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The success of modeling from an experimental time series is determined to a significant extent by the choice
of dynamical variables. We propose a method for preliminary investigation of a time series whose purpose is
to find out whether a global dynamical model with smooth functions can be constructed for the chosen
variables. The method consists in the estimation of single valuedness and continuity of relations between
dynamical variables and variables to enter left-hand sides of model equations. The method is explained with
numerical examples. Its efficiency is demonstrated by modeling a real nonlinear electric circuit.
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I. INTRODUCTION

Dynamical modeling implies the specification of a state
vector x�(x1 ,x2 , . . . ,xD)�RD, where xk are dynamical
variables and D is a model dimension, and of an evolution
operator which provides unique prediction of future states
starting from an initial one. A model which describes the
behavior of an object in a broad region of the phase space
(x1 ,x2 , . . . ,xD) is called global. A relevant approach to ob-
taining such a model is the reconstruction of equations from
a time series, i.e., from a discrete sequence of experimental
data ��(t i)�, where t i�i�t , i�1,2, . . . ,N , �t is a sampling
interval. Different methods of constructing ordinary differen-
tial equations �ODE’s� �1–6�, discrete maps �7–9�, and delay
differential equations �DDE’s� �10,11� have already been
suggested. Such phenomenological models have shown their
efficiency for short-term prediction �7�, estimation of some
characteristics of an observed process �such as fractal dimen-
sions �3� and Lyapunov exponents �2,12��, and signal classi-
fication �13�.

In general, a procedure of constructing model equations
y(t)�f �x(t)� from a time series ��(t i)�

1 is as follows. First,
a time series of state vectors �x(t i)� is formed from the origi-
nal series ��(t i)�.2 Second, a series �y(t i)� is obtained from
�x(t i)� according to the chosen model type; either by nu-
merical differentiation of the series �x(t i)� �for ODE’s
dx/dt�f �x(t)��, or just by the shift of the series �x(t i)�
along the time axis �for discrete maps x(t i�1)�f �x(t i)��.
Third, the forms of the approximating functions f k �compo-
nents of the vector-valued function f) are specified and their
coefficients are calculated. The latter is often performed via

the least-squares routine �5,8,9�, i.e., so as to minimize the
values

�
i�1

N

�yk� t i�� f k„x� t i�…�2�min , k�1, . . . ,D .

But we should note that the least-squares routine gives suf-
ficiently accurate estimates only if the noise level is low �say,
less than 5%). An advanced routine has recently been sug-
gested �14� which utilizes a more general form of the maxi-
mum likelihood principle and provides more accurate esti-
mates of the coefficients. That routine should be always
preferred when the number of coefficients to be calculated is
quite small and the noise level is high. The most important
and difficult steps of the described procedure are the choice
of the dynamical variables xk and the specification of the
forms of the functions f k . An inappropriate choice of the
variables can make approximation of the dependencies yk(x)
with smooth functions extremely problematic �see, e.g., �15��
or even make these dependencies nonunique.

In this paper we propose a method of estimating the suit-
ability and ‘‘convenience’’ of the chosen variables xk for
constructing a global dynamical model. It is based on testing
the series �y(t i)� and �x(t i)� for single valuedness and con-
tinuity of each dependency yk(x) in the entire region of an
observed motion. A somewhat similar idea is considered in
�10� where the value of a delay time �for reconstruction of
DDE’s� is selected so as to minimize the ‘‘filling factor.’’ The
latter characteristic is convenient and easy to calculate but, in
general, it achieves a minimum even if the dependency is not
single valued. Our method employs, to a certain extent, the
idea of the 	-
 method which has been suggested in �16� for
detecting determinism in an observed process. However, our
research addresses a different problem, namely, the problem
of the global reconstruction of model equations.

According to our approach, relative variations of a vari-
able yk inside small volumes �V in the space of the selected
variables x1 ,x2 , . . . ,xD are found. Then, one finds out how
these variations behave when �V→0. We note that the main
role is played by the local characteristics that is different
from �15,16� where the averaged �integral� estimates are

1Its length N and the dimension of its vectors are limited by the
conditions of the experiment.

2Coordinates of a vector x can be obtained by using the methods
of successive derivatives �3,5,6�, time delays �1,4,7–9�, integration
�6�, or weighted summation �4�. Besides, they may just coincide
with the observables. The length of the series �x(t i)� can be less
than N, but the difference is usually small. To avoid additional
notations, we assume the length of �x(t i)� to be equal to N.
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used. Namely, we suggest to select the dynamical variables
so as to provide for each of the model dependencies yk(x)
minimal local variation and its tending to zero for �V→0.
The latter is evidence for single valuedness, continuity, and
the absence of very steep ‘‘slopes’’ of a dependency. Other-
wise, sufficiently accurate approximations of those depen-
dencies with the usually employed smooth functions �e.g.,
with standard polynomials� become too difficult or even im-
possible.

The proposed method is described in Sec. II. It is illus-
trated with examples of the reconstruction of difference and
differential equations from their ‘‘clean’’ and noisy numeri-
cal solutions in Sec. III. Its efficiency is demonstrated by
modeling a real nonlinear electric circuit in Sec. IV. Limita-
tions and prospects of the approach are discussed in Sec. V.

II. DESCRIPTION OF THE METHOD

Let us consider the following problem setup: ��(t i)� is an
observable time series, the type of model equations is se-
lected, and time series �x(t i)� and �y(t i)� are formed. It is
necessary to assess single valuedness and continuity of the
dependencies yk(x) �for k�1,2, . . . ,D) and to find a crite-
rion for selecting a set of variables which is the most suitable
for the construction of a global model.

If a dependency y(x) is single valued and continuous in a
domain V, then the difference �y(x)�y(x0)� tends to zero
when ��x�x0��→0 for each x0�V . In practice, violation of
this condition may be viewed as a sign of nonsingle-
valuedness or discontinuity of the dependency y(x). Since
the observable time series has a finite length, the above-
mentioned limit, strictly speaking, cannot be found. How-
ever, it is possible to trace a tendency of the variation of the
value �y(t i)�y(t j)� when the vectors x(t i) and x(t j) are
made closer and closer, down to a certain finite distance. For
a sufficiently large amount of data N, high accuracy of mea-
surements, and low noise level, this distance can be made
sufficiently small for each region of the observed motion.

The method of testing the selected variables consists of
the following. Let us assume �without any loss of generality�

that the difference between the maximal and minimal values
for each of the variables x1 , . . . ,xD , and y is equal to unity.3

In other words, the investigated set of vectors �x(t i)� is con-
tained inside a hypercube V�RD with the side of the unit
length. Let us partition V into identical hypercubic boxes of
the size 	 , select all boxes containing at least two vectors,
and denote them as s1 ,s2 , . . . ,sM . We call the difference
between maximal and minimal values of y inside a box sk a
‘‘local variation’’ 
k : 
k�maxx�sk

y(x)�minx�sk
y(x). The

maximal local variation 
max�max1�k�M 
k and its graph

max(	) are used as the main characteristics of the investi-
gated dependency. The suitability of the considered variables
x and y for global modeling is assessed with the aid of the
following ideas.

�1� If a dependency y(x) is single valued and continuous,
the value of 
max is sufficiently small for small 	 and tends
to zero when 	→0. It is not hard to show that a graph

max(	) is a straight line for sufficiently small 	 .

�2� If a single valued and continuous dependency has a
region of very steep slope �a ‘‘jump’’�, then 
max remains
rather big for sufficiently small 	 , since that region is con-
tained inside one box. However, the further decrease of 	
leads to the decrease of 
max because the region of a jump
becomes divided into several boxes. The graph 
max(	) ex-
hibits a ‘‘breakpoint’’ at the value of 	 equal to the size of the
region of steep slope �e.g., Fig. 1�b�, white circles�. In such a
case, the dependency y(x) is also difficult to approximate
with a smooth function. Therefore, dynamical variables
should be selected so that the graph 
max(	) tends to the
origin gradually, without breakpoints.

�3� In practice, an achievable value of 	 is bounded from
below because of the finite amount of data N. For example, if
vectors x(t i) are distributed uniformly in the hypercube V,
this boundary can be estimated as N�1/D. If N is very small,
there are no sufficiently close vectors x(t i) and x(t j) in many

3This condition may be easily provided by an appropriate normal-
ization of the variables.

FIG. 1. �a� Maps for time series of the variables u and v formed from a chaotic solution of the system �1�. There is a region of steep slope
of the graph for v �see its right-hand side�. �b� The graphs 
max(	) for observables v �white circles� and u �filled circles� when noise is
absent. The presence of the region of steep slope for the observable v �Fig. 1�a�� reveals itself in appearing a ‘‘breakpoint’’ at 	�0.005. The

graphs 
̄(	) coincide for both variables and are shown with the dashed line. �c� The graphs 
max(	) when noise is present. The graph
indicates nonsingle valuedness for the variable v , while for the variable u it is situated just a little higher than in Fig. 1�b�.
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regions. Hence, our approach is not applicable since there is
no possibility of investigating the local properties of the de-
pendency y(x).4

�4� In a physical experiment there are unavoidable mea-
surement errors �e.g., determined by the number of bits of an
ADC� and noise �the influence of numerous factors that
could not be described in a deterministic way�. Let us denote
their common effect on x and y as 
noise . When 	 becomes
less than 
noise , the value of 
max no longer decreases even
if there is a certain law relating y to x, e.g., if the value of

noise is more than the size of a region of steep slope, a
graph 
max(	) indicates nonsingle-valuedness of the investi-
gated dependency �Fig. 1�c�, white circles�. So, the consid-
ered variables are assumed inappropriate for global modeling
according to our criterion.

As an additional characteristic, the value of an average
local variation 
̄ may be employed: 
̄�1/M �k�1

M 
k . If 
̄

→0 for 	→0 and the slope of the graph 
̄(	) is small, it
could sometimes point to a ‘‘gradual’’ �in average� depen-
dency y(x) which can be better �under equal other condi-
tions� approximated with a smooth function. We illustrate
further that the value 
̄ does not contain by itself all the
information on the properties of y(x) which is necessary for
global modeling, e.g., if y(x) has a localized region of
nonsingle-valuedness or discontinuity, it could affect the av-
erage value 
̄ only slightly and a graph 
̄(	) would look like
a graph for a smooth single-valued dependency �Fig. 3�b�,
the dashed line�.

III. DEMONSTRATIVE NUMERICAL EXAMPLES

A. Reconstruction of difference equations

Let us illustrate the described ideas with an example of
the reconstruction of difference equations from a chaotic
time series generated by the quadratic map

un�1�run�1�un
2� �1�

at r�4.0 for two situations. First, an observable is �(t i)
�ui , where ui are the successive iterations of the system
�1�. Second, �(t i)�v i , where the variable v is related to u
in a one-to-one way—via a piecewise-linear function h:

v�h�u ��� 5u , 0�u�0.18,

0.9��u�0.18�/8.2, 0.18�u�1,
�2�

which can be interpreted as a transformation of the signal by
a measurement device. Analyzing time series of these two
variables �their length is N�104) with the aid of the pro-
posed method, we assess the possibility of constructing a
global model in the form of a one-dimensional map
x(t i�1)� f �x(t i)� , the dynamical variable x coinciding with
the observable � . For all cases, models are constructed ac-
cording to the procedure described briefly in Sec. I.

In the first situation, constructing a global model is not a
hard problem. It is sufficient to employ a polynomial of the
second order as a function f. The model obtained provides
one-step prediction practically with a machine precision. In
the second situation, modeling is rather difficult, e.g., using a
polynomial of the 11th �!� order allows for reducing a rela-
tive root-mean-squared one-step prediction error only to
30%.

We apply the proposed method to test a dependency of
x(t i�1) on x(t i) both for an observable u and for an observ-
able v �see Fig. 1�a��. Both graphs 
max(	) �Fig. 1�b�� indi-
cate single valuedness and continuity. But in the first case

max tends to zero ‘‘gradually’’ when 	→0, while in the
second case the graph 
max(	) exhibits a breakpoint at small
	 . The breakpoint reflects the presence of a region of very
steep slope of the investigated dependency �see Fig. 1�a�, the
region x(t i)�1]. The graphs 
̄(	) practically coincide for
both variables �Fig. 1�b�, the dashed line�.

Advantages of using one of these variables for global
modeling are even more obvious if observed series are noisy.
Let �(t i) be equal to �(t i)�ui�� i and �(t i)�v i�� i , re-
spectively �where �� i� is a sequence of independent random
values distributed uniformly in the interval (�0.005,0.005)
that corresponds approximately to 1% of the signal level�. It

4There are no similar limitations in �16� because the purpose of
that work is different: to find at least ‘‘traces of determinism.’’
Therefore, it is sufficient to find at least some domains of single
valuedness �‘‘exceptional events’’� while large, but rarely popu-
lated, regions may be ignored.

FIG. 2. �a� Maps for time series formed from a chaotic solution of the system �1� by recording every iteration �the graph 1�, every second
iteration �the graph 2�, and every third iteration �the graph 3�. �b� The graphs 
max(	). A steeper graph corresponds to a dependency which
oscillates more intensively. �c� Noise is present and the graphs are situated higher than in �b�. A dependency, which oscillates more
intensively, is distorted more significantly �and the corresponding graph is situated higher�.
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is yet possible to obtain an efficient global model with a
second-order polynomial from the series �ui�� i� �relative
one-step prediction error is comparatively small, about 3%�.
However, the series �v i�� i� appears completely irrelevant
for modeling. The graphs 
max(	) warn about such results
�Fig. 1�c��; the graph for u is situated just a little ‘‘higher’’
than in Fig. 1�b�, while the graph for v indicates nonsingle-
valuedness.

Another illustrative example is the estimation of the suit-
ability of variables and the reconstruction of a model in the
form x(t i�1)� f �x(t i)� from a series ��(t i)���ui� for the
following three cases: �1� x(t i)��(t i), �2� x(t i)��(t2i),
and �3� x(t i)��(t3i). They correspond to recording the first,
the second, and the third iteration of the logistic map �1�,
respectively. For a bigger number of the iteration, a depen-
dency x(t i�1)� f �x(t i)� is more difficult to approximate
�Fig. 2�a�� that reveals itself in a bigger slope of the graph

max(	) �Fig. 2�b��. Similarly to the previous example, the
influence of noise is more dramatic for a more complicated
dependency �Fig. 2�c��.

B. Reconstruction of ODE’s

Let us consider the Rossler system

u̇��v�w ,

v̇�u�av , �3�

ẇ�b�w�u�c �,

at the parameters values a�0.398, b�2.0 and c�4.0 which
correspond to a chaotic regime. We present preliminary esti-
mates provided by the criterion 
max(	) and results of the
reconstruction of model equations in the standard form �3�

ẋ1�x2 ,

ẋ2�x3 , �4�

ẋ3� f �x1 ,x2 ,x3�,

where x1 coincides with an observable � , its time series is
formed from a time realization of the variable v . The values
v(t i) are derived via numerical integration of the Eqs. �3�
using the fourth-order Runge-Kutta routine with the step
�t�0.01 �the length of the series is N�105). The proposed
method is applied for the investigation of a dependency
ẋ3(x1 ,x2 ,x3) in all cases. The values of the x1 coordinate are
formed from the time series �v(t i)� in different ways. Time
series of x2 , x3 , and ẋ3 are obtained via numerical differen-
tiation of the series �x1(t i)� with the aid of different tech-
niques. Coefficients of model equations are calculated by
using the linear least-squares technique �see Sec. I�. The
maximum likelihood principle �14� is difficult to employ
here because the number of coefficients to be estimated is big
�about 10�. But the noise level is small or can be reduced, so
both routines should give approximately the same results
�14�. After estimating the coefficients, efficiency of the ob-

tained model is assessed via comparison of the original and
model phase portraits and calculation of the prediction time
�7�, that is the time interval on which the model provides
sufficiently accurate forecast �namely, the relative prediction
error remains less than a certain threshold value—we use the
value of 0.05�.

�1� �x1(t i)���v(t i)�, noise is absent, derivatives are cal-
culated using simple finite-difference formulas of the form
ẋ1(t i)��x1(t i��t)�x1(t i��t)�/(2�t). A graph 
max(	)
�Fig. 3�a�, white circles� indicates single valuedness and con-
tinuity of the dependency ẋ3(x1 ,x2 ,x3) that just confirms a
previously known result �3�. Quite an efficient model �4� is
obtained using a polynomial of the second order as a func-
tion f. It provides an accurate forecast approximately 15T
ahead, where T is a basic period containing about 600 points.

�2� �x1(t i)���v(t i)�� i�, where �� i� is a sequence of in-
dependent random values uniformly distributed in the inter-
val (�0.0005,0.0005) that corresponds approximately to
0.01% of the signal level. Without filtration of the series,
reconstructed models have nothing in common with the
original system. The failure is predicted by the graph

max(	) �Fig. 3�a�, filled circles� and occurs due to essential
amplification of the noise during differentiation. The results
become better if one employs a smoothing polynomial
�Savitsky-Golay filter �17�� and a sufficient width of a win-
dow on the time series for its construction. In the case pre-
sented with filled squares in Fig. 3�a�, a window consisting
of 21 points is used that appears insufficient; the graph

max(	) points to nonsingle valuedness. A reconstructed
model �4� with a polynomial of the second order is essen-
tially worse than in the case of ‘‘clean’’ data, it provides
prediction time about 3T . However, if a wider window �e.g.,
41 points� is used, the graph 
max(	) practically coincides
with the graph for the ‘‘clean’’ series �Fig. 3�a��. A model
becomes significantly more efficient and provides an accu-
rate forecast 7T ahead.

FIG. 3. Employing the graphs 
(	) to assess different variants
of the choice of variables for the Rossler system �3�. �a� The graphs

max(	) for x1�v in the following cases: �1� without noise—the
graph 1 �white circles�, �2� with noise, derivatives are calculated in
different ways: without filtering—the graph 2 �filled circles�, using
a 21-point smoothing polynomial—the graph 2� �filled squares�,
and using a 41-point smoothing polynomial—the graph 2� �practi-
cally coincides with the graph 1�. �b� The graph 
max(	) in the case
3: x1�v2, without noise—the graph 3 �white circles�. The depen-

dency is not single valued, but the graph 
̄(	) looks like the graph
for a single-valued dependency �the dashed line�.
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�3� �x1(t i)���v2(t i)�, noise is absent. The graph 
max(	)
clearly indicates nonsingle valuedness of the dependency
ẋ3(x1 ,x2 ,x3) �Fig. 3�b�, white circles�. An effective model
�4� can not be obtained.5 We note that the graph 
̄(	) �Fig.
3�b�, the dashed line� looks similar to the graph for a single-
valued continuous dependency, i.e., it does not allow for de-
tecting the inappropriateness of the variables for global mod-
eling.

IV. MODELING A NONLINEAR ELECTRIC CIRCUIT

The scheme of a nonlinear electric circuit �harmonically
driven LCR circuit with switched capacitors� is shown in
Fig. 4�a�. The element K is an electronic key, a microscheme
comprising dozens of transistors and other passive elements
which is fed from a special source of dc potential. At small
values of voltage U on the capacity C1, the resistance of the
key is very large and linear oscillations occur in the circuit
LC1R . When the voltage U achieves a threshold value Uthr ,
the resistance of the key decreases abruptly and the capacity
C2 becomes connected to the circuit. Back switching occurs
approximately at the same value of U. As a result, the system
is nonlinear and exhibits complex dynamics �in particular,
chaotic oscillations� at big values of the driving amplitude
�18,19�.

Let us consider the effect of the choice of dynamical vari-
ables and model equations structure on the results of model-
ing. We employ a chaotic time realization of the current I
through the resistor R as an observable time series ��(t i)�.
The data are recorded with the aid of a 12-bit ADC, the
sampling interval is �t�4 �s, the driving period is T
�84�t , and the length of the series is N�30 000. Six ex-
amples are considered below �three variants of the model
ODEs structure for two different observables�. The results of

the application of the proposed method �Figs. 4�b� and 4�c��
and of the model construction are presented. Model ODE’s
are constructed and their efficiency is assessed exactly as in
Sec. III B. The graphs in Fig. 4 are numbered corresponding
to the numbers of the following examples.

�1� A popular model structure

ẋ1� f 1�x1 ,x2 ,x3�,

ẋ2� f 2�x1 ,x2 ,x3�, �5�

ẋ3� f 3�x1 ,x2 ,x3�,

where x1(t i)��(t i), x2(t i)��(t i��), and x3(t i)��(t i
�2�) are time delay coordinates, ��21�t is the first zero of
the autocorrelation function. A smoothing polynomial is con-
structed for numerical differentiation. All three dependencies
ẋ k(x1 ,x2 ,x3) are analyzed. The value of 
max does not tend
to zero when 	 decreases for all k. All graphs 
max(	) look
similar, one of them is presented in Fig. 4�b� with filled
squares �for k�3). It indicates the impossibility of con-
structing an efficient global model that is completely con-
firmed in practice.

�2� A standard model �4� with x1(t i)��(t i). The depen-
dency ẋ3(x1 ,x2 ,x3) is tested. 
max(	) decreases when 	 de-
creases �Fig. 4�b�, white circles� that points to the possible
single valuedness. But an efficient model, where right-hand
sides are algebraic polynomials, cannot be obtained. Obvi-
ously, a polynomial is not appropriate for approximation of
the dependency ẋ3(x1 ,x2 ,x3). Another form of the approxi-
mating function is necessary here. Its choice is a difficult
problem which is not a subject of the present paper.

�3� Following the recommendations on the reconstruction
of nonautonomous systems �20,21�, we construct a model in
the form

5By analytic transformations of the system �3�, it is not hard to
show that the investigated dependency is not single valued.

FIG. 4. �a� The scheme for the circuit with switched capacitors: R�10 � , L�14 mH, C1�0.1 �F, C2�4.4 �F, U0�2.3 V,
�/(2�)�2.98 kHz, Uthr��0.2 V, and the sampling frequency is 250 kHz. �b� The graphs 
max(	) for different variants of the model

structure �for the dynamical variable x1�I): �1� for a dependency ẋ3(x1 ,x2 ,x3) of a model �5�—filled squares, �2� for a dependency

ẋ3(x1 ,x2 ,x3) of a model �4�—white circles, �3� for a dependency ẋ2(x1 ,x2 ,�) of a model �6�—filled circles. The graphs 
̄(	) are
approximately the same for all examples �the graph for the case 1 is shown with the dashed line�. �c� The graphs 
max(	) for different

variants of the model structure �when the dynamical variable x1 is an integral of the current I): �1� for a dependency ẋ3(x1 ,x2 ,x3) of a model

�4�—filled squares, �2� for a dependency ẋ3(x1 ,x2 ,x3) of a model �5�—white circles, and �3� for a dependency ẋ2(x1 ,x2 ,�) of a model
�6�—filled circles.
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ẋ1�x2 ,

ẋ2� f �x1 ,x2 ,��, �6�

where x1(t i)��(t i) and � is the phase of driving. The de-

pendency ẋ2(x1 ,x2 ,�) is tested. The time series of the phase
� is obtained as �(t i)��t i(mod 2� ), the angular frequency
� is assumed to be known. The graph 
max(	) �Fig. 4�b�,
filled circles� shows that the dependency is, possibly, single
valued. However, an efficient model with harmonic driving
and polynomial approximation cannot be obtained. Again,
one needs to select a special form of the function f.

�4� A standard model �4� with x1(t i)�� t1

t i �(t)dt . This

variable makes physical sense, it is the summed charge on
the capacities C1 and C2. The time series �x1(t i)� is obtained
via the numerical integration of the measured time series of
the current I �e.g., using the method of trapeziums�. The
value of 
max for the dependency ẋ3(x1 ,x2 ,x3) does not de-
crease when 	 decreases �Fig. 4�c�, white circles� and re-
mains large. An effective model cannot be constructed.

�5� A model �5� with x1(t i)�� t1

t i �(t)dt and delayed coor-

dinates x3(t i)�x1(t i��) and x2(t i)�x1(t i�2�), where � is
again the first zero of the ACF. All three dependencies
ẋ k(x1 ,x2 ,x3) are tested. The graphs 
max(	) do not tend to
the origin when 	 decreases in all three cases. One of them
�for k�1) is shown in Fig. 4�c� with filled squares. An ef-
fective model cannot be constructed.

�6� A model �6� with x1(t i)�� t1

t i �(t)dt . A graph 
max(	)

shows that the dependency ẋ2(x1 ,x2 ,�) is single valued and,
moreover, varies ‘‘gradually’’ �Fig. 4�c�, filled circles�. A re-
constructed model �6� with an additive harmonic driving and
a bivariate polynomial of the 11th order demonstrates a cha-
otic attractor qualitatively similar to the experimental one
and provides an accurate forecast 5T ahead �22�.

It is significant that an optimistic estimate according to
the criterion 
max(	) and good results of the global recon-
struction are achieved only in the last �the sixth� case. The
graphs 
̄(	) are, however, practically the same for all above-
mentioned choices of variables �one of them is shown in Fig.
4�b� with the dashed line�. This fact confirms that the aver-
age characteristic 
̄ does not, in general, allow to assess the
suitability of variables for global modeling.

V. CONCLUSIONS

While performing global reconstruction of a dynamical
model from a time series, two very important steps are the
selection of dynamical variables and the specification of the
forms of functions which approximate dependencies to enter
model equations. If the choice of the variables is unsuccess-
ful, these dependencies can appear too difficult for approxi-
mation or even nonunique.

The proposed method of testing time series �x(t i)� and
�y(t i)� derived from observable data allows to estimate
whether the dependencies yk(x) are single valued, continu-
ous and do not have the regions of steep ‘‘slope.’’ Hence, the
method indicates whether the selected variables are appropri-
ate for the construction of a global dynamical model. It is
based on the analysis of the local properties of the investi-
gated dependencies, which are much more relevant for the
global reconstruction than averaged characteristics. The lat-
ter can, in general, be exploited only as additional informa-
tion about the selected variables. Efficiency of the proposed
method is shown with different numerical and experimental
examples.

The method can be applied to the reconstruction of delay
differential equations and partial differential equations, since
in these cases one of the steps of a modeling procedure is
also an approximation of some dependencies from experi-
mental data �10,23�. As was illustrated by the examples of
Sec. IV, single valuedness of a dependency does not yet
guarantee obtaining an effective global model. A single-
valued dependency can appear too difficult for global ap-
proximation �especially with standard polynomials�, e.g., if it
oscillates intensively. However, a local approach �7,8� might
appear efficient for the latter case. Some recommendations
on selecting the forms of approximating functions are given
in �24�.

In conclusion, we should note that the proposed method
states only the results of the choice of variables, but it does
not say in what way the set of variables should be changed in
the case of failure. It may appear necessary to add new vari-
ables, exclude or transform some of the selected variables,
and so on. However, this is, obviously, the theme of a differ-
ent discussion.
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