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Some problems arising during global reconstruction from time series are illustrated 

by reconstruction of etalon equations and modeling of real-world radiophysical systems. 

Efficiency of specialized approaches oriented to modeling of restricted classes of 

systems is demonstrated and new specific techniques are proposed.  

1. Introduction 

In practice, to obtain a mathematical model from general laws of nature (from 

“the first principles”) by individualizing them with reference to the object of 

investigation is often impossible. Typically, numerous phenomena of different nature 

which details are not clear affect the process under investigation or the first principles 

(similar to Newton’s laws in mechanics) for the field of interest are not discovered 

yet. In such a case, experimental data become the main source of information about 

an object and the problem of an empiric model construction arises. Its simplest 

example is approximation of a set of points on the plane (x, y) by a functional 

dependence y = f (x). Since results of observations1 are presented, as a rule, in the 

form of time series (sequences of observable values, measured at discrete time 

instants), then the problem transforms into modeling from time series. It is relevant in 

physics, meteorology, seismography, medicine and physiology, etc.   

Here, we mean modeling of complicated (mainly, chaotic) behavior. Earlier 

this problem was solved with the help of statistical models [1], since complicated 

behavior associated only with very large numbers of degrees of freedom. However, in 

1960-70s scientific community got to understand that complicated behavior can be 

exhibited even by simple (low-dimensional) nonlinear dynamical systems [2,3]. After 

                                                 
1 A experimentally measured quantity is usually called “an experimental observable” or simply “an 
observable”. 



that, there appeared a significant interest to construction of dynamical empiric models 

in the form of 

• 

• 

• 

• 

                                                

difference equations ,  where x  is a state 

vector, F is a vector-valued function, c  is a vector of its parameters, t  is 

discrete time [4-6],  
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ordinary differential equations (ODEs)  [4,7], )),(()( cxFx tt =

delay differential equations (DDEs) [8,9],  

partial differential equations [10].  

A peak of interest to the problem of global2 reconstruction was observed in 1990s 

[11-36], which was followed by the appearance of reviews on this subject [37-40]. 

But then disadvantages of the developed approaches were shown and difficulties of 

empiric modeling determined to a significant extent by the use of universal structures 

and polynomial approximation became apparent. All that reduced, in part, attention to 

this research area. In the latest papers devoted to global reconstruction, one observes 

certain shift of focus to problems of dynamical variables and model structure 

selection [41-50], though there are also some works oriented to further development 

of universal structures and techniques [51-53]. 

The purpose of this work is to illustrate some difficulties arising in global 

reconstruction from time series and to present approaches and technologic tricks for 

their overcoming. In section 2 we describe a general scheme for empiric modeling 

and the standard approach and analyze peculiarities of its application. Our original 

results concerning different stages of the scheme are presented in the rest of the paer 

which is organized as follows. In section 3 the problem of dynamical variables 

selection is considered. In section 4 we demonstrate possibilities of a specialized 

model structure selection on the example of nonautonomous systems. A specific 

technique for parameter estimation, based on peculiarities of behavior of systems 

with delayed feedback and efficient in the case of noisy time series, is shown in 

 
2 The term “global” means that model equations (written down in a closed form) describe behavior 
of an object in the entire phase space (globally). 
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section 5. In section 6 we present a special method of model refinement which is 

based on some properties of transient processes and allows to optimize model 

structure by excluding superfluous terms from it. We summarize and present 

generalizing considerations on the problem of global modeling in section 7.  

2. Typical scheme of empiric modeling and standard approach 

Despite the variety of existing approaches and practical situations, it is possible 

to distinguish the following basic stages in the procedure of modeling from a scalar 

time series:  

1. Organization of an experiment (if there is such a possibility) and obtaining a time 

series of an observable quantity η (a training time series): { , where 

,  is a sampling interval,  is the time series length. 

} ηη N
iit 1)( =

titti ∆−+= )1(0 t∆ ηN

2. Choice of the model equations type (stochastic or deterministic, difference or 

differential, etc). 

3. Choice of model variables . Here, one specifies the number of variables D 

and the kind of their relation with the observable η. As a rule, it is necessary to 

obtain time realizations of lacking (hidden) variables from the observable series.  

Dxx ,...,1

4. Selection of the forms of approximating functions  (i.e. components of F),  

, which will enter right-hand sides of model equations. On the stages 2 –

4, model structure is specified, after that only stages of calculation remain. 

kF

Dk ,..,1=

5. Estimation of model parameters с  from a time series data. Mс,...,1

6. Diagnostic check-up of a model, i.e. investigation of solutions to the obtained 

equations and their comparison with the observed process, criteria of quality being 

determined by modeling purposes.  

Under statistical modeling, one uses, as a rule, ARMA-models [1] which are 

linear stochastic difference equations where subsequent values of an observable are 

model variables. Under nonlinear dynamics approach to modeling, one can imagine 

(in contrast to linear case) arbitrarily many different forms of equations. They differ 

from each other by both function kinds and kind of relation between dynamical 

variables  and an observable η. Therefore, the problems of variables and Dxx ,...,1

 3 



model structure selection become more difficult. This situation became easier after 

Takens [54] and Sauer et al [55] had shown that it is possible to obtain from a scalar 

time realization )(tη  of a dynamical system such vectors x  that are related to the 

original state vectors in one-to-one and smooth fashion. So, they “legalized” 

theoretically the use of sequential values of an observable 

 (τ is a constant delay) or its sequential derivatives 

)(t
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 as coordinates of vectors , given  

(sufficient but not necessary condition), where m is a dimension of the manifold 

which the phase orbit of an original system belongs to. Even though it does not mean 

that employment of different variables (e.g., obtained by integration [56]) is 

necessarily less effective for modeling.  

)

f
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The choice of variables often dictates a model structure. For example, if 

sequential derivatives are used for reconstruction from a scalar time series, then 

model equations assume the form 

),,...,,(
...,
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,
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where , i.e. they involve the only function F.  

After the equation type and the way of dynamical variables reconstruction are 

chosen, one should select the forms of functions entering right-hand sides.  Under 

global modeling, a required function F is most commonly looked for in the pseudo-

linear form, i.e. linear combination of nonlinear basis functions : i

∑
=

=
M

j
jj fc

1
)() xx .                                                     (2) 

One widely uses the standard polynomial basis: 1 , i.e. 

representation of F in the form of the multivariate algebraic polynomial of some 

...,,,...,,, 211 xxx
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order K. Coefficients c  are estimated, as a rule, via the least-squares routinej
3, i.e. by 

minimization of the quantity ( )( )∑
=

−=
N

i
iiD tFtx

N 1

22 )()(1 xε .  

Choice of dynamical variables and model structure is often oriented to 

construction of models in a universal form. Thus, widely exploited model ODEs (1) 

with a polynomial in the right-hand side are often called standard [17,18]. This term 

could be referred to all the other cases when no information on specific features of an 

object is incorporated into the model structure. The pretensions to universality are 

theoretically validated [55]. Nonetheless, all the achievements 4 in modeling of real-

world objects we are aware of are isolated instances. A blunders at any of the stages 

of modeling scheme can become an obstacle. Choice of variables can be unfortunate. 

But even suitable variables can not help if the form of functions is inappropriate. 

Thus, the popular standard structure can not be the best one for the entire multitude of 

real-world systems and situations. As a rule, it provides very cumbersome equations 

exhibiting divergent solutions (polynomial fit is especially inefficient in high-

dimensional spaces). 

Seemingly, a promising way of the further development of global 

reconstruction methods is rejection of the pretensions to model structure universality 

and creation of specialized approaches oriented to some classes of objects. It is 

reasonable to consider sufficiently important classes which specific features are 

known. But development of specialized techniques for parameter estimation and 

                                                 
3 One could also employ the more general maximum likelihood principle [57]. But it is reasonable 

only under the high noise levels that is not our case. So, we have used the least-squares approach. 
4 Global model ODEs with polynomials are used for control [11,26], attractor characteristics 

estimation from short and noisy time series [30], signal classification [23,24], and confidential 

transmission of information [31]. Under the standard approach, there were obtained models 

qualitatively reproducing complex dynamics of Belousov – Zhabotinskiy reaction [21], 

electrochemical process of copper dissolution in sulphuric acid [19], a certain regime of vortex fluid 

movement [20]. 
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model refinement seems also quite useful. All these considerations are illustrated in 

the next sections.  

3. Dynamical variables selection: preliminary testing for single-

valuedness and continuity 

As it has been already mentioned, in constructing model equations in the form 

))(()( tt xFy =

x= ,( 1x

 from a time series { , one  forms the series of state vectors { }, 

where ,  are dynamical variables, D is a model dimension. 

Coordinates of vectors x can be obtained as sequential derivatives, time delays, etc. 

Then, the series of quantities to enter left-hand sides of model equations { } is 

obtained from the series {  according to the chosen model type: either by 

numerical differentiation of {   for ODEs 

})( itç
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, or just by the shift 

of along the time axis for discrete maps . Finally, the forms of  

approximating functions  are specified and their parameters are estimated. 

{ })( itx

kF

An uncontrolled choice of the variables can make approximation of the 

dependencies  with a smooth function extremely problematic [58] or even 

make these dependencies non-unique. Here, we describe the method of estimating 

suitability and “convenience” of the chosen variables  for constructing a global 

dynamical model. It is based on testing the series  and {  for single-

valuedness and continuity of each dependency  in the entire region of an 

observed motion [46]. Importantly, we use local characteristics rather than averaged 

ones [35,59].  

)(xky
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Our technique is based on the following consideration. If a dependency y(x) is 

single-valued and continuous in a domain V, then the difference )()( 0xx yy −  tends 

to zero when 00 →− xx  for each . In practice, violation of this condition 

may be viewed as a sign of non-single-valuedness or discontinuity of the dependency 

y(x). Since the observable time series has a finite length, the above-mentioned limit, 

strictly speaking, cannot be found. However, it is possible to trace a tendency in 

variations of the quantity 

V∈0x

)j()( i tyty −  when the vectors  and x  are made )( itx )( jt
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closer and closer, down to a certain finite distance. Given sufficiently large amount of 

data , high accuracy of measurements, and low noise level, this distance can be 

made small enough for each region of the observed motion. 

ηN

max
x ks∈

)(δ

The method of testing consists in the following (Fig.1a). The domain V is 

partitioned into identical hypercubic boxes of the size δ, all boxes containing at least 

two vectors are selected (they are denoted ). Difference between maximal 

and minimal values of y inside a box   is called local variation 

. Maximal local variation ε  and its graph 

 are used as the main characteristics of the investigated dependency. The 

suitability of the considered variables x and y for global modeling is assessed in the 

following way. 

Msss ,...,, 21

ks
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x

yy
ksk ∈

−=ε

maxε

kMk
ε

≤≤
=

1max max

1) If a dependency y(x) is single-valued and continuous, the value of ε  is 

sufficiently small for small δ and tends to zero when δ  (Fig.1b, filled squares). 

It is not hard to show that a graph ε  is a straight line for sufficiently small δ. 

max

0→

)(max δ

2) If a single-valued and continuous dependency has a region of very steep 

slope (a “jump”), then ε  remains rather big for sufficiently small δ, since that 

region is situated within one box. However, the further decrease of δ leads to the 

decrease of ε  because the region of a jump becomes divided into several boxes. 

The graph  exhibits a “breakpoint” at the value of δ equal to the size of the 

region of steep slope (e.g., Fig.1b, white circles). In such a case, the dependency y(x) 

is also difficult to approximate with a smooth function.  

max

max

(max δ )ε

3) If ε  remains rather large and does not decrease at δ  (Fig.1b, filled 

circles), then the considered variables are not appropriate for global modeling. Such a 

situation can be related both with non-uniqueness of the dependency and high noise 

level  

max 0→

So, dynamical variables should be selected so that the graph ε  tend to 

the origin gradually, without breakpoints, and with small slope (Fig.1b, filled 

squares). The most important feature distinguishing the proposed approach and 

)(max δ
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providing its usefulness for global modeling is employment of local (not averaged) 

characteristics. Let us illustrate it by modeling a real-world radiophysical system: a 

nonlinear electric circuit (harmonically driven RLC-circuit with switched capacitors) 

which scheme is shown in Fig.2a. The element K is an electronic key, a microscheme 

comprising dozens of transistors and other passive elements which is fed from a 

special source of dc-potential. At small values of voltage U on the capacity C , the 

resistance of the key is very large and linear oscillations occur in the circuit . 

When the voltage U achieves a threshold value U , the resistance of the key 

decreases abruptly and the capacity  becomes connected to the circuit. Back 

switching occurs approximately at the same value of U (in fact, at somewhat smaller 

value – hysteresis takes place). As a result, the system is nonlinear and exhibits 

complex dynamics (in particular, chaotic oscillations) at big values of driving 

amplitude [60,61]. 

1

1RLC
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We employ a chaotic time realization of the current I through the resistor R  
(see Fig.4а) as an observable time series { . The data are recorded with the aid 

of a 12-bit ADC, the sampling interval is ∆t = 4 µsec, the driving period is T = 84∆t, 

the length of the series is . Six examples are considered below (three 

variants of the model ODEs structure for two different observables). The results of 

the application of the proposed method (Fig.4b,c) and of the model construction are 

presented. The graphs in Fig.4 are numbered in agreement with the numbers of the 

following examples. 

}

+

)( itη
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1) A popular model structure 
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where  are time delay coordinates, 

 is the first zero of the autocorrelation function. A smoothing polynomial is 

constructed for numerical differentiation. All three dependencies 

 are analyzed. The value of ε  does not tend to zero when δ 

()),()(),()( 21 ητηη =+== iiiiii tttxttx

t∆
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= 21τ
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decreases for all k. All graphs ε  look similarly, one of them is presented in 

Fig.2b with filled squares (for k = 3). It indicates the impossibility of constructing an 

efficient global model that is confirmed in practice completely. 

)(max δ

2) A standard model (1,2) with . The dependency  is 

tested.  decreases when δ  decreases (Fig.2b, white circles) that points out to 

the possible single-valuedness. The result of modeling: an efficient model, which 

right-hand sides are algebraic polynomials, can not be obtained. Obviously, a 

polynomial is inappropriate to fit the dependency . Another form of the 

approximating function is necessary here. Its choice is a difficult problem which is 

not a subject of the present paper. 

)()(1 ii ttx η=

x

),,( 3213 xxxx

)(max δε

),,( 3213 xxx

3) Following the recommendations on the reconstruction of nonautonomous 

systems [33,34], we construct a model in the form 

),,,(
,

212

21

ϕxxFx
xx
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where  and ϕ  is the phase of driving. The dependency  is 

tested. The time series of the phase ϕ  is obtained as ϕ , the 

angular frequency ω is assumed to be known. The graph ε  (Fig.2b, filled 

circles) shows that the dependency is, possibly, single-valued. However, an efficient 

model with harmonic driving and polynomial fit can not be obtained. Again, one 

needs to select a special form of the function F. 

)()(1 ii ttx η= ),,( 212 ϕxxx

)2(mod π)( ω ii tt =

)(max δ

3) A standard model (1,2) with . This variable makes physical 

sense, it is the summed charge on the capacities C  and . The time series { } is 

obtained via the numerical integration of the measured time series of the current I 

(using the method of trapeziums). The value of ε  for the dependency 

 does not decrease when δ decreases (Fig.2c, white circles) and remains 

large. An effective model can not be constructed. 

∫=
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A model (3) with  and delayed coordinates  

and , where τ is again the first zero of the ACF. All three 

dependencies  are tested. The graphs ε  do not tend to 

the origin when δ decreases in all three cases. One of them (for k = 1) is shown in 

Fig.2c with filled squares. An effective model can not be constructed. 

∫=
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i dtttx

1

)()(1 η
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)()( 12 τ+= ii txtx

)δ

)2()( 13 τ+= ii txtx

,,( 21 xxxxk (max

6) A model (4) with . A graph ε  shows that the 

dependency  is single-valued and, moreover, varies “gradually” (Fig.2c, 

filled circles).  A reconstructed model (4) with additive harmonic driving and 

bivariate polynomial of the 11th order demonstrates a chaotic attractor qualitatively 

similar to the experimental one (see also section 4, Fig.4) and provides an accurate 

forecast 5T ahead. 

∫=
it

t
i dtttx

1

)()(1 η )(max δ

),,( 212 ϕxxx

It is significant that an optimistic estimate according to the criterion ε  and 

good results of the global reconstruction are achieved only in the last (the sixth) case. 

The graphs for averaged over all the boxes local variation 

)(max δ

)(δε  are, however,  

practically the same for all above-mentioned choices of variables (one of them is 

shown in Fig.2b with the dashed line). It means that the average quantity ε  does not 

provide all information necessary for global modeling. Therefore ε  can be used in 

dynamical modeling only as an additional characteristic.  

4. Model structure selection: nonautonomous systems under regular 

external driving 

Here, we consider another cause of the standard approach inefficiency. In fact, 

its failure is inevitable “payment” for the generality of model structure. Probability to 

guess optimal model form without using a priori information or special preliminary 

investigation of the object is quite low. Therefore, we suggest to choose some classes 

of systems and modify the standard structure with reference to that classes. Here, we 

propose such a modification for modeling systems under regular external driving. It 

consists in the use of nonautonomous ODEs. That is function explicitly depending on 
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time are incorporated into the model equations. First, we consider the simplest case of 

harmonic additive driving. Model is suggested to be constructed in the form 

,2sin2cos),...,,(

...
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where F is an algebraic polynomial of some order K (at D = 2, this is just an equation 

of harmonically driven oscillator). However, it is insufficient only to incorporate the 

driving into the last equation (5), a necessary condition for the success of modeling is 

to estimate driving period T  from a time series with high accuracy. 

Prerequisites for construction of model equations in the form (5) can be a priori 

information or the presence of a discrete peak in the power spectrum of an observed 

time series (Fig.3a). Location of the latter can also serve as a rough estimate of 

driving period. Given a precise value of T, parameters a and b and polynomial 

coefficients are easily estimated via the linear least-squares routine. But to estimate Т 

is not so simple since it enter equation (5) in a nonlinear way. Therefore, it is 

estimated individually using a special procedure [33] (it is illustrated in Fig.3b where 

the graph of an approximation error versus trial value of T is shown). Importantly, 

error in its estimation  (where T  is an unknown “truth” value) leads to a 

significant “phase shift” between the truth driving and its model fit if the training 

time series is long. The following relationships between relative error of driving 

approximation , and quantities  and T  (where T  is the duration of the 

observed time realization) holds 

0TTT −=∆ 0

Tε 0T/T∆ 0/TN N

.
3

2

00 T
T

T
T N

T
∆

≈
π

ε                                                      (6) 

It follows that the driving period should be estimated more accurately for longer 

training time series, otherwise incorporation of explicit time dependence is useless.  

A result of application of the proposed technique to modeling of the above-

mentioned (section 3) harmonically driven RLC-circuit with switched capacitors from 
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the integrated time series of current I (i.e. in the case selected as the best for modeling 

with the help of the testing method of section 3) are presented in Fig.4. Obtained 

empiric model (5) with D = 2 and K = 11 (and excluded superfluous terms) behaves 

like the original system and provides sufficiently accurate forecast quite far ahead. 

Harmonic force represents an important but sufficiently narrow class of 

possible ways of driving. The proposed approach to modification of standard 

structure can be extended to more complex and realistic situations, namely, for  

1. arbitrary way of entry of harmonic driving; 

2. arbitrary form of regular (i.e. periodic or quasiperiodic) driving. 

For the first situation, significantly bigger than for a model (5) degree of 

generality can be achieved by using a polynomial F with alternating coefficients [44]:  
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To estimate parameters of a model (7,8), one can exploit an above mentioned 

procedure where accurate determination of the driving period T  is provided. 

To illustrate of efficiency and advantages of the structure (7,8), we present a 

numerical example: reconstruction of equations from chaotic time series of Toda 

oscillator when driving is not only additive. Original equation read 

.sin7)1)(cos45(45.0

,
1

22

21

tetuu

uu
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=
−

                          (9) 

Time series is obtained here (and in all numerical examples presented below) by 

numerical integration of original equations with the help of Runge-Kutta routine. The 

best model (7,8) is achieved at D = 2, K = 9, it exhibits chaotic attractor practically 
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identical to the original one (Fig.5a,b). Such results can not be achieved with models 

(5) (Fig.5c). Standard models (1,2) demonstrate, as a rule, globally unstable orbits 

(Fig.5d). Prediction times for the best models (7,8), (5) and (1,2) are equal to 7T, 1.5T 

and 0.15T, respectively.  

For the second situation (arbitrary regular driving), we propose to use the 

structure of equations (7) involving time dependence but not necessarily harmonic:  

)(),...,,(),,...,,( 2121 tgxxxftxxxF DD += ,                           (10) 

where f is a n algebraic polynomial, and function  describes the driving and 

involves also free parameters. Two approaches to the specification of  are 

possible. The first one is to guess a special formula on the basis of a priori 

information. The second approach is more universal and can be used in the absence 

of detailed knowledge of the form of driving which is approximated as 
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Here, m = 1 for the periodic case, while quasiperiodic driving is described as the sum 

of m >1 trigonometric polynomials with different periods T  and different orders .  m mk

Procedure of estimating parameters of the model (7,10) also rests on the least-squares 

technique. But, since here several free parameters can enter the expression for the 

driving g in a nonlinear way, it is reasonable to use one of well-known iterative 

methods for the solution to the nonlinear least-squares problem (we use a modified 

Levenberg – Marquardt routine [62]).  

Efficiency of the approach was verified in numerical experiments 

(reconstruction of equations from time series of Toda oscillator under different forms 

of driving: pulse periodic, periodic with subharmonics, quasiperiodic [63]). We note 

that efficient models with trigonometric polynomials (11) can be achieved for very 

large number of harmonics (that is necessary to describe uneven driving signal). This 

is an important advantage of the proposed approach, since instability of models (1,2) 
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with algebraic polynomials of high orders seems the main reason for the standard 

approach failures. 

The considered stages (dynamical variables and model structure selection) are 

the key ones in modeling. However, efficient specialized techniques for parameter 

estimation and model refinement are also useful. Techniques of such a sort are 

presented in the following two sections 

5. Model parameters estimation: quick determination of delay time 

from noisy time series  

Here, we describe a technique of parameter estimation for DDEs. The 

technique is based on some specific properties of time realizations of delayed 

feedback systems [47,48]. We consider one of the most popular first-order DDE as an 

object of investigation 

))(()()( 00 τε +−= txftxtx − ,                                         (12) 

where τ  is the delay time, f is a nonlinear function, and parameter ε  characterizes 

inertial properties of the system. In general case, Eq. (12) is a mathematical model of 

an oscillating system composed of a ring with three ideal elements: nonlinear, delay, 

and inertial ones. In a radiophysical version of the ring (Fig. 6), an amplifier with the 

transfer function f plays the role of nonlinear device, a delay line provides a delay τ , 

and a filter defines the parameter ε . We develop a technique for estimating τ , f, 

and ε  from the time series. 

0 0

0

0 0

0

The proposed method of estimating τ  exploits the features of extrema shape 

and location in the temporal realization x(t) of the system (12). The peculiarities of 

extrema location in time are clearly illustrated by N(τ) plot in Fig. 7. To construct it 

one has to define for different τ values the number N of pairs of extrema in x(t), that 

are separated in time by τ. If N is normalized to the total number of extrema, then for 

sufficiently large extrema number, it can be used as an estimation of probability to 

find a pair of extrema in x(t) separated by the interval τ. Let us explain the qualitative 

features of N(τ) for various values of parameter ε . 

0

0
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In the absence of inertial properties (ε ) differentiation of Eq. (12) gives 00 =

)())(()( 00 ττ −−′= txtxftx .                                          (13) 

From Eq. (13) it follows that if , then . Thus, for ε  every 

extremum of x(t) is followed within the time τ  by the extremum. As the result, N(τ) 

shows a maximum for τ =  in Fig. 7(a). 

0)( 0 =−τtx 0)( =tx 00 =

0

0τ

In the presence of inertial properties ( ), which corresponds to real 

situations, the most probable value of the time interval between extrema in x(t) shifts 

from τ  to larger values. This effect can be explained using the ring system shown in 

Fig. 6: the filter introduces a certain additional delay in the system. As the result, the 

extrema in x(t) can be found most often at the distance τ +  apart (Fig. 7b). For 

instance, the computational investigation of Eq. (12) with quadratic nonlinear 

function  allows us to obtain an estimation 

00 >ε

0

sτ0

2)( xxf −= λ 20εsτ ≈  for large values of 

the parameter of nonlinearity λ. 

For  the extrema in x(t) are close to quadratic ones and therefore 

 and  at the extremal points. It can be shown that in this case there are 

practically no extrema in x(t) separated in time by τ . To prove this, let us 

differentiate Eq. (12) with respect to t: 

00 >ε

)(tx0)( =tx 0=

0

)())(()()( 000 ττε −′+−= txtxftxtx − .                                    (14) 

If for  in a typical case , then, as it can be seen from Eq. (14), for 

 the condition  must be fulfilled. Thus, there must be no extremum 

separated in time by τ  from a quadratic extremum and hence . For 

, the derivatives  and  can be simultaneously equal to zero, i.e., it is 

possible to find extrema separated in time by τ. The proposed method of τ  

determination does not need significant time of computation because only operations 

of comparing and adding can be used for the extrema definition and N(τ) 

construction. 

0)( =tx 0)( =tx

)( τ−tx

00 ≠ε

0ττ ≠

0)( ≠tx

0

)(tx

0)( 0 →τN

0
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To recover the parameter ε  and the nonlinear function f of system (12) from the 

chaotic time series we plot in a plane a set of points with coordinates 

. According to Eq. (12), which can be written in the form 

0

)( )()(),( 00 txtxtx +− ετ

))(()()( 00 τε =+ txftxtx −                                                (15) 

the constructed set of points reproduces the function f. Since the parameter  is a 

priori unknown, one needs to plot ε  versus  under variation of ε, 

searching for a single-valued dependence in the plane ( ), which 

is possible only for ε = . As a quantitative criterion of single-valuedness in 

searching for ε  we use the minimal length of a line L(ε), connecting all points 

ordered with respect to  in the plane ( ). The minimum of 

L(ε) is observed at ε = . The set of points constructed for the defined ε  in the 

plane  reproduces the nonlinear function, which can be 

approximated if necessary. In contrast to methods presented in [8,35] which use only 

extremal points or points selected according to a certain rule for the nonlinear 

function recovery, the proposed technique uses all points of the time series. It allows 

one to estimate the parameter ε  and to reconstruct the nonlinear function from short 

time series even in the regimes of weakly developed chaos. 

0ε

0

)()( txtx +

x

)

)( 0τ−tx

( 0tx −τ

)(), xtx +ε

)()(), txtx +ε

)(t

0ε

( τ−tx

0ε

)() tx+

0

),0

)0

0

( 0t −τ

( ( 0 xtx − ετ (t

To test the efficiency of the proposed technique we apply the method to a time 

series produced by the Mackey-Glass equation 

)(1
)(

)()(
0

0

τ
τ
−+

−
+−=

tx
tax

tbxtx c ,                                         (16) 

which can be converted to Eq. (12) with b10 =ε  and the function 

))(1(
)(

))((
0

0
0 τ

τ
τ

−+
−

=−
txb

tax
txf c .                                        (17) 

The parameters of the system (16) are chosen to be a = 0.2, b = 0.1, c = 10, τ  to 

produce a dynamics on a high-dimensional chaotic attractor.  

3000 =

Fig.8 illustrates the reconstruction of the system parameters. To construct the 

N(τ) plot we use 10000 points of the time series of x(t). The time series exhibits about 
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600 extrema and N(τ) is normalized to their total number. The time derivatives  

are estimated from the time series by applying a local parabolic approximation. The 

absolute minimum of N(τ) takes place exactly at τ , where N(300) = 0. L(ε) 

is normalized to the most uncorrelated point set. To reduce the computation time one 

can choose a large initial step of ε variation and then to reduce it in the neighborhood 

of minimum L(ε). Thus, in Fig.8b the step of ε variation is 1 and in the inset this step 

is reduced to 0.1. The minimum of L(ε) takes place exactly at 

)(tx

3000 == τ

1010 === bεε . The 

recovered nonlinear function (Fig.8c) coincides practically with the true function 

(17). Note, that for the construction of the L(ε) plot and for the recovery of the 

function f we use only 1000 points of the time series. 

To investigate the robustness of the method to perturbations we apply it to the 

data produced by adding a zero-mean Gaussian white noise to the time series of 

Eq. (16). We found out that the method is still efficient for a noise level of 10%. 

As another example, we consider an experimental time series from an electronic 

oscillator with delayed feedback. For the case when the filter (see Fig.6) is a low-

frequency first-order RC-filter this oscillator is given by 

))(()()( 0τ−+−= tVftVtVRC ,                                       (18) 

where V(t) and V  are the delay line input and output voltages, respectively; R 

and C are the resistance and capacitance of the filter elements. Eq. (18) is of form 

(12) with ε . In our experiment the nonlinear device has a quadratic transfer 

function. The proposed method allows us to define accurately the parameters of the 

system. 

)( 0τ−t

RC=0

The procedure of the delay time estimation from the N(τ) plot considered with 

systems like (12) can be successfully applied to time series gained from a more 

general class of time-delay systems 

))(),(()( 0τ−= txtxFtx .                                               (19) 

Time differentiation of Eq. (19) gives 

)(
)(

))(),((
)(

)(
))(),((

)( 0
0

00 τ
τ

ττ
−

−∂
−∂

+
∂

−∂
= tx

tx
txtxF

tx
tx
txtxF

tx .              (20) 
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Similarly to Eq. (14), Eq. (20) implies that in the case of quadratic extrema 

derivatives  and  do not vanish simultaneously, i.e., if , then 

. 

)(tx

0

)( 0τ−tx 0)( =tx

)( 0 ≠−τtx

In principle, it is possible to extend the proposed method of τ0 definition from 

time series to high-dimensional time-delay systems having the following form 

))(),(()(...)()( 01
)1(

1
)( τ−=+++ −

− txtxFtxatxatx n
nn ,                      (21) 

where  is the derivative of order n and a  are the coefficients. 

Differentiation of Eq. (21) with respect to t gives 

)()( tx n
11 ,... −na

)(
)(

))(),((
)(

)(
))(),((

)()...()( 0
0

00
1

)(
1

)1( τ
τ

ττ
−

−∂
−∂

+
∂

−∂
=++ −

+ tx
tx

txtxF
tx

tx
txtxF

txatxatx n
nn .  

(22) 

The condition  for  will be satisfied if the left-hand side of 

Eq. (22) does not vanish. In general, a probability to obtain zero in the left-hand side 

of Eq. (22) is very small and therefore, the N(τ) plot qualitatively must have a shape 

similar to that inherent in the case of first-order delay-differential equations like (12) 

and (19). 

0)( 0 ≠−τtx 0)( =tx

The proposed method of estimation of the parameter ε0 and the nonlinear 

function can be also applied to a variety of nonscalar time-delay systems. For 

instance, the dynamics of an electronic oscillator with delayed feedback containing 

two identical in-series RC-filters is described by the second-order delay-differential 

equation 

))(()()(2)( 00
2
0 τεε −+−=+ tVftVtVtV ,                                  (23) 

where . Plotting ε  versus V  under variation of 

ε, we can estimate the parameter ε  by the location of the minimum of L(ε) and 

recover the function f. Thus, the proposed technique of parameter estimation can be 

successfully applied to a wide class of time-delay systems. 

RC=0ε )()(2)(2 tVtVtV ++ ε

0

)( 0τ−t
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6. “Technologic trick”: model structure optimization using transients  

Usually, global models are constructed from time realizations of established 

motion corresponding to an attractor in phase space. Such an approach seems 

reasonable when the problem of predicting future behavior of an object after 

establishing of oscillations is addressed. However, for modeling object dynamics in 

wide region of  phase space, success is more probable when one uses time 

realizations of transient processes (when a phase orbit has not yet settled down onto 

an attractor). In this section we will show how this property of transients (to explore 

wider region of phase space) can be used to refine a model (to optimize its structure). 

To detect a part of a time series which is the optimal for modeling, we compare 

performance of global models obtained from different parts of a time series (some of 

them involves a transient while the others do not). Let us use etalon differential 

equations of Van der Pol – Toda oscillator as an object of modeling: 

).exp(1)1(
,

12
2
12

21

xxxx
xx

−+−−=
=

                                   (24) 

Reconstruction is performed form a chaotic scalar time series of the -coordinate 

with a transient (a phase orbit is shown in Fig.9a). Models of the form (1) with  D = 2 

are constructed in two variants differing from each other by the form of a function 

. In the first case, a bivariate algebraic polynomial of some order K is 

employed: 

1x

),( 21 xxF

.,),(
0,

2121 KjixxcxxF
K

ji

ji
ij ≤+= ∑

=
                              (25) 

In the second case, F is given by 

)()(),( 12
2
121 xfxxxxF K+−= λ ,                            (26) 

where   is a univariate algebraic polynomial of the order K, which 

approximates exponential function. To assess a model quality, right-hand side 

reconstruction error  σ is calculated. This quantity compare functions entering right-

hand sides of an object  and a model : 

)( 1xf K

0F F

(∫∫ −=
S

dxdxxxFxxF 21
2

21021 ),(),(σ ) ,                         (27) 
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where S is an integration domain containing the phase orbit (hence, much larger than 

the domain of an attractor). The lower is σ, the better is a model. 

A procedure of searching for an optimal for modeling part of the time series 

(reconstruction window) consists in following. A certain length of a window (M 

points) is specified. A reconstruction window can be denoted as { } , where 

m is the number of its initial point. The initial point of the original time series 

coincides with the initial point of a reconstruction window for m = 0. When m 

increases, a reconstruction window moves along a time series into the region of an 

attractor. Models are constructed for different values of m. Optimal location of the 

reconstruction window corresponds to minimum on the graph σ(m)of above-

mentioned criteria of quality versus.  

1)( −+
=

Mm
miitη

Graphs σ(m) in Fig.9b show that the best results for a model (1,25) are 

obtained with the use of the transient (the curve 1, small m). For a model (1,26) the 

results are better by an order of magnitude (the curve 2), but they are almost 

independent on the location of the reconstruction window. It can be explained as 

follows. The first model structure (1,25) includes variety of “superfluous” terms, e.g., 

the terms , , , etc, which are not relevant for the original equation (24). 

Theoretically, model coefficients corresponding to superfluous terms should vanish. 

But in practice their estimated values differ from 0 due to truncation errors and 

impossibility of accurate approximation of exponential function by a finite power 

series. Superfluous terms can become significant outside of reconstruction window 

and lead to essential differences between an object and a model. For a model (1,25) 

involving superfluous terms, σ depends essentially on m (Fig.9b) that is induced by 

essential dependence of “superfluous coefficients” on m (Fig.10). For a model (1,26), 

the use of a transient does not have advantages because model refinement is due to 

the absence of superfluous terms rather than extension of the explored region in the 

phase space. 

21xx 2
21xx 2

2
2
1 xx

Let us look again at Fig.10a where graphs for necessary terms are grouped on 

the left and for superfluous terms – on the right. The superfluous coefficients are 
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obviously less stable than the necessary ones, the instability appearing close to the 

beginning of the time series (in the region of a transient). Resting on these 

considerations, we propose a procedure of model structure refinement based on 

sequential excluding of terms with the less stable coefficients from the model. The 

degree of stability (reliability) of some coefficient a can be defined as the ratio of its 

mean value to its standard deviation 
( )21

aa

a
m

−
= , where angle brackets 

designate average over the ensemble of values of a, obtained at different m. 

Thus, to optimize a model structure, the less stable coefficient (with smallest 

) is found and a corresponding term is excluded from the model, reconstruction 

procedure is repeated for the simplified structure and so on until exclusion of a new 

term leads to model deterioration. In Fig.10b a dependence of the model error σ  on 

the number of excluded terms obtained during reconstruction from time series of the 

system (24) starting from the model structure (1,25). The proposed procedure are 

shown to allow for essential enhancement of the model quality. 

1m

7. Conclusions  

To construct dynamical models means to follow the path pointed by an 

optimistic outlook of determinism. There is neither guarantee that the path will lead 

out to the highway, nor assurance that such a highway always exists. But even if a 

dynamical model of an object is possible, one needs accuracy and “technological 

purity” to achieve a success. An error at any stage of the empiric modeling scheme 

presented in section 2 can make obtaining an efficient dynamical model impossible. 

Let us remember, by way of an analogy, how at the early stage of microelectronics 

underestimation of the role of dust particles and foreign microinclusions turned, e.g., 

production of a diode into art and did not allow to do with confidence such things that 

nowadays are being done routinely. So, let us hope for the absence of principal and 

overwhelming obstacles on the way of empiric modeling. 

However, we believe that to progress in this field, one needs to develop not 

only original technical tricks but also (this is, possibly, the main thing) new 

 21



approaches oriented to sufficiently narrow classes of systems. For the latter, a special 

preliminary analysis of time series and attraction of a priori information are 

necessary. Our work shows prospects and necessity of such a “specialization”. The 

main results are following:  

1. the proposed technique for preliminary investigation of times series of dynamical 

variables (section 3) allows to find variants which are the most suitable for modeling. 

Its advantage is in the use of local characteristics which reveal even small regions of 

non-uniqueness or discontinuity in dependencies between dynamical variables and 

quantities to enter left-hand sides of equations. However, even good choice of 

variables does not guarantee a success: one needs to succeed in the choice of 

functions form and model parameters estimation;  

2. the proposed modifications of the standard structure of model equations (section 

4) allow to obtain efficient models of nonautonomous systems in the case of  

arbitrary regular driving, while the standard approach does not give satisfactory 

results; 

3. a special way of estimating delay time for DDEs reconstruction is proposed 

(section 5). It is based on peculiarities of time realizations of delayed feedback 

systems and efficient even when dealing with highly noisy data; 

4. employed model structure often turns out very cumbersome. Therefore, it is rather 

important to delete “superfluous” terms (which carry only distortions) from the 

model. To detect such terms, we propose a special procedure which uses 

reconstruction from different parts of a transient process realization.  

All the presented approaches are demonstrated by constructing models from 

numerical solutions of etalon equations and from time realizations of real-world 

(radiophysical) systems. 
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Figure captions 

Fig.1. (а) Illustration for a technique of testing a dependency  y(x) for single-

valuedness and continuity in the case D = 2. (б) Possible appearance of graphs 

 for different variants of dynamical variables. )(max δε

Fig.2. (a) The scheme for the circuit with switched capacitors: C  

   U  U  driving frequency 

equals 2.98 kHz, sampling frequency equals 250 kHz. (b) The graphs ε  for 

different variants of the model structure (for the dynamical variable ): 1) for a 

dependency  of a model (3), filled squares, 2) for a dependency 

 of a model (1), white circles, 3) for a dependency  of a 

model (4), filled circles. The graphs 
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ε  look similar for all the examples (the graph 

for the first one is shown with the dashed line). (c) The graphs ε  for different 

variants of the model structure (when the dynamical variable  is an integral of the 

current I): 1) for a dependency  of a model (3), filled squares, 2) for a 
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dependency  of a model (1), white circles, 3) for a dependency 

 of a model (4), filled circles. 

),,( 3213 xxxx
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),,( 212 ϕxxx

00 =

Fig.3. (a) Typical appearance of the power spectrum for harmonically driven chaotic 

systems: there is a pronounced peak. (b) Approximation error for a model (5) versus 

trial value of driving period T. 

Fig.4. (a) Projection of an experimental orbit for the circuit with switched capacitors 

(shown in Fig.2a) onto the plane summed charge – current. (b) A corresponding 

projection for the best reconstructed model, i.e. a model (5) with D = 2 and K = 11. 

Fig.5. (a) Projection of attractor of Toda oscillator (9). (b-d) Projections of phase 

orbits for a model (7,8) (D = 2, K  = 9), a model (5) (D = 2, K = 10) and a standard 

model (D  = 4, K = 6), respectively. 

Fig. 6. Radiophysical model of time-delay system. 

Fig.7. Number N of pairs of extrema in a realization of Eq. (12) separated in time by 

τ, as a function of τ. N(τ) is normalized to the total number of extrema in time series. 

(a) ε , (b) ε . 

Fig.8. (a) Normalized number N of pairs of extrema in the time series of Eq. (16) 

separated in time by τ for τ = 1,…,400. (b) Length L of a line connecting points 

ordered with respect to  in the plane ( ) as a function of ε. 

The inset shows L(ε) in the neighborhood of the minimum. (c) The recovered 

nonlinear function.  

)0τ− )()(),( 0 txtxtx +− ετ

Fig.9. (a) A phase orbit of the system (24). (b) Model error σ (27) versus the location 

m of reconstruction window for a model (1,25) (the curve 1) and a model (1,26) (the 

curve 2) with polynomials of 7th order. 

Fig.10. Results of reconstruction of the system (24) from a scalar time series. (a) 

Dependencies of coefficients (corresponding to presented near the graphs polynomial 

terms) of a model (1,25) on the location m of reconstruction window. (b) Model error 

σ  versus the number of excluded terms, a “starting” model structure being (1,25). 
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