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Investigation into the chaotic synchronization phe-
nomenon is of significant value for both basic science
and applications [1–3]. Of special interest is the study
of chaotic synchronization in symmetrically-coupled
identical subsystems featuring one of the classical sce-
narios of transition to chaos, for example, via a
sequence of period-doubling bifurcations [7–13]. The
regime of synchronous chaotic oscillations in such a
system corresponds to a situation when the dynamic
variables in both subsystems are equal. In this case,
there appear two selected directions in the phase space:
diagonal (in which the motions are unstable and the
corresponding Lyapunov index is positive) and trans-
verse (in which the motions are stable and the corre-
sponding Lyapunov index is negative). Evolution of the
system with variation of the nonlinearity parameter is
identical to the evolution of an isolated subsystem.

The aim of this study was to determine the effect of
an asymmetry (nonidentity of subsystems) on the struc-
ture of the synchronous chaotic attractor and on the
evolution of this structure on approach to the synchro-
nization boundary. For this purpose, we have numeri-
cally studied a system of dissipatively coupled qua-
dratic mappings

(1)

where 

 

x

 

n

 

 and 

 

y

 

n

 

 are the dynamic variables, 

 

n

 

 = 1, 2, …
is the discrete time, 
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 is the parameter of nonlinearity,
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 is the coupling
parameter.
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 = 1, the system is symmetric with respect to
the substitution 
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. For this case, the system
dynamics was studied in sufficient detail [2, 12–15].
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For 
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 > 0 in the region above the critical level (
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 > 
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c

 

,
where 

 

λ

 

c

 

 = 1.40115518909… is the critical value for
the isolated subsystems [16]), system (1) exhibits a syn-
chronous chaotic regime with the phase portrait situ-
ated on the diagonal of the (

 

x

 

n

 

, 

 

y

 

n

 

) plane. In this case,
behavior of the coupled systems is equivalent to
dynamics of an isolated subsystem. Estimation of the
correlation dimension of a chaotic attractor for the crit-
ical value of the parameter (

 

λ

 

 = 

 

λ

 

c

 

) yields 

 

d

 

c

 

 = 0.54 (we
have calculated a reduced correlation dimension by
using 40000 values and 5000 reference points deter-
mined to within 10

 

–18

 

), which is close to the Hausdorff
dimension of the critical attractor of a quadratic map-
ping [16, 17]. As the parameter 

 

λ

 

 grows, the dimension
of the synchronous attractor increases and becomes
equal to unity. This is related to the fact that the dimen-
sion of the chaotic attractor for the quadratic mapping
is unity and the synchronous attractor of a coupled sys-
tem is situated on a straight line—the diagonal 
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n

 

 

 

=
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n

 

in the phase plane.

When 

 

δ

 

 

 

≠

 

 1, the symmetry is broken but the syn-
chronization regime is retained. Figure 1a shows the
structure of the plane of parameters (

 

k

 

, 

 

λ

 

) for 

 

δ 

 

= 0.97.
Here, nonshaded areas correspond to periodic synchro-
nized cycles, light-gray areas represent synchronous
chaotic regimes, dark-gray areas correspond to non-
synchronized regimes, solid lines indicate the period-
doubling bifurcations, and figures at the lines indicate
the cycle periods. Figure 1b presents the phase portraits
of chaotic attractors and shows some fragments in more
detail.

Let us consider evolution of the cycle with period 1
when the parameter 

 

λ

 

 increases at constant values of

 
k

 
 = 0.5 and 

 
δ

 
 = 0.97. The growth of 

 
λ

 
 is accompanied

by a sequence of period-doubling bifurcations, which
terminates (at 

 
λ

 
 

 
≈

 
 1.4229918…) by the transition to a

 

The Effect of Asymmetry upon the Fractal Properties 
of Synchronous Chaos in Coupled Systems

with Period Doubling

 

E. P. Seleznev and A. M. Zakharevich

 

Saratov Branch, Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
e-mail: sbire@sgu.ru

 

Received January 28, 2002

 

Abstract

 

—The effect of an asymmetry upon the synchronous chaos in coupled systems with period doubling
is studied by numerical methods. The introduction of an asymmetry after the loss of the transverse supersta-
bility imparts fractal properties to the synchronous chaotic attractor. On approaching the synchronization
boundary (with decreasing coupling), the fractal dimension of the attractor exhibits a nonmonotonic behav-
ior. 

 

© 2002 MAIK “Nauka/Interperiodica”.



 

TECHNICAL PHYSICS LETTERS

 

      

 

Vol. 28

 

      

 

No. 7

 

      

 

2002

 

THE EFFECT OF ASYMMETRY UPON THE FRACTAL PROPERTIES 537

 

synchronous chaos (Fig. 1b, fragment 1). For 

 

k

 

 = 1, the
determinant of the linearization matrix equals zero and,
hence, all cycles (both stable and saddle-point ones) of
system (1) are superstable in the transverse direction. In
this case, the critical attractor is situated on the straight
line and the correlation dimension is estimated at 

 

d

 

c

 

 =
0.5 (which is close to a correlation dimension of the
critical attractor of a one-dimensional quadratic map-
ping calculated in [16, 17]. As the parameter 

 

λ

 

 grows
further. The connectivity of the synchronous attractor
gradually decreases (see Fig. 1b, where fragment 2
shows a simply connected character), while the correla-
tion dimension increases to reach 

 

d

 

c

 

 = 1. Thus, in the
case of an asymmetry introduced in a system with the
transverse superstability, fractal properties of the syn-
chronous chaos are analogous to those in the symmetric
case.

As the coupling parameter decreases, the in-phase
stable and saddle-point cycles of system (1) lose super-
stability in the transverse direction, while the unstable
manifolds of their saddle cycles are no longer situated
on the same straight line. Figure 1b (fragment 3) illus-
trates the case of a critical attractor for 

 

k

 

 = 0.4. With
increasing 

 

λ

 

, each element of the critical attractor
evolves in its own direction in the phase space and, as a
result, the critical attractor is not situated on a straight
line and retains a fractal character (fig. 1b, fragment 4).

Figure 2a shows dependence of the correlation
dimension of synchronous chaos on the coupling
parameter for 

 

λ

 

 = 2. Figure 2b presents the phase por-
traits of attractors and shows some fragments in more
detail. As the 

 

λ

 

 value decreases, the dimension grows
above unity and the attractor is no longer situated on the
diagonal of the phase plane. A greater scale (Fig. 1b,
fragment 4) reveals a complex fractal structure repre-
senting an infinite system of lines. As the coupling
parameter decreases further, the attractor expands in the
transverse direction (Fig. 2b, fragment 1) and increases
in dimension. The line structure of the synchronous
attractor is revealed on a smaller scale. One could rea-
sonably suggest that, on approaching the synchroniza-
tion boundary, the attractor dimension (as well as the
second Lyapunov index) would monotonically grow.

However, when the coupling parameter 

 

k

 

approaches 0.25, the synchronous attractor begins to
contract in the transverse direction (while the second
Lyapunov index keeps growing) and the attractor
dimension decreases to become close to unity
(although the attractor is still not situated on a straight
line (Fig. 2b, fragment 2). It should be noted that, in the
vicinity of the point at 

 

λ

 

 = 2 and

 

 k

 

 = 0.25, the system
features period-doubling bifurcations of the saddle-
point cycles embedded into the synchronous chaotic
attractor. Therefore, the contraction may be caused by a
change in configuration of the manifolds of unstable
cycles. Further decrease in the coupling parameter
leads to an increase in the correlation dimension and to

the attractor expansion in the transverse direction
(Fig. 2b, fragments 3 and 4). On approaching the
boundary of the synchronization region, the attractor
keeps expanding, while its dimension decreases again.
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Fig. 1. 

 

Diagrams showing (a) the structure of the plane of
parameters (

 

k

 

, 

 

λ

 

) for 

 

δ

 

 = 0.97 and (b) the phase portraits and
their fragments for (

 

1

 

) 

 

λ

 

 = 1.4229918…, 
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= 0.5; (
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 = 2,
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 = 0.5; (
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 = 0.4; and (
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 = 2, 
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 = 0.4.
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Thus, we can draw the following conclusions. The
introduction of an asymmetry (nonidentity of sub-
systems) into symmetrically coupled systems does not

influence the dimension of the synchronous chaotic
attractor (the attractor dimension characteristics remain
the same as those in an isolated subsystem). When the
superstability is lost, the attractor dimension begins to
increase and exhibits a nonmonotonic behavior on
approaching the synchronization boundary.
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Fig. 2. Diagrams showing (a) the plot of correlation dimen-
sion dc versus parameters k for λ = 2 and (b) the phase por-
traits and their fragments for k = 0.3 (1), 0.25 (2), 0.24 (3),
and 0.225 (4).

Spell: ok


