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Abstract

Symmetrically coupled nonlinear oscillator systems demonstrating transition to chaos via a sequence of period-

doubling bifurcations under variation of the control parameter exhibit various types of mutual synchronization. For

these coupled systems, with dissipatively coupled logistic maps, we consider a hierarchy of possible oscillation types

using the value of the time shift between oscillations of the subsystems as a basis for the classification of multistable

states. For oscillation states and their basins of attraction the ways of evolution are studied under variation of the

parameters of nonlinearity and coupling. The obtained results are compared with those of physical experiment with a

system of coupled, periodically driven nonlinear resonators.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A system of two identical symmetrically coupled objects demonstrating transition to chaos via a sequence of period-

doubling bifurcations under variation of the control parameter is one of the standard objects in nonlinear dynamics.

The most detailed investigation of these coupled systems was carried out using discrete models in the form of coupled

one-dimensional unimodal maps with quadratic maxima. It was shown that identical coupled maps demonstrate a

variety of nonlinear phenomena, including multistability, synchronization, chaos and hyperchaos, frequency locking,

intermittency, and crisis of chaotic attractors. The transition to chaos in such systems can be observed via a sequence of

period-doubling bifurcations, as well as via a sequence of Hopf bifurcations [1–7]. The system parameter space has a

complicated self-similar structure [8,9], whose universality can be explained by means of renormalization theory

[8,10,11]. A variety of multistable states in coupled map system is very great [10,12–17]. Studying the basins of at-

traction of these states helps in understanding the ways of multistability formation [18–21]. The features of the com-

plicated dynamics of the coupled systems that were revealed by maps investigation agree well with the results of

experimental studies for various systems of coupled objects [4,12,13,21–24]. Coupled maps are quite popular in the

context of studying the actual problems of loss of chaos synchronization and transition from synchronous to asyn-

chronous chaotic motion [25–28]. In recent years they helped to explain the bifurcation mechanism of the loss of

stability of the synchronous chaotic regime induced by the bubbling and riddling transitions in the system [29–34].

In spite of a large number of papers devoted to a system of two symmetrically coupled maps, the variety of types of

mutual synchronization of subsystems and the hierarchy of stable oscillation states have not been adequately explored.

The advisability of their consideration is determined by the fact, that branching of the hierarchy scheme and the variety
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of multistable oscillations are so great, that sometimes even statistical approach is used for their description [35]. This

testifies that the detailed description of complicated dynamics of symmetrically coupled systems deserves attention.

In this paper, with two dissipatively coupled quadratic maps as an example (Section 2), we suggest a classification of

oscillation types for the coupled system based on the phase shift of subsystem oscillations. The regions of existence of

multistable states in the parameter space and their evolution scheme for small values of coupling coefficient are pre-

sented in Section 3. In Section 4 the out-of-phase regimes existing in the region of strong coupling are examined. In

Section 5 we investigate the evolution of basins of attraction for periodic and chaotic multistable states under variation

of parameters. In Section 6 the obtained results are compared with those of physical experiment with a system of

coupled nonlinear resonators. Section 7 contains discussion.

2. Object of investigation

All possible variants of symmetric coupling between identical maps with quadratic maxima can be represented by a

combination of two basic types of coupling: dissipative and inertial [8,10]. In spite of some characteristic features in-

herent to each of these types of coupling, the commonness of oscillation motions in systems with dissipative and inertial

coupling is large enough, what allows us to consider in detail only one of these types. In our paper the system of two

coupled maps is examined for the case of dissipative coupling as an example. This type of coupling favours the

equalization of the subsystem instantaneous states, and it has no influence on the system dynamics if these states are

equal. Such type of coupling arises in many systems; for instance, in radiotechnical objects it is realized by means of a

resistor. The system of dissipatively coupled maps can be written as

xnþ1 ¼ f ðxnÞ þ k½f ðynÞ � f ðxnÞ�;
ynþ1 ¼ f ðynÞ þ k½f ðxnÞ � f ðynÞ�;

ð1Þ

where x, y are the dynamical variables, n ¼ 0; 1; 2; . . . is the discrete time, f ðxnÞ and f ðynÞ are the functions describing
the behavior of isolated subsystems, k is the coupling coefficient. This form of coupling can be clearly interpreted by the

example of population dynamics. One can think of f ðxnÞ and f ðynÞ as simulating the population dynamics of a par-
ticular species at two adjacent locations. If the species can migrate in both directions within the time intervals between

the stages of their reproduction and death, then k is the fraction of these species, which migrate to the neighbouring

location. In this case the coupling parameter k can vary between zero and unity. In this interval of k variation the phase

volume suffers additional contraction in comparison with the magnitude it would have without coupling. This fact gives

grounds to call this type of coupling as dissipative.

We study the system (1) for the case f ðxnÞ ¼ k � x2n, f ðynÞ ¼ k � y2n , where k is the parameter of nonlinearity. As a
result, the system (1) takes the following form

xnþ1 ¼ k � x2n þ kðx2n � y2nÞ;
ynþ1 ¼ k � y2n þ kðy2n � x2nÞ:

ð2Þ

We consider the case, where the values of k are the same in both subsystems.

3. Classification of coupled system states and their evolution for weak coupling

3.1. Classification of oscillation types

By virtue of the fact that maps (1) are invariant with respect to the discrete group of symmetries, it is convenient to

use the magnitude of the time shift between subsystem oscillations as a basis for the regimes classification. It is obvious

that in the case of identical unimodal functions f ðxnÞ and f ðynÞ each period-N regime of the system (1) can be realized in
the limiting case of zero coupling ðk ¼ 0Þ by N variants differentiated by the time shift of the subsystem oscillations by
m ¼ 0; 1; 2; . . . ;N � 1. We call them as oscillation types and use these types as a basis to describe the hierarchy of

oscillation regimes as coupling is introduced, when the subsystems interaction leads to various variants of their mutual

synchronization. Let us denote periodic regimes as Nm. The similar principle of classification can be used for chaotic

regimes denoted as Nm, in spite of the lack of periodicity in their motion. In this case N should be read as denoting

the number of bands (connectivity) of the attractor, and the superscript m is the time shift between oscillations of the

subsystems at a certain band of the attractor, which, for instance, contains the maximum values of xn and yn. The
regimes with m ¼ 0, for which xn � yn ¼ 0 and the phase portrait is located along the diagonal in the ðxn; ynÞ plane,
represent the in-phase states. The other oscillation regimes with m 6¼ 0 are out of phase. Note that chaotic regimes can
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be out of phase ðxn 6¼ ynÞ even at m ¼ 0, for example, in the region of weak coupling. To distinguish these regimes from
the in-phase ones we use the superscript m ¼ N for their notation. The realization of one or another oscillation type is
defined by the parameter values and the choice of initial conditions.

3.2. Evolution scheme for small values of coupling coefficient

By depicting every multistable oscillation type lying on a separate sheet one can build a pictorial scheme of the

regions of existence for stable oscillation regimes in the coupling coefficient–driving parameter plane. In Fig. 1 such

scheme is presented for low-period regimes for k < 0:5. The phase portraits of these regimes and of chaotic regimes
evolved from them are shown in Fig. 2(a), which is the section of Fig. 1 with the plane k ¼ const extended to the region
of large k values. This scheme illustrates qualitatively the evolution of motions of the system (2) with the parameter k
variation for fixed weak coupling. Let us consider the coupled system dynamics using another variant of the evolution

scheme (Fig. 2(b)). The solid lines in this scheme correspond to the stable regimes and the dashed lines to the unstable

ones. The bifurcation transitions are marked by the points. Let us explain the main components of this scheme. The

branches A, B, C, and D indicated in the scheme combine certain groups of regimes. The branches begin with periodic

regimes and end with chaotic ones. The branch A refers to evolution of the in-phase regimes with m ¼ 0. The branches
B, C, and D leaving from A correspond to the out-of-phase regimes. The branch B begins with period-2 cycle and

combines oscillations with m ¼ 2l� 1, l ¼ 1; 2; 3; . . . ; branch C begins with period-4 cycle and combines oscillation

types with m ¼ 2ð2l� 1Þ, and branch D begins with period-8 cycle and combines oscillations with m ¼ 4ð2l� 1Þ.
The values of k, at which period-doubling bifurcations of in-phase cycles take place in the coupled system, coincide

with the corresponding bifurcation values in the isolated subsystems. At the branching points of A the initial in-phase

cycle loses its stability (one of its eigenvalues becomes equal to )1) and a stable in-phase cycle with doubled period
appears in its neighbourhood, which extends the branch A. With k increasing the cycle having lost its stability un-
dergoes the period-doubling bifurcation once again (the second eigenvalue becomes equal to )1), and an unstable
out-of-phase cycle with doubled period appears, which becomes stable later on. As a result, with the increase of k each
in-phase cycle ð2nÞ0 gives rise to a pair of cycles, which involves an in-phase ð2nþ1Þ0 and an out-of-phase ð2nþ1Þ2n cycles.
Out-of-phase cycles 21; 42; 84; . . . emerging in this manner form the basis of branches B, C, D, . . . and, with k increasing,
they of necessity undergo a Hopf bifurcation followed by a quasiperiodic motion. As the result of frequency locking, the

following pairs of out-of-phase cycles appear: 41 and 43 on branch B, 82 and 86 on branch C, 164 and 1612 on branch D.

Each of these cycles in turn give rise to two cycles similarly to the considered case of in-phase cycles. This process is

continued up to the critical k values corresponding to the formation of a chaotic attractor from every cycle of the

Fig. 1. Qualitative scheme of the ðk; kÞ plane for system (2), representing regions of existence for all oscillation regimes of periods 1, 2,
4, and 8 for k < 0:5. Regions of quasiperiodic regimes are denoted by Q.
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branch. In the region of chaos the evolution scheme is superficially similar to the scheme of periodic regimes. The

dashed lines correspond to nonattracting sets and the solid lines refer to chaotic attractors. The points of dashed and

solid lines merging correspond to the attractor bands merging and union of the attractor and previously nonattracting

set. As a result, an attractor containing the both above mentioned sets is formed. With the increase of k each branch is
ended by a pair of chaotic attractors having the same indices as the cycles which emerged as the result of frequency

locking (41 and 43 on branch B, 82 and 86 on branch C, and so on). With further increase of the parameter k the regime
of chaos–chaos intermittency is observed between the attractors of the pair. The regime of intermittency is softly re-

placed by attractor ð2nÞm with n and m being equal to the indices of the cycle beginning this branch: 21 on branch B, 42

on branch C, and so on. Above the mark 	 the corresponding attractor combines with the attractors produced by the
branches located at the right of Fig. 2(b).

At zero coupling and k values below the critical value the oscillations of identical subsystems are the same and they
can be only shifted in time relative to each other. Nonzero coupling leads to the difference in temporal realizations of

periodic oscillations even for identical subsystems and to the break of symmetry for the cycle with respect to the exchange

x $ y. This is true for all oscillation types except the in-phase ones ð2nÞ0 and the types ð2nþ1Þ2n emerged directly from the
in-phase types. The distinction grows as coupling increases, but it does not affect the determining criterion for the os-

Fig. 2. (a) Attractors of the system (2) in the ðxn; ynÞ plane for k ¼ 0:006. (b) Evolution scheme for oscillation states of the coupled
system under variation of the control parameter at a fixed small coupling coefficient.
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cillation type, namely, the fixed value of time shift between the subsystem oscillations (if by this is meant the time interval,

for instance, between the maxima of periodic realizations xn and yn). The cycles emerged as the result of frequency locking
form the specular symmetric pairs: 41–43; 82–86; 164–1612; . . . These cycles are transformed one to another under the
exchange x $ y. The cycles emerged from these ones also form the specular symmetric pairs ð2nÞm � ð2nÞ2n�m under the

condition of identity of evolution routes. For example, the specular symmetric types are 81–87, 162–614, 161–1615,

emerged after period doubling of cycles having lost their stability, and the types 85–83, 1610–166, emerged directly as the

result of the period-doubling bifurcation of initial cycle (Fig. 2(b)). As it can be seen from Figs. 1 and 3(a), the out-of-

phase oscillation types existing in the region of weak coupling lose their stability as parameter k increases.

With k increasing all out-of-phase symmetric cycles Nm, m ¼ N=2, undergo Hopf bifurcation (the eigenvalues of
these cycles become complex conjugate and reach the unity by absolute value). Besides quasiperiodic motions, a set of

resonance cycles takes place as the result of frequency locking. They have the even periods and the typical shape in the

form of tongue. The regions of two such resonance cycles with periods of 18 and 22 are presented in Fig. 3(b). These

cycles are symmetric with respect to the exchange x $ y and demonstrate Hopf bifurcation, followed by quasiperiodic
motion (the secondary torus) under the parameters variation. Close to the region of existence of the secondary torus a

set of resonance cycles is also observed. It is rather difficult to define specific features of their hierarchy. However, it

should be noted that in this region the symmetric resonance cycles are found, which in turn demonstrate Hopf bi-

furcation under variation of the parameters. Thus, moving along a complicated trajectory in the parameter space of the

system under investigation, one can observe a sequence of transitions: cycle–torus–resonance cycle–torus–resonance

cycle–torus.

Asymmetric, but symmetric to each other cycles, for example, 41 and 43 (the exchange x $ y transfers them one to
another) emerge as the result of saddle-node bifurcation. The lines of saddle-node bifurcations for these cycles coincide

and bear up against the line of Hopf bifurcation at the point k ¼ 0 (Fig. 3(a)). The occurrence of one or another cycle
depends on the choice of initial conditions. The structure of the parameter plane depicted in Fig. 3(a) is typical for all

branches of out-of-phase regimes.

The considered evolution scheme for small values of coupling coefficient (Fig. 2(b)) is typical for coupled systems (1)

with identical unimodal functions.

4. Out-of-phase regimes at strong coupling

In the region of strong coupling ð0:56 k6 1Þ the sheet of the in-phase oscillations in the ðk; kÞ plane is continued
without peculiarities (Fig. 4(a)). As for the sheets, corresponding to the out-of-phase oscillation types, their arrangement

Fig. 3. (a) Regions of stability of out-of-phase cycles in the branch B of the evolution scheme. (b) Regions of existence of the resonance

cycles of periods 18 and 22.
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is entirely symmetric with respect to the line k ¼ 0:5 (see Fig. 4(a)). However, despite the symmetry of bifurcation lines,
the out-of-phase regimes are radically different at weak and strong coupling. We use the Roman figures to denote the

indices for the out-of-phase regimes at strong coupling. The stable out-of-phase period-1 cycles exist in the region of

strong coupling. Their existence can be demonstrated in the following way: let us enter the new variables

un ¼ ðxn � ynÞ=2, vn ¼ ðxn þ ynÞ=2. In these new variables the system (2) will be written in the form

unþ1 ¼ 2ð2k � 1Þunvn;
vnþ1 ¼ k � v2n � u2n:

ð3Þ

For the period-1 cycle unþ1 ¼ un ¼ u; vnþ1 ¼ vn ¼ v, and from system (3) it follows

uð1� 2ð2k � 1ÞvÞ ¼ 0;
v2 þ vþ u2 � k ¼ 0:

ð4Þ

The first equation in (4) has two solutions: u ¼ 0 and v ¼ 1=2ð2k � 1Þ. The case of u ¼ 0 corresponds to the in-phase
regime ðxn ¼ ynÞ, and from the second equation it follows v1;2 ¼ ð�1� ð1þ 4kÞ1=2Þ=2. The second solution corresponds
to the out-of-phase regime. Substituting v into the second equation of the system (4) gives u1;2 ¼ �ðk � ð4k � 1Þ=
ð4ð2k � 1Þ2ÞÞ1=2.

Fig. 4. (a) Regions of stability for period-1, 2, 4 cycles in the ðk; kÞ plane of the system (2). For out-of-phase period-1 and period-2
cycles the boundaries of the regions are deduced in the explicit form. (b,c) Attractors of periods 2 and 1 for k ¼ 0:8 and k ¼ 0; 1,
respectively. (d,e) Attractors of period 4 for k ¼ 1:3 and k ¼ 0; 1, respectively.
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To examine the stability of period-1 cycles we find their multipliers as eigenvalues of the Jacobian matrix M of the

map (3)

M ¼ 2ð2k � 1Þv 2ð2k � 1Þu
�2u �2v

� �
:

Denoting the period-1 cycle multipliers by l1;2ð1Þ we obtain

l1;2ð1Þ ¼ 2vðk � 1Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2v2 þ u2ð1� 2kÞ

p
: ð5Þ

For the in-phase cycle 10: u ¼ 0 and l1ð10Þ ¼ �2v, l2ð10Þ ¼ 2vð2k � 1Þ. Thus, in the interval of positive k the value
v1 ¼ ð�1� ð1þ 4kÞ1=2Þ=2 corresponds to the always unstable fixed point, and v2 ¼ ð�1þ ð1þ 4kÞ1=2Þ=2 relates to the
stable (for k < 3=4) fixed point (the both multipliers are less than unity by the absolute value).
Substituting the v and u1;2 values, corresponding to the out-of-phase regime, into (5) and denoting multipliers at

points ðv; u1) and ðv; u2) by l1;2ð1IÞ and l1;2ð1IIÞ, respectively, yield

l1;2ð1IÞ ¼ l1;2ð1IIÞ ¼
k � 1
2k � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 1
2k � 1

� �2
þ
4 k � kð2k � 1Þ2
� �

2k � 1

vuut
: ð6Þ

Thus, the two out-of-phase period-1 cycles, symmetric about the change u ! �u (or x $ y) exist and they always have
equal multipliers. These cycles are stable in a wide range of parameters (see Fig. 4(a) in which the boundaries of

the region of stability for cycles 1I and 1II are deduced in the explicit form from (6)). For instance, as k ¼ 1:
l1;2ð1IÞ ¼ l1;2ð1IIÞ ¼ �2ð1� kÞ1=2 and cycles 1I, 1II are stable at 3=4 < k < 5=4, i.e., at the same parameter values as the
period-2 cycle in the uncoupled system.

The symmetry of the system (2) bifurcation lines with respect to k ¼ 0:5, i.e., under the change k ! 1� k, can be
confirmed by the cycle multipliers analysis. We show it with the out-of-phase period-1 and period-2 cycles as an ex-

ample. For the period-2 cycle the Jacobian matrix of the map (2) has the form

M ¼ 2x1ðk � 1Þ �2ky1
�2kx1 �2y1ðk � 1Þ

� �
2x2ðk � 1Þ �2ky2
�2kx2 �2y2ðk � 1Þ

� �
; ð7Þ

where x1, x2 and y1, y2 are the cycle elements in the subsystems x and y, respectively. The out-of-phase cycle 21 is

symmetric and x1 ¼ y2, x2 ¼ y1 for it. With regard to this, the out-of-phase cycle 21 multipliers, which are the eigenvalues
of the matrix (7), take the form

l1;2ð21Þ ¼ 2k
2ðx1 þ y1Þ2 þ 4x1y1ð1� 2kÞ � 2kðx1 þ y1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðx1 þ y1Þ2 þ 4x1y1ð1� 2kÞ

q
: ð8Þ

By expressing the multipliers l1;2ð21Þ only in terms of parameters k and k, we obtain

l1;2ð21Þ ¼
2k2

ð1� 2kÞ2
þ 4ð1� k � kð1� 2kÞ2Þ

1� 2k � 2k
1� 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

1� 2k

� �2
þ 4ð1� k � kð1� 2kÞ2Þ

1� 2k

s
: ð9Þ

Taking the square of (6) and denoting the multipliers of the out-of-phase cycles 1I and 1II as l1;2ð1I;II Þ, we finally obtain

l1;2ð21Þðk; kÞ ¼ l22;1ð1I;II Þðk; 1� kÞ: ð10Þ

Consequently, if jl1;2ð21Þðk; kÞj < 1 (the out-of-phase cycle 21 is stable for a certain k), then jl1;2ð1I;II ðk; 1� kÞj < 1 (the
out-of-phase period-1 cycles are stable for the coupling value 1� k).
For an arbitrary k it is easy to show that the change k ! 1� k in the system (2) leads to the change xnþ1 $ ynþ1,

which is equivalent to the symmetric reflection of the point ðxnþ1; ynþ1Þ about the line x ¼ y. As a result, if the cycles of
period 2n, n ¼ 2; 3; . . . ; exist for some k value, then the cycles having the same period and type of symmetry take place
for the coupling value equal to 1� k. The phase portraits of the specular symmetric pairs of cycles ð2nÞm � ð2nÞ2n�m are

qualitatively different for coupling coefficients k and 1� k, and the phase portraits of the out-of-phase symmetric cycles
ð2nÞn=2 coincide outwardly, but differ by the order of the elements sequence (Fig. 4(b)–(e)).
It should be noted that the introduction of coupling between the elements results in the emergence of stable regimes

existing at such parameter values, which are unattainable without coupling. For example, it is seen from Fig. 4(a), that

the stable out-of-phase period-1 and period-2 regimes exist in the coupled system for k values by more than three times
higher than the critical value ðkcr ¼ 2Þ, at which all in-phase solutions go to infinity. Hence, the introduction of coupling
between elements not only enriches the system dynamics, but it can substantially extend the region of its finite solutions.

B.P. Bezruchko et al. / Chaos, Solitons and Fractals 15 (2003) 695–711 701



The considered features of out-of-phase regimes at strong coupling are common for a wide class of systems (1) under

condition of identity of unimodal functions f ðxnÞ and f ðynÞ.

5. Basins of attraction of multistable states

Let us consider the features of basins formation with the model (2) as an example moving according to the scheme in

Fig. 2(a) from bottom to top, from the k values corresponding to the sole period-1 cycle in the phase space. In Fig. 5(a)
the situation is illustrated, where the point C is the stable solution of the system (the period-1 cycle) and its basin of

attraction occupies the entire region of x0, y0 values bounded by the straight lines jx0j ¼ jxBj, jy0j ¼ jyBj, where xB, yB
correspond to the unstable solution (the point B). For k ¼ 0 the basin is a square with the side a ¼ 1þ ð1þ 4kÞ1=2. With
the coupling coefficient increasing the basin is gradually deformed taking the form of a circle with the radius

r ¼
ffiffiffi
2

p
ð1þ ð1þ 4kÞ1=2Þ (Fig. 5(b)). If the initial point ðx0; y0Þ is located beyond the basin of attraction, the solution goes

to infinity (in Fig. 5 and subsequent figures this region is shown by hatching). The system (2) is invariant with respect to

the change xn ! �xn, yn ! �yn. Therefore, the basins of attractors are symmetric about the axes x0 ¼ 0, y0 ¼ 0, and in
the following figures we depict only the right upper quadrant of the plane ðx0; y0Þ.
With the emergence of the second attractor in the phase space the region of finite solutions is divided into the basins

of coexisting attractors. The principle of the basins division is explained by Fig. 6(a), plotted for the case k ¼ 0 and the
nonlinearity k > k1 where k1 is the value of the first period-doubling bifurcation. The period-1 cycle (the point C) has
already lost its stability and two attractors, period-2 cycles 20 and 21, coexist in the phase space (Figs. 6(a) and 1). The

set of unstable points, including the point C with preimages of all ranks, forms the boundaries of basins of attraction for

coexisting cycles. It should be noted that near the boundary of the region of finite solutions a fractal structure takes

place, that illustrates the absence of restriction for the regions division (Fig. 6(b)). The parameter k increasing results in

Fig. 5. Basin of attraction of period-1 cycle at k ¼ 0:5. (a) k ¼ 0, (b) k ¼ 0:5.
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period-doubling bifurcations followed by a greater number of coexisting regular attractors in the phase space. After

each period-doubling bifurcation the in-phase cycle basin area is distributed among the basins of the in-phase and the

symmetric out-of-phase cycles of the doubled period (for example, 20 ! 40, 42; 40 ! 80, 84). As for the basins of the

out-of-phase cycles, they are divided into the basins of specular symmetric cycles (for example, 21 ! 41, 43; 43 ! 83, 87).

In both cases the basin structure becomes fractal near the former boundaries (Fig. 7(b) and (c)). The basins division

is continued up to the critical value k ¼ kcr, corresponding to the onset of chaos. Similar changes of the basin structure
for k ! 0 take place when moving according to the scheme in Fig. 2(a) from top to bottom, from the sole simply

connected chaotic attractor to the chaotic attractor of infinite connectivity near the point k ¼ kcr.
The introduction of coupling variously affects the structure of basins of attractors having different types of sym-

metry. Besides the deformation of basins boundaries, the variation of k leads to the redistribution of the area of basins

for coexisting attractors. The area of basins of in-phase cycles is increased at the cost of a decrease of the area of basins

of out-of-phase cycles. The basins of in-phase cycles therewith become convex, while the basins of out-of-phase cycles

become concave (Fig. 6(c)).

All symmetric out-of-phase cycles, for instance, 21, demonstrate Hopf bifurcation as the parameter k increases. The
basin of quasiperiodic regime occupies entirely the basin of cycle giving rise to this quasiperiodicity (Fig. 7(a)). The

specular symmetric pairs of cycles emerged as the result of frequency locking, for instance, 41 and 43, divide the torus

basin of attraction in such a way, that their basins have equal area (Fig. 7(b)). The way of basins evolution outlined for

regular attractors is universal and it is realized for all branches of the scheme in Figs. 1 and 2, corresponding to periodic

and quasiperiodic regimes.

The basins of chaotic attractors evolve by a more complicated scheme, depending, in addition on the conditions

formulated in [36], and namely, on the location of a certain critical curve in the plane of initial conditions. Let us clarify

Fig. 6. (a) Plots of the second iterates xnþ2 ¼ f ðxnÞ and ynþ2 ¼ f ðynÞ of the system (2) and basins of attraction of cycles 20 (�) and 21 (�)
for k ¼ 1:2, k ¼ 0. C is the unstable point (period-1 cycle (	)), C0 and C00 are the stable points. (b) Enlarged fragment of (a) near the

boundary of finite solutions. (c) Basins of attraction of period-2 cycles for k ¼ 1:2, k ¼ 0:08.
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the aforesaid. The system (2) belongs to the class of noninvertible maps. The ðx; yÞ plane of this system consists of two
open regions Z0 and Z4 The points belonging to Z4 have four preimages (or antecedents) of rank-1, and the points of Z0
have no real preimages. For instance, the point A in Fig. 5(a) has four A�1 preimages, whose coordinates are obtained

as the result of the system (2) backward iteration, i.e., after the first iteration the system comes from these points to A.

At the same time, the point D has no preimages, because its backward iteration does not fall on the map plot and thus,

there are no points in the ðx0; y0Þ plane, starting at which the system (2) would come to the point D after the first it-

eration. The curve which separates the phase plane into two above mentioned regions is called the critical one in [36].

The critical curve can be found by the first iteration of the point set ðx0; y0Þ, for which the Jacobian of the map vanishes.
For the map (2) the critical curve is formed by two rays coming from the point ðk; kÞ. In Figs. 8 and 9 the critical curve
lcr is indicated by dashed lines.
We consider the evolution of chaotic attractors basins depending on their location with respect to the critical

curve. For k 6¼ 0 the basins are convex or concave. For the case of weak coupling the typical location of the critical
curve is shown in Fig. 8(a) and (b) plotted for the case, when four quadruply connected chaotic attractors exist in the

system under investigation. As the parameters vary, the attractors 42 and 44 merge into the attractor 22. The merging

of their basins of attraction forms the structure depicted in Fig. 8(c). The attractors 41 and 43 are slightly changed,

but inside almost all elements of their basins of attraction (besides those, containing the attractors themselves) lakes,

or holes are formed (Fig. 8(c) and (d)). Here and further we use the geographic analogies suggested by Mira et al.

[36]. The appearance of these lakes is explained by forming of the so-called bays, i.e., the closed regions of Z4
bounded by a segment of lcr and a segment of the basin boundary, the successive preimages of which generate lakes.
The existence of an infinite sequence of preimages gives rise to the emergence of an infinite number of lakes. Fur-

ther parameter variation leads to the formation of islands inside the lakes as the result of the critical curve inter-

section with the lake (Fig. 8(e) and (f)). Then, inside these islands in turn the embedded lakes are formed, and so

on.

Under further variation of parameters k and k we observe changes unaccountable using the above approach. At-

tractor 22 undergoes a crisis due to its collision with an unstable period-1 cycle and disappears. This is followed by

qualitative changes of the region in the ðx0; y0Þ plane that previously has belonged to the basin of disappeared attractor:
the fractal division of this region into the basins of attractors 41 and 43 takes place (Fig. 9(a)). As a consequence, the

critical curve goes through the fractal set and the nature of its intersection with the basin elements cannot be defined. As

for the earlier existing basins of attractors 41 and 43, they are nonfractal as before: the number of embedded lakes and

islands remains a finite magnitude (Fig. 9(b)). But for the values of k and k higher than certain critical ones these regions
structure also becomes fractal and has an infinite number of embeddings (Fig. 9(c) and (d)). The described scenario of

basins fractalization is universal and is manifested for chaotic attractors of higher connectivity, but in narrower range of

the parameter values.

The features considered above for the basins structure and basins evolution under variation of the parameters are

valid for oscillation regimes existing in the region of k < 0:5. In the region of greater k values ðk > 0:5Þ the basin
structure remains intact only for the in-phase and symmetric out-of-phase regimes. Asymmetric regimes have quali-

tatively different phase portraits for weak and strong coupling, and thus, differently structured basins of attraction. In

Fig. 7. (a) Basins of attraction of quasiperiodic motions and cycles 40 and 42 for k ¼ 1:3, k ¼ 0:015. (b) Basins of attraction of cycles
40, 41, 42, and 43 for k ¼ 1:3, k ¼ 0:008. (c) Basins of attraction of cycles 80; 81; . . . ; 87 for k ¼ 1:38, k ¼ 0:001.
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Fig. 10(a)–(d) the basins are presented for the regimes existing at the same values of parameter k as those depicted in
Figs. 6(a), 7(b) and (c) and 8(a), respectively. For clearness, the values of coupling in Fig. 10(a)–(d) are chosen as

k ¼ 1� kw, where kw is the value of coupling in Figs. 6(a), 7(b) and (c) and 8(a), respectively. As it can be seen from Fig.
10(b) and (d) the basins of specular symmetric regimes at strong coupling, in particular, the basins of regimes 4I, 4III and

4I, 4III consist of larger blocks without fractal structure in comparison with the corresponding basins at weak coupling.

The fractalization of basins of asymmetric regimes at strong coupling is typical only for regimes Nm and Nm with N P 8

(Fig. 10(c)). As a result, there is no division of the basins of regimes 4I and 4III under variation of the parameters, and

the bays, lakes, and islands are not observed. They have to appear for the basins of chaotic attractors of higher

connectivity.

The qualitative features of multistable states basins formation considered with the model (2) as an example are

typical for a system of symmetrically coupled identical maps having the form (1).

6. Comparison with experiment

We compared the results obtained in the numerical investigation of the discrete system (2) with those obtained in

physical experiment with a system of coupled oscillating objects demonstrating transition to chaos via a sequence of

period-doubling bifurcations and operating in a continuous time. Driven nonlinear resonators—two RL-diode circuits

coupled via a resistor, were studied experimentally under in-phase periodic excitation by identical signals using

Fig. 8. Formation of lakes in the basins of chaotic attractors 41 and 43. (a,b) k ¼ 1:428, k ¼ 0:006, (c,d) k ¼ 1:454, k ¼ 0:0128, (e,f)
k ¼ 1:49, k ¼ 0:025. The figures at the right are the enlarged fragments of the figures at the left.
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amplifiers (Fig. 11). The conductivity of the coupling resistor K ¼ 1=Rc is the analog of coupling coefficient k. The case
K ! 0 corresponds to k ! 0, and K ! 1 corresponds to k ! 0:5. The driving amplitude V is the analog of the pa-

Fig. 9. Basins of chaotic attractors 41 (black color) and 43 (white color). (a,b) k ¼ 1:57, k ¼ 0:042, (c,d) k ¼ 1:7, k ¼ 0:07. The figures
at the right are the enlarged fragments of the figures at the left.

Fig. 10. (a) Basins of attraction of period-1 and period-2 cycles for k ¼ 1:2, k ¼ 1. (b) Basins of attraction of cycles 40, 4I, 4II, and 4III
for k ¼ 1:3, k ¼ 0:992. (c) Basins of attraction of cycles 80; 8I; . . . ; 8VII for k ¼ 1:38, k ¼ 0:999. (d) Basins of chaotic attractors 4I, 4II,
4III, and 4IV for k ¼ 1:428, k ¼ 0:994.
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rameter of nonlinearity k. Electronic keys K1 and K2 were used to set the initial conditions x0, y0 These keys connected
diodes D1 and D2 to additional voltage sources and then restore the circuit so fast, that the distribution of charges in the
diodes was not managed to relax to its equilibrium state during the operating time of the keys.

Periodically driven systems as well as point maps are invariant with respect to the discrete group of symmetries.

Their oscillations can be classified using the magnitude of the time shift between the subsystem oscillations, which is a

multiple of the driving period. The results of our physical experiment are in a good qualitative agreement with those

obtained numerically. In particular, for low-period oscillations and k < 0:5 all dynamical states of the system (2) are

found experimentally. It is shown that the configuration of experimentally obtained bifurcation lines and basins of

attraction of various regimes correlate well with the calculated results. In Fig. 12 the two-dimensional projections of

experimental basins of attraction for the period-2 and period-4 cycles are shown. The investigated part of the exper-

imental plane ðx0; y0Þ is bounded by limits outside which the diodes may be destroyed because of thermal instability. In
the absence of coupling ðK ¼ 0Þ the basin elements have a rectangular form (Fig. 12(a)). With the coupling increase, as
it is inherent in the model, the in-phase cycle basin expands at the expense of the basin of out-of-phase cycle (Fig. 12(b)).

The emergence of additional cycles in the phase space under variation of the parameters leads to the division of all

elements of previously existed basins in accordance with the regularities described for the system (2) (Fig. 12(c)).

Successive reduction of the basin elements area is observed near the boundary separating the basins of attraction of

symmetric cycles 40, 42 and asymmetric cycles 41, 43. However, the self-similar basin structure near the boundary cannot

be defined in the experiment because of fluctuations and technical restrictions on the scale of resolution. That is why the

boundary between the basins of these cycles is indicated by bold line in the figure, and the boundary regions are

Fig. 11. Scheme of the experimental set. The resonators are indicated by bold lines. Rc is the resistor of coupling, K1 and K2 are the
electronic keys. R1 ¼ R2; L1 ¼ L2 diodes D1 and D2 are of the same type.

Fig. 12. Basins of attraction of period-2 and period-4 cycles of experimental system. (a) K ¼ 0, (b,c) K 6¼ 0.
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hatched. The asymmetry of basins about the x0 ¼ y0 line, observed in the experiment, is due to nonidentity of the real
subsystems.

In Fig. 13 the results of the basins experimental examination are presented for quadruply connected chaotic at-

tractors. For weak coupling the basin structure in Fig. 13(a) corresponds qualitatively to that shown in Fig. 8(a). The

bold line indicates the boundary separating the basins of chaotic attractors 42, 44 and 41, 43. The accumulation of basin

elements in the neighbourhood of this line is shown by hatching. The simultaneous variation of driving and coupling

parameters induces changes similar to those outlined above for the system (2). The attractors 42 and 44 merge into the

attractor 22, and inside the elements of basins of attraction of the regimes 41 and 43 the lakes are formed (Fig. 13(b)).

Under further variation of the parameters the attractor 22 undergoes a crisis and disappears. As this takes place, its

basin of attraction is divided in a complicated manner into the basins of the attractors 41 and 43. It may be suggested

that fractal structure is formed in this case as well as it takes place in the system (2) (see Fig. 9(a)), but it is impossible to

construct this structure in experiment. The form of the transient process and its dependence on natural fluctuations of

the experimental system, which leads to unpredictability of establishment of one or another regime, can serve as indirect

evidence of the basins fractalization.

7. Discussion

With the system (2) as an example we have shown that a great number of multistable states exist in the parameter

space of symmetrically coupled identical systems and the basins of attraction of these states have sufficiently compli-

cated arrangement. The establishment of one or another oscillating regime is defined both by the parameter values and

the initial conditions, what is illustrated by the presented schemes. Consequently, the change of regimes under variation

of one of the parameters is defined by the location of initial point in the phase space and by the evolution of basin

boundaries.

The obtained results can be useful when solving the problem of synchronization of nonlinear systems and simpli-

fication and regularization of their dynamics by introducing an appropriate coupling. Basing on the scheme of regimes

it can be stated, for instance, that the existence of the so-called seven-zone dynamics [35], i.e., that of a sequence of

regimes of complex–periodic–chaotic out-of-phase–chaotic in-phase–chaotic out-of-phase–periodic–complex behavior

under variation of the coupling parameter from zero to unity, is not a universal property for coupled maps with

negative Schwartzian curvature, as it has been believed in [35]. The number of zones used for classification of coupled

dynamics under variation of coupling depends on other parameter values and on the choice of initial conditions. In

particular, the number of zones can be 5, 7, 9, 11. In Fig. 14 the difference of subsystem oscillations is plotted against the

coupling parameter. Zones 1 and 9 in Fig. 14(a) are regions of complex, mostly chaotic dynamics. Zones 2, 4 and 8, 6

are characterized by periodic behavior. The complex (quasiperiodic) behavior is observed in both zone 3 and zone 7.

Zone 5 corresponds to synchronous chaotic behavior. In Fig. 14(b) the complex behavior is observed in zones 1 and 5.

Fig. 13. Basins of the chaotic attractors of experimental system. (a) V ¼ 1 V, K ¼ 0:002 mS, (b) V ¼ 1:79 V, K ¼ 0:025 mS.
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Zones 2 and 4 are regions of periodic oscillations. Zone 3 is a region of chaotic in-phase behavior. It should be noted

that regions of chaotic out-of-phase behavior are absent under the chosen initial conditions and k values. Under the
exchange x0 $ y0 the plots in Fig. 14 reflect about the ðx� yÞ ¼ 0 line. The notion of the mutual arrangement of co-
existing attractors and their evolution under variation of the parameters allows us to conclude that a quasiperiodic

transition to chaos, typical for a system of symmetrically weakly coupled maps [7], already disappears at relatively small

values of the coupling coefficient.

The obtained in our work results are common for a wide class of systems (1) under the condition of identity between

unimodal functions f ðxnÞ and f ðynÞ. In the case of multimodal functions f ðxnÞ and f ðynÞ the variety of the system (1)
oscillation states becomes greater. The oscillations of subsystems can significantly differ even at zero coupling if the

isolated elements possess bistability and their initial conditions are chosen from the basins of attraction of different

states. As a result, additional sheets appear in the scheme depicted in Fig. 1.

A close qualitative agreement between the results of discrete modeling and those of physical experiment points to the

commonness of the represented scheme of regimes for dissipatively coupled systems. The merits of the suggested de-

scription of oscillation types are confirmed by the results of experiments with coupled period-doubling systems for other

types of coupling and excitation [37,38]. In these cases the internal structure of sheets in the ðk; kÞ plane is conserved,
therewith the size and mutual arrangement of sheets are defined by the type of coupling.
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Fig. 14. (a) The nine-zone dynamics for the system (2) for k ¼ 1:42 and initial conditions ðx0; y0Þ ¼ ð0; 1Þ. (b) The five-zone dynamics
for k ¼ 1:74, ðx0; y0Þ ¼ ð0; 1Þ. For each k value 1000 sequential values of the difference x� y are plotted after discarding 50,000 initial
iterations.
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