenience of explanation and notations, let us
low the ideas of Rosenblum and Pikovsky@10,11# to formu-
late the problem. In Refs.@10,11# the authors consider mode
~1! and determine coupling characteristics from its coe
cients. It is implicitly assumed that if the time series is ge
erated by a mathematical equation, then the model appr
mates that equation very accurately. This is a plaus
hypothesis when a long time series is considered. Here
focus on short time series~where statistics may be quit
poor!, hence, we must take model imperfection into acco
and clearly distinguish between notations for the origi
mathematical system generating a series and a model
structed from that time series. This is necessary to add
the question, to what extent coupling characteristics co
puted from the model coefficients are close to the co
sponding characteristics of the original system. As a rule,
supply quantities belonging to the original system with
superscript ‘‘0.’’

Following the logic of Ref.@10#, let us consider suffi-
ciently simple and, simultaneously, universal stochastic
ferential equations, which reflect adequately the propertie
a wide range of oscillatory processes~provided that each o
the interacting subsystems exhibits pronounced main rhy
of oscillations@6,9,10#!, as an original system:

ḟ1,2~ t !5v1,21 f 1,2„f1,2~ t !,f2,1~ t !…1j1,2~ t !, ~2!

where f1,2(t) are unwrappedphases of subsystem oscilla
tions, v1,2 are parameters controlling angular frequenci
f 1,2 are 2p periodic in both argument functions,j1,2 are ran-
dom processes normally distributed with zero mean and
relation function E@j1,2(t)j1,2(t8)#5D1,2d(t2t8) (E@•#
stands for mathematical expectation!, j1(t) andj2(t) do not
depend on each other and onf1(t) andf2(t). Since we aim
at dealing with discrete time series, it is more relevant
speak of difference equations instead of differential on
System~2! can be transformed to such a form if one pr
ceeds from the derivativesḟ1,2 to finite differenceD1,2 over
a time intervaltDt and derives

D1,2~ t !5F1,2
0
„f1,2~ t !,f2,1~ t !…1«1,2~ t !, ~3!

where F1,2
0 (f1 ,f2)[E@D1,2(t)uf1,2(t),f2,1(t)# are

2p-periodic functions,E@•u•# stands for conditional expec
tation, «1,2 are random processes with zero mean. The fo
of F1,2

0 and characteristics of«1,2 are determined by the form
of f 1,2, the value oftDt, and characteristics ofj1,2.
04620
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Let functionsF1,2
0 be approximated accurately with low

order trigonometric polynomials as in Ref.@10#. That is,2

F1
0~f1 ,f2!5(

i 51

L1
0

a1,i
0 gi~f1 ,f2!, ~4!

where g151, gi5cos(mif11nif2) for even i .1, gi

5sin(mif11nif2) for odd i .1, and L1
0 is the number of

terms of the polynomialF1
0. For i>1, m2i5m2i 11 are non-

negative integers,n2i5n2i 11 are arbitrary integers, andm1
51, n150 by definition.

The intensity of influence of the second subsystem on
first one,c1

0 , is determined by the steepness of the dep
dence ofF1

0 on the phase of the second subsystem,f2, i.e.,
]F1

0/]f2. Similarly, c2
0 is determined by]F2

0/]f1. More
strictly, (c1

0)25(1/2p2)*0
2p*0

2p(]F1
0/]f2)2df1 df2 by

definition.3 By inserting function~4! into this expression and
taking the definite integral, one derives

c1
05A(

i 51

L1
0

ni
2~a1,i

0 !2. ~5!

Then, the directionality index isd05(c2
02c1

0)/(c2
01c1

0).
Thus, the expressions for coupling characteristicsc1,2

0 ,d0 in
terms of the coefficientsa1,2

0 of the original equations~3! are
derived.

Since in this context one deals with a short discr
sample and the valuesa1,i

0 are unknowna priori, it is impos-
sible to use directly expression~5! in practice for character-
ization of coupling. So, let us formulate the problem as f
lows: it is necessary to get the estimates of coupl
characteristics~e.g., ofc1,2

0 ,d0) from a single realizationof
the random process~2!.

B. Properties of Rosenblum’s and Pikovsky’s estimators

Construction of model maps~1! can be regarded as th
first step to obtaining the estimates needed. Let ‘‘mod
polynomialsF1,2 be of sufficiently high order to involve al
the terms present in the original polynomialsF1,2

0 . According
to Ref. @10#, the estimates ofa1,i

0 are obtained via LSR~LS
estimates!, i.e., from the requirement

(
i 51

N

@D1~ t i !2F1„f1~ t i !,f2~ t i !,a1…#
2→min, ~6!

whereN5Nf2t. Let us denote the solution to this proble
as â1. Then, the estimator ofc1

0 is given by

ĉ15A(
i 51

L1

ni
2â1,i

2 , ~7!

2Here and throughout the paper, we present formulas only for
first subsystem; all the expressions are ‘‘symmetric’’ for the seco
one.

3We introduce the normalizing multiplier 1/2p2 for convenience.
9-2
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FIG. 1. Histograms for the estimates of coupling, constructed as a result of processing of 1000 time realizations of Eqs.~8! with Dt
50.2p, t510, v15v251 (p is the relative frequency of falling into a bin, bin width is equal to 0.02 for the top figures and to 0.02

the bottom figures!. For identical subsystems withD15D250.4, ~a! ĉ1 ~a biased estimator!, ~b! d̂, ~e! ĝ1,2, and~f! d̂ ~unbiased estimators!.

For subsystems with different noise levelsD150.4, D250.1, ~c! ĉ1 andĉ2 ~exhibit different biases!, ~d! d̂ ~exhibits negative bias!, ~g! ĝ1,2,

and ~h! d̂ ~unbiased estimators!.
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and the estimator of the directionality index isd̂5( ĉ2

2 ĉ1)/( ĉ21 ĉ1). As it is known from the theory of statistica
estimation@30#, under some conditions LS estimatesâ1,i are
consistent. It means that for a very large amount of d
(N→`) they are unbiased and have practically no scat
ing; in other words,â1,i are almost precisely equal toa1,i

0 . As

a result,ĉ1,2 and d̂ are equal to the true valuesc1,2
0 , d0 as

well, which allows correct inference about couplin
character.4 However, if the time series is short~and whether
it can be regarded as a long one is not knowna priori!, the
following important questions arise.

~1! What is the distribution of the estimatesĉ1,2 and d̂?
Are they biased or not?

~2! How can statistical significance of the results be e
mated? Or, can one draw a reliable conclusion about c
pling presence and direction having computed the numb
ĉ1,2 and d̂?

To illustrate the importance of these questions, let us c
sider a simpledemonstrative examplewhen two subsystem
are uncoupled and linear, that is, system~2! with f 1,2[0. By
integrating Eqs.~2! analytically over the intervaltDt, one
derives the equations in terms of finite differences

D1,2~ t !5v1,2tDt1«1,2~ t !, ~8!

where «1,2 are Gaussian random processes independen
each other with variancesD1,2tDt. Obviously, one hasc1

0

5c2
05d050 in this case. The estimatesĉ1,2 andd̂ computed

from a time series, consisting of 103 data points and being
simulated numerically~see Sec. III A for details!, are mis-
leading. Their distributions are shown in Figs. 1~a–d!. Thus,
in the case of identical subsystems (D15D2 andv15v2) ĉ1
is always positive and takes sufficiently large values@Fig.

4One additional requirement for obtaining reliable results is t
the subsystems should not be in a synchronous regime in orde
their phases might serve as independent variables@10#.
04620
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1~a!#, i.e., it is a biased estimator forc1
050. d̂ is unbiased,

but exhibits quite a large scattering; even the values ofd̂5
60.4 are encountered quite often@Fig. 1~b!#. Thus, it is very
probable to get spurious indication of the presence of in
action from a single realization. The situation becomes e
more complicated when subsystems are nonidentical. I
illustrated in Figs. 1~c,d! for the caseD1.D2 , v15v2. The
estimatorsĉ1,2 are biased, bias inĉ1 being greater@Fig. 1~c!#.

This leads to biasedness ofd̂ whose values aresystematically
less than zero@Fig. 1~d!#. Hence, predominant influenc
2→1 is diagnosed, even though coupling is absent in rea
Different biases inĉ1 and ĉ2 and indication of coupling di-
rection 2→1 are observed also in the case of uncoup
subsystems with different angular frequencies:D15D2 , v1
.v2, andt.1. Distributions, qualitatively the same as
Figs. 1~c,d!, are obtained, e.g., forD15D250.4, v151.5,
v250.5, t510. Let us consider the cause of the systema

errors and other properties ofĉ1,2 and d̂ in more detail.
Since ĉ1,2 are functions ofâ1,2 ~7!, their probabilistic

properties can be deduced from the properties ofâ1,2, the
latter being determined by the properties of the noise«1,2.
Let the estimatesâ1,2 be unbiased~Appendix A!. Then, for
each estimateâ1,i in accordance with the property of var
ance it holdsE@ â1,i

2 #5(E@ â1,i #)
21s â1,i

2
5(a1,i

0 )21s â1,i

2 . That

is, â1,i
2 is a biased estimator for (a1,i

0 )2 and its bias equals its
variances â1,i

2 . It follows from this and Eq.~7! that

E@ ĉ1
2#5(

i 51

L1

ni
2E@ â1,i

2 #5~c1
0!21(

i 51

L1

ni
2s â1,i

2 , ~9!

i.e., ĉ1
2 is a biased estimator for (c1

0)2 despiteâ1,i being un-

biased. Bias inĉ1
2 equals( i 51

L1 ni
2s â1,i

2 . The greater the vari-

ance of«1 and the shorter the time series, the greater
variancess â

2
~Appendix A! and, hence, the greater the bi

t
hat
1,i

9-3
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in ĉ1
2. Therefore,ĉ1

2 systematically exceeds (c1
0)2. The same

holds for ĉ1 being considered as an estimator forc1
0. This

explains the results shown in Fig. 1~a!.5

Sinces â1,i

2 rises withD1 ands â2,i

2 with D2, bias in ĉ1 is

greater than bias inĉ2 for D1.D2 and other equal condi
tions. This explains the results of Figs. 1~c,d!. Similarly, s â1,i

2

rises significantly withv1 and s â2,i

2 with v2 for t.1 ~Ap-

pendix A!, which accounts for different biases inĉ1 and ĉ2
for uncoupled systems with different angular frequencies

C. Unbiased estimators and confidence intervals

To derive expressions for the estimators suitable
analysis of short time series, we useĉ1,2

2 as a basis, but re
move their biases and estimate confidence intervals
(c1,2

0 )2. The latter task appears much more difficult here th
the removal of biases. From Eq.~9! one can see that a
unbiased estimator of (c1

0)2 is

ĝ15 ĉ1
22(

i 51

L1

ni
2ŝ â1,i

2 , ~10!

where ŝ â1,i

2 are unbiased estimates of variancess â1,i

2 . Deri-

vation of ŝ â1,i

2 is not trivial. Since analytic expressions fo

ŝ â1,i

2 cannot be derived in general, we confine ourselves

particular, but sufficiently realistic, case and derive the
pressions using simplifying assumptions about the prope
of the random processes«1,2(t). They are assumed to b
Gaussian and statistically independent of each other an
f1,2(t) @see conditions~C1!–~C4! and other details in Ap-
pendix A#. The derived estimatesŝ â1,i

2 depend ont, â1,1,

â2,1 in quite a complicated manner.
Quantitiesĝ1,2 are the estimators for (c1,2

0 )2. They allow
inference about the presence of influence of one system
another. We do not deal with estimation ofc1,2

0 since it en-

5Note that in Fig. 1~a!, the probability density function~pdf! of the

estimatorĉ1 is equal to 0 near the true valuec1
050 despite esti-

matesâ1,i being often equal to their true valuesa1,i
0 50. This is

explained as follows. In the considered example~see the structure
of the model trigonometric polynomial in Sec. III A! there are ten

estimatesâ1,i that contribute to the value ofĉ1, i.e., withniÞ0, see
Eq. ~7!. These ten estimates are independent random quant

Then,ĉ1 is equal to zero only when all these ten estimates are e
to zerosimultaneously, which is very unlikely. In fact, as one ca

suggest from expression~7!, the shape of the pdf ofĉ1
2 is very

similar to x2 distribution with several degrees of freedom, in o

example with ten degrees of freedom. Then,ĉ1 is distributed simi-
larly to x distribution with ten degrees of freedom, that is, its pdf

approximatelyp(x)}x9e2x22s21,i

2
for x.0. Hence, the probability

that the value ofĉ1 would be close to the true valuec1
050 is,

indeed, negligibly small.
04620
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counters greater theoretical difficulties: one cannot derive
timates with known distribution law for a sufficiently gener
case, therefore, derivation of unbiased estimators is poss
only under additional strong assumptions. Due to similar r
sons in order to characterize coupling direction, we prop
just the use of a quantityd05(c2

0)22(c1
0)2, rather than a

normalized quantityd0. An unbiased estimator ford0 is d̂
[ĝ22ĝ1.

Now, let us estimate the significance of the numbersĝ1,2

and d̂ obtained from a single realization. The variance ofĝ1
for the considered time series lengthsN;103 is equal6 ap-
proximately to the variance ofĉ1

2, which is expressed in

terms of covariations ofâ1,i :

sĝ1

2
's ĉ

1
2

2
5(

i 51

L1

(
j 51

L1

ni
2nj

2cov~ â1,i
2 ,â1,j

2 !. ~11!

Since true values of covariations are unknown, they sho
be estimated from a time series as well. The difficulty
obtaining a ‘‘good’’ estimateŝ ĝ1

2 for sĝ1

2 consists in the fol-

lowing. In order to avoid false conclusions about the pr
ence of coupling, it is not allowable to obtain understat
estimates ofsĝ1

2 . In order to detect the presence of we

interaction, it is not allowable to obtain overstated~‘‘pessi-
mistic’’ ! estimates ofsĝ1

2 . Having overcome some technica

difficulties, we derive the following semiempirical formula

ŝ ĝ1

2
55 (

i 51

L1

ni
4ŝ â

1,i
2

2
, ĝ1>5S (

i 51

L1

ni
4ŝ â

1,i
2

2 D
1

2 (
i 51

L1

ni
4ŝ â

1,i
2

2
, otherwise,

~12!

whereŝ â
1,i
2

2
are expressed via the estimatesâ1,i and ŝ â1,i

2 de-

rived earlier~see Appendix B for details!.
The estimatorĝ1 has asymmetric~right skewed! distribu-

tion for low-order trigonometric polynomials typically use
~Sec. III A!. Therefore, we take ‘‘asymmetric’’ expressio

@ ĝ12aŝĝ1
,ĝ11bŝĝ1

# as an estimate of the confidence i

terval for (c1
0)2. We choose the values of constantsa andb

empirically to provide necessary significance level; e.g.
95% confidence interval is achieved ifa51.6, b51.8 ~Ap-
pendix B!. The conclusion about the presence of influen
2→1 can be drawn with error probability of 2.5% provide

ĝ12aŝĝ1
.0. ~13!

s.

al

6As numerical experiments show, the variance ofĝ1 is greater

than the variance ofĉ1
2 by approximately 4%. This difference can b

neglected within the limits of precision of our deduction that
determined by slight violation of the condition~C1! ~Appendix A!.
9-4



a

e-
e

e

a
ec
lity
e

s
e-
se

a

n

s.

e
o

-
e
n-

tors
.e.,

all

e

i-

in-
in

ob-
f the

bil-
of

is

c-
of
b-
eri-

tep
ion

n
m
ry

000

.
ms,
t the
ing

m

re

e
co

ESTIMATION OF INTERACTION STRENGTH AND . . . PHYSICAL REVIEW E68, 046209 ~2003!
The degree of belief can be adjusted by changinga ~and,
hence, confidence interval width!.

Conclusion about predominant direction of interaction c
be drawn after estimation of the variance ofd̂. Its reasonable
estimator isŝ d̂

2
5ŝ ĝ1

2
1ŝ ĝ2

2 . Since distribution law ford̂ is,

as a rule, more or less symmetric, confidence interval ford0

is reasonable to be searched for in a ‘‘symmetric’’ formd̂
6aŝd̂ . Our experiments show thata51.6 again provides
'95% confidence interval. More accurately, ifa51.6, then
the obtained values

ĝ22aŝĝ2
.0 and d̂2aŝd̂.0 ~14!

allow the statement about predominant influence 1→2 with
the error probability of 2.5%. Vice versa, if

ĝ12aŝĝ1
.0 and d̂1aŝd̂,0, ~15!

the conclusion that the influence 2→1 is stronger can be
drawn with the same probability of error. If none of the r
lations~14! and~15! holds, coupling directionality cannot b
determined with a given reliability.

Let us consider results of application of the proposed
timatorsĝ1,2 and d̂ to example~8! ~Sec. II B!. The absence
of systematic errors forĝ1,2 andd̂ is illustrated in Figs. 1~e–
h!. Figure 2 demonstrates usefulness of the interval estim
d̂6aŝd̂ to ensure reliable conclusions about coupling dir
tion. In accordance with the expected 2.5% error probabi
relative frequency of false conclusions about the presenc
influence 2→1 based on Eq.~13! was equal to 0.023~i.e.,
false conclusions were drawn for 23 simulated time serie
1000 ones!. Approximately the same was true for the fr
quency of false conclusions about coupling direction ba
on Eqs.~14! and ~15!.

D. Conditions for applicability of suggested estimators

The expressions for the estimators derived above are v
under the conditions~C1!–~C4! ~Appendix A!, which corre-
sponds tof 1,2[0. However, they are also applicable whenf 1
and f 2 are nonzero, but ‘‘small.’’ Let us make the notio

FIG. 2. Estimates of coupling for example~8!: the results ob-
tained from the first 25 of 1000 time realizations for the subsyste

with different noise levelsD150.4, D250.1. ~a! d̂ takes predomi-

nantly negative values, often large in absolute value.~b! d̂ ~circles!
takes negative as well as positive values. For each single time
ization the estimated confidence intervals~shown as error bars!, as
a rule, include zero; the experiment number 20 is the most clos
spurious conclusion about the presence of coupling that would
respond to the expected 2.5 % of false conclusions.
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‘‘small’’ more exact using the following rough argument
Let, for simplicity, angular frequencies of subsystemsv1,2 be
approximately equal to each other and equal tov. Hence,
v}1/Tchar , whereTchar is a characteristic time scale. Th
value of tDt optimal for coupling characterization is als
equal toTchar @11#. ‘‘Contribution of nonlinearityf 1,2’’ to the
Eqs.~3!, * t

t1tDt f 1,2„f1,2(t8),f2,1(t8)…dt8, is, then, of the or-
der of i f 1,2i /v ~where i•i stands for an appropriately de
fined norm of a function, e.g., its root-mean-squared valu!.
This contribution should be significantly less than the ‘‘co
tribution of noisej1,2’’ to Eqs. ~3!. The latter is the standard
deviations of«1,2, which are aboutAD1,2Tchar5AD1,2/v.
Thus, the smallness off 1,2 meansi f 1,2i!AD1,2v1,2.

However, there is also another case where our estima
remain applicable. This is the case of very small noise, i
an inverse situation:i f 1,2i@AD1,2v1,2 ~provided that cou-
pling is not so strong as to cause synchronization!. The rea-
son is that the variances of all the estimators are very sm

and, therefore, estimatorsĝ1,2 andd̂ ~as well as Rosenblum’s
and Pikovsky’s estimators! are almost exactly equal to th
corresponding true values.

A much more difficult situation is encountered if contr
butions of nonlinearity and noise to Eqs.~3! are equally
strong. Another serious problem is the so-called ‘‘error-
variables’’ problem, i.e., the presence of significant errors
the observed values of phasesf1,2. This is often the case in
practice due to approximate calculation of phases from
served signals. In both cases mentioned, LS estimates o
coefficients can be biased@31#, and even more so for all the
other considered estimators. To make sure of the applica
ity of the suggested estimators under moderate violation
the assumptions~C1!–~C4! according to both the scenarios
possible in numerical experiment.

III. NUMERICAL EXAMPLES

A. Procedure of numerical investigation

Properties of the suggested estimatorsĝ1,2 and d̂ and re-
liability of conclusions about coupling presence and dire
tionality are investigated using Monte Carlo simulation
time realizations of stochastic differential equations. To o
tain the time series, original equations are integrated num
cally with the aid of the Euler technique and integration s
h50.01p. Initial phases of subsystems for each realizat
are random numbersf1(0),f2(0) distributed uniformly on
the interval@0,2p#. To simulate the influence of Gaussia
white noisej1,2, we use the generator of pseudorando
numbers realized in the subroutine DRNNOR of the libra
IMSL.

For each of the considered examples we carry out 1
experiments, i.e., simulate 1000 time realizations~1000 pairs
of scalar time series! with the lengthNf5103. The estima-
tors ĉ1,2, d̂, ĝ1,2, and d̂ are evaluated from each of them
Using the obtained sets of values, we construct histogra
compute mean and variance of each estimator, and coun
number of correct and wrong conclusions about coupl
presence and direction.
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The values of t are chosen so as to providetDt
'min(2p/v1,2p/v2) @11#. Third-order model polynomialF1
has the same form for all the examples:L1517, m251,n2
50, m452,n450, m653,n650, m850,n851, m10
50,n1052, m1250,n1253, m1451,n14521, m1651,n16
51. The same is true forF2. Such a form is sufficiently
parsimonious and flexible to describe some nontrivial n
linearities@10#.

B. Nonlinearity of original system

An object of investigation is system~2! with f 1
50.03sin(f22f1), f 250.05 sin(f12f2), v151.1, v250.9,
andD15D25D. Equations~3! cannot be derived explicitly
for this system. The assumptions~C1!–~C4! are not fulfilled
due to the presence of nonlinear functionsf 1,2.

In Fig. 3~a! the mean valueŝ ĉ1,2& and ^ĝ1,2& ~angle
brackets denote averaging over the ensemble of 1000 c
puted values! versus the noise levelAD are shown. The val-
ues of (c1

0)2 are unknown here, but ‘‘almost true’’ valuesĉ1,282

~computed from a very long time series withNf523105

and, therefore, almost equal toĝ1,28 ) are shown instead o

them. The results of the calculations show thatĉ1,2
2 exhibit

greater bias for stronger noise (ĉ1,2
2 are 20 times greater tha

ĉ1,282 at AD50.6) while ĝ1,2 are practically unbiased for an
noise level.

Relative numbers of correct~i.e., 1→2) and false~i.e.,
2→1) conclusions about coupling direction are shown
Fig. 3~b!. At large noiseAD50.6, one draws false conclu
sions in more than half of all 103 experiments with the aid o

the estimatord̂. For the same noise level, the relative numb
of false conclusions drawn with the aid ofd̂, i.e., by check-
ing whether condition~14! or ~15! is fulfilled, is equal to
0.02; the relative number of correct conclusions equ
0.024; the former number corresponds well to the expec
2.5% probability of errors. For the rest of the realization
‘‘cautious’’ conclusions that it is impossible to state som
thing definite about coupling direction are drawn. In oth
words, the time series withNf5103 is too short for reliable
determination of coupling direction at this noise level and

FIG. 3. Results of coupling estimation for system~2! with non-
linear functionsf 1,2, Dt520h50.2p, and t510 ~Sec. III B!. ~a!

Ensemble averages ofĉ1
2 and ĉ2

2 ~open and filled circles, respec

tively!, of ĝ1 and ĝ2 (3 and1, respectively!, and valuesĉ18
2 and

ĉ28
2 calculated from a long time series withN523105 ~thinner and

thicker solid lines, respectively! vs noise level.~b! Relative fre-
quencies of correct and false conclusions about coupling direc

~for 1000 simulated time realizations! based ond̂ ~open and filled

circles, respectively! and d̂ ~open and filled triangles, respectively!
vs noise level. The level ofp50.025 is shown with a solid line.
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estimatord̂ diagnoses such a situation.
As the noise level decreases, the number of false con

sions also decreases and the number of correct conclus

rises for bothd̂ and d̂. But for the intermediate noise level

AD50.1–0.3 the number of false conclusions ford̂ is still

big—about 10–30 %. Ifd̂ is used, the frequency of errone
ous conclusions isalwaysnot greater than 0.025.

At weak noise, e.g.,AD50.03, both approaches give
correct conclusion about coupling direction for every expe

ment. At that,d̂ is provided with a very narrow confidenc
interval that diagnoses high reliability of the conclusion.

It follows that at a certain noise level the time series w
Nf5103 becomes sufficiently long for reliable estimation

coupling direction. Thus, the use ofd̂ gives the relative num-
ber of correct conclusions greater than 0.95 atAD<0.06.
That is, the time series withNf5103 becomes sufficiently
long when the value ofD decreases'100 times as compare
to AD50.6. Hence, one can also conclude roughly that
the fixed noise levelAD50.6 the time series becomes suf
ciently long if Nf is increased by two orders of magnitud
also and becomesNf5105. This reasoning makes more pre
cise the terms ‘‘long’’ and ‘‘short’’ time series in the contex
of our consideration. A concrete value ofNf , separating
long and short series, depends on the noise level@and on the
difference (c2

0)22(c1
0)2 to be resolved#.

C. Errors in phases

Finally, let us consider a more complicated and close
reality situation when one observes some signalsx1,2 rather
than observing the phases directly~the latter was implicitly
assumed in all the above considerations!. Let us take two
coupled Van der Pol generators as an object:

ẍ1,25m~12x1,2
2 !ẋ1,22v1,2

2 x1,21b1,2~x2,12x1,2!1j1,2~ t !,
~16!

where m50.2, v151.02, v250.98, b150.03, b250.05,
andD15D25D. For this system even Eqs.~2! with Gauss-
ian white noise on the right-hand side can be derived only
asymptotic approximation. But the main difficulty is that th
phases should be calculated from the time series ofx1,2,
hence, they are obtained with certain errors.7 In such a case,
LSR may give essentially biased estimates for the coe
cients ai

0 @31#. Therefore, this example represents a mo
severe test for the suggested approach.

The results of the estimation are shown in Fig. 4. Simi
to the previous example of Sec. III B, large biases inĉ1,2 are

7The length of the analyzed time series isNx51200. Phases are
calculated using Hilbert transform. A hundred computed values
phases at both edges of the time series are excluded as erron
Thus, we obtain the time series of phases withNf5103. There are
'20 data points per a characteristic period of oscillations in acc
dance with the recommendations of Ref.@7#.
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observed.ĝ1,2 are again almost unbiased, though a cert
difference between̂ ĝ2& and ĉ1,282 is still observed atAD
50.54,0.57. But even this difference is very small compa
to the corresponding difference between^ĉ1,2& and ĉ1,282 . The
results concerning numbers of correct and false conclus
about coupling direction@Fig. 4~b!# are the same as in th
previous example.

Thus, the estimatesĝ1,2 andd̂ turn out to be applicable in
both cases~Secs. III B and III C! where the assumption
~C1!–~C4! are violated sufficiently strongly due to differen
reasons. The main advantages ofĝ1,2 and d̂ are as follows.

~1! In the case of very long time series~or very weak
noise! they give the same results as Rosenblum’s and P
ovsky’s estimators and are provided with narrow confide
intervals, which indicates high significance of the results

~2! In the case of short time series very wide confiden
intervals are obtained, which almost excludes false con
sions about coupling presence and directionality.

IV. CONCLUSIONS

In this paper we develop an approach for estimation
intensity and directionality of coupling between two su
systems from short and noisy time series. A crucial requ
ment is that each of the interacting subsystems should ex
pronounced main rhythm of oscillations that guarantees
possibility of correct definition of phases and description
their dynamics by an equation of type~2!. Besides, the sub
systems should not be in a synchronous regime. Under
tain additional assumptions~nonlinearity of subsystems an
coupling between them are small!, unbiasedestimators for
intensity and directionality of interactionsupplied with con-
fidence intervalsare derived. Their applicability in situation
when the assumptions are moderately violated is show
numerical experiments.

Obstacles which limit the applicability of the suggest
approach~strong violation of the mentioned assumptions! are
the following: ~1! contributions of nonlinearity and noise t
Eqs.~3! are approximately equal;~2! there are large errors in
the values of observablesx1,2 leading to large errors in the
values of their phases.

These situations require, strictly speaking, different
proaches, in particular, different techniques of estimating
efficients of model equations@31# and different expression
for the estimators for coupling characteristics. However
would be difficult to obtain such a universal recipe as t
suggested in this paper, since one would need very spe
assumptions about the properties of noise and form of n
linearity.

FIG. 4. Results of coupling estimation for system~16! with Dt
510h50.1p and t520 ~Sec. III C!. Notations and comments ar
the same as in Fig. 3.
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However, our opinion that for a wide range of real-wor
processes estimators suggested in this work are applicab
quite justified. The reported results should be especially
evant for the analysis of signals of biological origin~electro-
encephalograms, etc.! where due to nonstationarity it is im
portant to analyze short time series segments and variatio
coupling character in real time.
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APPENDIX A: VARIANCES OF COEFFICIENT
ESTIMATES

Bias in, and variance of,ĉ1
2 and variance of the suggeste

estimatorĝ1 are related to variances and covariances of
estimates of coefficientsâ1,i . Let us formulate simplifying
assumptions and derive analytic expressions for varian
and covariances ofâ1,i .

Let system~2! be the object of investigation. Estimateâ1
is obtained via the LSR. Let us rewrite statement~6! in ma-
trix form

iA•a12bi2→min, ~A1!

where A is a matrix of dimensionalityN3L1 whose ele-
ments areAi j 5gj„f1(t i),f2(t i)…, b is an N-dimensional
vector withbi5D1(t i), i • i stands for the Euclidean norm
Solution to problem~A1! reduces to the solution to the so
called normal equations@30# and is given by â1
5(ATA)21ATb. Let us assume the following.

~C1! Random matrixATA of dimensionalityL13L1 can
be regarded as constant, that is, independent of random
tors: ATA5E@ATA#5const.

~C2! Random quantities«1(t i) do not depend on phase
f1,2(t i) for any time instantt i .

~C3! Random process«1(t i), i 51,2, . . . , is asequence
of zero mean random quantities distributed identically a
normally.

~C4! Random quantities«1(t i),«2(t i) are independent o
each other.

Validity of ~C1! is determined by the number of da
pointsN. For the time series length ofN'103 considered in
this work, assumption~C1! is fulfilled within 4% error limit.
It can be easily shown that~C2!–~C4! are fulfilled precisely
if and only if f 1[ f 2[0 in Eq. ~2!. In such a case, one ca
derive analytically that in Eq.~3! F1

05v1tDt and «1(t i)
5* t i

t i 1tj1(t)dt is a random process with variances«1

2

5D1tDt @see example~8! in Sec. II B#. An expression for
the correlation function of«1 is derived by the analytic inte
gration:
9-7
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E@«1~ t i !«1~ t j !#5EF E
t i

t i 1t
j1~ t !dtE

t j

t j 1t
j1~ t8!dt8G

5E
t i

t i 1tE
t j

t j 1t
D1d~ t2t8!dt dt8

5H s«1

2 ~12u i 2 j u/t!, u i 2 j u,t

0, u i 2 j u>t.

~A2!

As is known from the theory of statistical estimation@30#,
it follows from the conditions~C1!–~C3! that ~1! estimates
of coefficients are unbiased, i.e.,E@ â1#5a1

0; ~2! vector â1 is
distributed according toL1-dimensional Gaussian law;~3!

covariation matrix of the components ofâ1 is given by

E@ â•âT#5~ATA!21
•E@ATe1e1

TA#•~ATA!21, ~A3!

where e1 is an N-dimensional vector with componen
«1(t1),«1(t2), . . . ,«1(tN). Diagonal elements of the matri
E@ â•âT# are variances ofâ1,i , other elements are covar
ances ofâ1,i and â1,j for iÞ j . Let us derive expressions fo
them.

Note, first, that under the assumptions~C1!–~C4!
the observed values of wrapped phas
„f1(t i)mod2p,f2(t i)mod2p…, i 51, . . . ,N, are distributed
approximately uniformly in the square@0,2p#3@0,2p#.
Trigonometric monomialsgi(f1 ,f2) are orthogonal on this
set. Hence, the matrixATA is diagonal@within a certain error
limit determined by the violation of~C1!#:

ATA5
N

2
diag~2,1,1, . . . ,1!. ~A4!

The first case: t51. Equation ~A2! implies
E@«1(t i)«1(t j )#5s«1

2 d i j , i.e., subsequent values of«1 are

uncorrelated. Equations~A3! and ~A4! imply E@ â•âT#

5(2s«1

2 /N)diag(1
2 ,1,1, . . . ,1), i.e., estimates of coefficient

are uncorrelated. Their variances ares â1,1

2
5s«1

2 /N, and

s â1,i

2
52s«1

2 /N for i .1.

The second case: t.1. Subsequent values of«1 are cor-
related. By performing transformations similar to those p
sented in Eq.~A2!, remembering about Gaussianity ofj1,2,
and taking some definite integrals, one derives that coe
cient estimates are again uncorrelated and their variance
given by

s â1,i

2
5

2s«1

2

N F112(
j 51

t21 S 12
j

t D
3cos@~miv11niv2! j Dt#e2 j (mi

2
1ni

2)/2tG ~A5!

for i .1. Note that Eq.~A5! is valid for t51 as well. To
derive expressions for estimates ofs â1,i

2 , one may replacea
04620
s

-

fi-
are

priori unknown quantitiess«1,2

2 andv1,2 in Eq. ~A5! by their

estimates. Let us insert into Eq.~A5! instead ofs«1,2

2 their

estimatesŝ«1,2

2 given by8

ŝ«1,2

2 5ŝD1,2

2 5
1

N21 (
i 51

N S D1,2~ t i !2
1

N (
i 51

N

D1,2~ t i !D 2

.

~A6!

The quantitiesâ1,1/(tDt) and â2,1/(tDt) can be inserted
instead ofv1 andv2. One derives finally~for i .1)

ŝ â1,i

2
5

2ŝ«1

2

N F112(
j 51

t21 S 12
j

t D
3cos@~miâ1,11niâ2,1! j /t#e2 j (mi

2
1ni

2)/2tG . ~A7!

Further, we express all other estimates in terms of the
rived unbiased estimatesŝ â1,i

2 .

APPENDIX B: VARIANCE OF ĝ1 AND CONFIDENCE
INTERVAL ESTIMATION

In Sec. II C an expression~10! for ĝ1 @an unbiased esti-
mator for (c1

0)2] is presented. From the theoretical point
view, its variancesĝ1

2 is expressed in terms of variances a

covariances of the estimatesâ1,i according to expression
~11!. Let us derive an estimator forsĝ1

2 .

First, noncorrelatedness of Gaussian distributed estim
â1,i and â1,j ( iÞ j ) implies their statistical independenc
Hence, their squaresâ1,i

2 and â1,j
2 are also independent o

each other. Then, taking in Eq.~11! cov(â1,i
2 ,â1,j

2 )50 for i
Þ j , one derives

sĝ1

2
5(

i 51

L1

ni
4s â

1,i
2

2
. ~B1!

Second, by using the definition of variance, Gaussian
of â1,i , and taking corresponding definite integral, one d
rives an expression for the variance ofâ1,i

2 :

s â
1,i
2

2
52s â1,i

4
14~a1,i

0 !2s â1,i

2 . ~B2!

Unbiased estimator fors â
1,i
2

2
would be 2ŝ â1,i

4
14(â1,i

2

2ŝ â1,i

2 )ŝ â1,i

2 . But the use of this expression would often yie

8ŝ«1

2 in Eq. ~A6! is a somewhat understated estimate of the va
ance. However, under the usual conditiont!N, bias is very small
and can be neglected. Therefore, we do not present a more acc
and much more cumbersome expression for a strictly unbiased
timate here.
9-8
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estimates ofs â
1,i
2

2
close to, and even less than, zero. It wou

lead often to spurious inference of high significance of o
tained valuesâ1,i

2 . Therefore, we propose to use a bit ove
stated estimate

ŝ â
1,i
2

2
5H 2ŝ â1,i

4
14~ â1,i

2 2ŝ â1,i

2
!ŝ â1,i

2 , â1,i
2 2ŝ â1,i

2
>0,

2ŝ â1,i

4
otherwise.

~B3!

This estimate corresponds to a cautious strategy and
cludes frequent spurious conclusions about the presenc
coupling. Finally, we propose to use the quantity given
expression~12! as an estimator forsĝ1

2 :

ŝ ĝ1

2
55 (

i 51

L1

ni
4ŝ â

1,i
2

2
, ĝ1>5S (

i 51

L1

ni
4ŝ â

1,i
2

2 D
1

2 (
i 51

L1

ni
4ŝ â

1,i
2

2 otherwise.

Such a choice is determined by the following circum
stances. For largec1

0, the top line is a ‘‘good’’ estimate. Fo
c1

0'0, the top line gives an estimate, which is twice as la
as the true value on average~this statement is based on o
experience with numerical examples!. Therefore, it is reason
able to divide the top line by a factor of 2. So, the propos
combination gives a widely acceptable trade-off.
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An expression for the confidence interval for (c1
0)2 de-

pends on the form of the distribution law ofĝ1. If ĝ1 were
distributed normally~this is the case only for very large num
ber of coefficientsa1,i with niÞ0), thenĝ161.96sĝ1

would
be a 95% confidence interval and it could be readily e
mated asĝ162ŝ ĝ1

. However, the distribution ofĝ1 is asym-
metric for a typical number of coefficientsa1,i with niÞ0 ~it
is about ten, see Sec. III and Ref.@10#!. To derive a generally
applicable expression for confidence interval analytically
impossible since distributions ofĝ1 are different for different
numbers of coefficients. But one can expect that in any c
it is not essentially different from the expression for Gau
ian distribution since the distribution ofĝ1 is unimodal, even
though a bit skewed. We searched for an estimate of 9
confidence interval in the form@ ĝ12aŝĝ1

,ĝ11bŝĝ1
#. Con-

stantsa and b were chosen empirically. As a result of nu
merical simulations, we obtained the valuesa51.6, b
51.8.

As for the quantityd̂, if ĝ1 and ĝ2 are uncorrelated,
which is guaranteed by the conditions~C1! and ~C4!, then
quite a good estimator for its variance isŝ d̂

2
5ŝ ĝ1

2
1ŝ ĝ2

2 . As

a rule, the distribution ofd̂ is more symmetric than the dis
tributions of ĝ1,2. Therefore, we searched for an estimate
95% confidence interval ford0 in a symmetric form d̂
6aŝd̂ . Again, our numerical experiments resulted in t
value ofa51.6.
.S.
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