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Role of transient processes for reconstruction of model equations from time series
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We perform a global reconstruction of differential and difference equations, which model an object in a wide
domain of a phase space, from a time series. The efficiency of using time realizations of transient processes for
this purpose is demonstrated. Time series of transients are shown to have some advantages for the realization
of a procedure of model structure optimization.
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I. INTRODUCTION

In the last years, different approaches to the reconst
tion of model differential and difference equations from tim
series~finite sets of values of an observable measured
sequential time instants! have been developed@1–9#. Such
models are used for prediction@7,10#, control @3#, signal
classification@11#, and information transmission@12#. De-
pending on the purposes of modeling, the obtained equat
purport to describe an object evolution in an entire wh
phase space~global reconstruction! or in a small neighbor-
hood of a given state~locally!. In the majority of works we
are aware of, global models are constructed from time r
izations corresponding to attractors in a phase space. Suc
approach seems reasonable when the problem of predi
the future behavior of an object is addressed. This work
devoted to a global modeling of an object dynamics in
entire phase space rather than only that of a certain reg
The purpose of this work is to show, by considering seve
examples, that, under this point of view, it is more efficient
use time realizations of transient processes~when a phase
orbit has not yet settled down onto an attractor!. Such global
models can be useful when it is necessary to predict an
ject evolution from an arbitrary initial state. There are oth
possible applications, e.g., a model constructed from a t
sient was applied successfully to calculating Lyapunov ex
nents of a periodic orbit@13#.

We compare the capabilities of global models construc
from different parts of a time series—some of them includ
transient process and others ignore it. We take the mos
lustrative exemplary dissipative dynamical systems as
jects of modeling~Sec. III!, and employ well-known ap-
proaches to reconstruction~Sec. II!. The quality of
reconstruction is assessed by comparing functions ente
the right-hand sides of an original dynamical system an
reconstructed dynamical system~an object and a model!, and
by estimating the model ability of short-term predictio
from different initial conditions~Sec. II!.

In this work we do the following:~1! We show that the
use of a transient process allows for a broadening of
domain in a phase space where equations reconstructe
standard methods describe an object dynamics sufficie
well. ~2! We propose a procedure for model structure op
mization which employs a time series of a transient to de
1063-651X/2001/64~3!/036210~7!/$20.00 64 0362
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superfluous terms~Sec. IV!. Generalizations of the obtaine
results, and limitations to the use of transients for model
are discussed in Sec. V.

II. TECHNIQUE OF INVESTIGATION

The most often used scheme of global modeling from
time series consists of the following three steps.

~1! One specifies the form of model equations drawing
a priori information, substantial models, results of time s
ries analysis~e.g., an estimate of the correlation dimensi
of a phase orbit reconstructed from the time series!, and in-
tuition.

~2! One transforms an original time series according
the specified form. That is, one performs noise reducti
numerical differentiation, integration, or another transform
tion of a scalar time seriesv: $v i% i 50

N21, v i5v(t i), and t i

5 iDt. Then a series of state vectors$xi% is formed ~using
methods of time delays@1,2,6#, successive derivatives@5,7#,
etc!.

~3! A training part of an obtained series~a reconstruction
window! is selected. A model type~a discrete map or a dif-
ferential equation! and explicit forms of functions entering
model are specified. Thus, a model map relates the state
an object at sequential time instants to each other, and r

xi 115f~xi !.

Components of a vector-valued functionf are often assumed
to be polynomials of certain orders@1#. After specifying a
model structure, one calculates the values of its coefficie
from a training time series. A least-squares routine is usu
employed@1,8#, that is, the values of coefficients are select
so as to minimize the sum of squared errors:

(
i

@xi 112f~xi !#
25min.

When modeling an object with the use of differential equ
tions, the idea remains the same. The only differences ar
dependencyẋ5f(x) is approximated instead ofxi 115f(xi)
and a preliminary numerical differentiation of the series$xi%
is necessary@2,5–7#. Finally, the quality of an obtained
model is assessed using a different~test! part of the series
©2001 The American Physical Society10-1
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BEZRUCHKO, DIKANEV, AND SMIRNOV PHYSICAL REVIEW E64 036210
$v i% with the aid of a criterion corresponding to the purpos
of modeling~several possible criteria are discussed below
this section!.

Our research concerns only the third step — selectin
location of a reconstruction window inside the original ser
which provides a model efficient in a wide domain of pha
space. Therefore, we use exemplary ordinary differen
equations and coupled maps as objects to be modeled,
construct models in agreement with their structure. That
we reproduce their structure completely and find only u
known values of coefficients, or else we change the type
approximating functions while the number of equations
maintained. Original time series are obtained as numer
solutions. The noise level is insignificant here, since it
determined only by truncation and round-off errors. All th
allows one to avoid difficult problems of the first and seco
steps of the reconstruction procedure, and to concentrat
solving our problem.1

In our research, model equations are obtained for differ
locations of a reconstruction window inside a time seri
Hence a reconstruction window contains a larger or sma
part of a transient process. Models are compared to an ob
using the following criteria of quality.

~1! A direct comparisonof coefficients entering equation
~as in Sec. III A where object and model structures coinc
completely!.

~2! An approximation error«. Functions entering the
right-hand sides of reconstructed and original equationsf m
and f 0, respectively! are compared. This makes sense o
when original and model equations have similar structu
That is, in examples of Secs. III B and IV, an object and
model have the forms

ẋ5y,

ẏ5 f ~x,y,t !, ~1!

and an approximation error« is given by

«5E E E
V

~ f m~x,y,t !2 f 0~x,y,t !!2dx dy dt. ~2!

V is the domain of integration containing a reconstruc
phase orbit, which is significantly wider than the domain
an attractor. The less the value of«, the better the model.

~3! A prediction timet is a time interval at which a root
mean-squared prediction errors(t) achieves a certain prese
threshold values(t)5s thr ~we use the values thr50.05).
The greater the value oft, the better the model. To estima
s(t), one should calculate a squared difference between
served and predicted values of the variablev at a time instant

1When modeling real systems, one cannot point out the best f
of the equation to be reconstructed. In addition, it is necessar
solve the problem of noise. This can affect the success of mode
dramatically and prevent us from estimating the effect of location
a reconstruction window on the results, which is the purpose
this work.
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t: @vobs(t)2vpred(t)#2 @when object and model initial con
ditions coincide, i.e.,xob ject(0)5xmodel(0)#. The squared
difference is averaged over the set of different initial con
tions whose boundaries are situated far beyond the doma
an attractor. The dependencys(t) is derived ass(t)
5A^@vobs(t)2vpred(t)#2&x(0) .

The procedure of our investigation is as follows. A certa
length of a reconstruction window (M points! is specified. A
reconstruction window can be denoted as$v i% i 5m

m1M21 , where
m is the number of initial point. The initial point of the
original time series corresponds to the initial point of a
construction window form50. Whenm increases, a recon
struction window moves along a time series into the reg
of an attractor. Models are constructed for different values
m. The part of a time series which provides the most effici
model is detected by considering graphs of the abo
mentioned criteria of quality versusm.

III. NUMERICAL EXAMPLES

A. Reconstruction of a discrete dynamical system

A typical situation in nonlinear dissipative systems is th
an attractor is contained in a subspace whose dimensio
less than the dimension of the entire phase space. Pertu
tions transversal to this subspace are vanishing, while
dynamical regime is being settled. As a result, some inf
mation~potentially useful for modeling! is lost. For example,
when a synchronous~uniform! regime in a system of couple
pendulums is settled, each element moves in the same
~as if there were no other elements!. That is, a time series
contains no information about the complexity of the syste
However, time series of transients may contain some in
mation about nonuniform motions and increase possibili
of modeling. Let us demonstrate this by using a system
dissipatively coupled quadratic maps

xn115l2xn
21k~xn

22yn
2!,

~3!
yn115l2yn

21k~yn
22xn

2!,

wherex and y are dynamical variables,k is a coupling pa-
rameter, andn50,1,2, . . . is adiscrete time. This exemplary
system is characterized by an infinite number of regular
chaotic oscillatory regimes~variants of synchronization o
subsystems oscillations! and by multistability@14–20#. Let
us specify the values of parametersl51.8 andk in the range
from 0.4 to 0.5, at which a synchronous chaotic regim
~when x and y change in time in a chaotic but the sam
manner! is stable. A phase orbit corresponding to the para
eter value k50.4 and initial conditionsx050.1 and y0
50.4 is presented in Fig. 1~a!. A transient is shown with
filled circles, and sequential numbers of iterations a
marked by Figs. 1, 2,. . . . Oscillations of the subsystems a
synchronized quickly, i.e., deviations transversal to the di
onal ~and to the attractor! vanish quickly. Time realizations
of a difference signalxn2yn ~which is proportional to a
transversal deviation! for k50.4 and 0.42 are shown in Fig
1~b! by filled circles and crosses, respectively. Note th
smaller values ofk from the specified range correspond

m
to
g
f
f
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ROLE OF TRANSIENT PROCESSES FOR . . . PHYSICAL REVIEW E 64 036210
FIG. 1. ~a! A phase orbit of the system of coupled quadratic maps@Eq. ~3!# at l51.8 andk50.4, starting from the pointx050.1, y0

50.4. ~b! A difference signalxn2yn of system~3! at k50.4 ~filled circles, the solid line! and at a greater value ofk: k50.42 ~crosses, the
dashed line!. ~c! The values of coefficientsk1 andk2 of a model@Eq. ~4!# reconstructed from time realizations of system~3! at l51.8 and
different k. The length of a reconstruction window isM5100, and the number of the initial point ism57.
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longer transients. This is explained by the fact that the s
chronous regime is stable~at the specified value ofl) only if
k>0.361 @17#, and perturbations vanish more slowly ne
bifurcation values of a parameter. Let us reconstruct mo
equations from a time series which starts from the po
(x050.1,y050.4) lying apart from a synchronous attracto
We consider different variants of a model equations str
ture, an original time series, and criteria of quality.

1. Reconstruction from a vector time series

Model difference equations are reconstructed in the fo

xn115l12xn
21k1~xn

22yn
2!,

~4!
yn115l22yn

21k2~yn
22xn

2!,

wherel1 , l2 , k1, and k2 are parameters to be determin
from a time series~see the modeling procedure in Sec. II!. A
vector time series — a sequence of values ofxn and yn
obtained by iterating map~3! — should be used for this
purpose. In this case, a simple coincidence of values of
coupling parametersk1 , k2, andk ~and also ofl1 , l2, and
l) may serve as a criterion of model quality. Thus in F
1~c!, where reconstructed valuesk1 andk2 are ordinates and
original values ofk are abscissas, the diagonal correspond
the ‘‘correct’’ values. That is, the greater the distances
points from the diagonal, the worse the model.

FIG. 2. Prediction timet of a model@Eq. ~5!# with a polynomial
of the fourth order vs the numberm of an initial point of a recon-
struction window fork50.2 ~curve 1! and fork50.3 ~curve 2!. The
length of a reconstruction window isM5100.
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Calculations show that the larger the part of a reconstr
tion window occupied by a transient, the better the results
reconstruction. That is, a range of successful reconstruc
for m57 is an interval of smallk @Fig. 1~c!# which corre-
sponds to less stability of a synchronous regime and
longer transients. In the region of large values ofk where the
synchronous motion is more stable and transients are sho
the results of reconstruction are bad~see the right-hand side
of the figure!. In addition, the dependencies of model coe
ficients onk began to oscillate intensively. This means th
model coefficients are sensitive to insignificant peculiarit
of an original time series. On decreasingm to 0, when the
relative length of a transient is the longest, equations
reconstructed successfully in the whole specified range ok.
On increasingm, points of a transient are, conversely, n
longer used for reconstruction, and the domain of bad res
is almost the whole specified range ofk.

2. Reconstruction from a scalar time series

Let us complicate the problem of reconstruction by co
sidering a scalar original time series. Models are rec
structed from a time series$xn% of the same object in the
form

xn115P~xn ,xn21!, ~5!

whereP(xn ,xn21) is a standard algebraic polynomial who
optimal order is selected during a modeling process~see the
modeling procedure in Sec. II!. In this case it appears to b
equal to 4. We use a prediction timet as a criterion of model
quality ~see the third criterion of quality in Sec. II!: the
greater the value oft, the better the model.

Dependencies oft on the number of an initial pointm for
model~5! are shown in Fig. 2. It can be seen from the grap
that using a transient~decreasingm) leads to an increase o
model quality. The same conclusion can be made noting
the interval ofm providing a good model prediction become
smaller when the relative length of a transient decrea
Curve 2 corresponds to a larger value of the coupling co
ficient k in original equations~3! when a transient is signifi-
cantly shorter than for the curve 1.
0-3
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FIG. 3. ~a! A projection of a phase orbit of a
system @Eq. ~6!# starting from the pointx(0)
5y(0)50.1. This orbit corresponds to an orig
nal time series.~b! An approximation error« vs
the numberm of an initial point of a reconstruc-
tion window.
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B. Reconstruction of a continuous-time system

Consider an example of reconstructing differential eq
tions — a nonautonomous Toda oscillator:

ẋ5y,
~6!

ẏ520.1y211e2x1cost.

This system is a representative of a wide class of nonlin
dynamical systems. It comprises exponential nonlinea
and an explicit time dependence. A scalar time series of
ues of thex coordinate is obtained by integrating Eqs.~6!
numerically using the standard fourth-order Runge-Ku
routine with a step 0.01. Initial conditions are chosen outs
of an attractor which is a limit cycle at the chosen values
the parameters. A projection of a phase orbit underlying
original series is shown in Fig. 3~a!, where the numbers o
some points are presented by figures~an initial point has the
number 0!. An attractor is situated where the points of t
orbit are more dense. As can be seen from the figure, mot
near the attractor occupy rather a small part of the a
bounded by the orbit.

The structure of model equations is that of Eq.~1!, with
the functionf in the form

f ~x,y,t !5Pn~x!1gy1A cosvt1B sinvt, ~7!

wherePn(x) is a standard polynomial of the fifth order. W
use a reconstruction technique which draws upon the sch
of Sec. II, and is modified for nonautonomous systems@21–
24#. The values of the parametersg, A, B, andv and of the
03621
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polynomial coefficients are calculated from the time ser
~via a least-squares routine; see Sec. II!.

The dependence of an approximation error« on m is
shown in Fig. 3~b!. The length of a reconstruction window i
M52000, and a basic period of oscillations contains ab
600 points. The best models are obtained at small value
m when a transient is taken into account. The graph«(m)
has a specific ‘‘steplike’’ form that illustrates the worth o
one part or another of the series for the purpose of rec
struction. Thus the almost horizontal parts of the graph c
respond to ignoring points from the vicinity of the attracto
which indicates their small influence on a model quality. T
jumps between flat steps on the graph, where the qualit
the model decreases quickly with the increase ofm, corre-
spond to excluding the points marked by circles in Fig. 3~a!
from a reconstruction window. These points belong to a tr
sient, and are the most distant from the attractor.

IV. USING A TRANSIENT PROCESS
FOR MODEL STRUCTURE OPTIMIZATION

Increasing the amount of information about an object
not a unique reason for the use of transients for reconst
tion of model equations. The second, not less importa
cause for employing nonstationary data is the possibility
their efficient use for model structure optimization~namely,
for exclusion of superfluous terms from a polynomial in o
case!. Let us illustrate this with an example of reconstructi
a model of a van der Pol–Toda oscillator,

ẋ5y, ~8!
l

l

FIG. 4. ~a! A projection of a phase orbit of a
system@Eq. ~8!# which corresponds to an origina
time series.~b! An approximation error« vs m
for models~1! and~9! with a standard polynomia
of the seventh order~curve 1! and for the models
~1! and ~10! ~curve 2!.
0-4
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FIG. 5. Results of the recon
struction of system~8! from a sca-
lar series:~a! Reconstructed val-
ues of coefficients correspondin
to the shown monomial terms o
the models~1! and ~9! vs m. ~b!
An approximation error« vs the
number of terms excluded from
model during the process of it
structure optimization. The thick
line corresponds to using charac
teristic ~11!, and the thin line cor-
responds to using characterist
~12!.
it

a
I

in
uc-

d

d

ẏ5~12x2!y211e2x,

from a scalar time series corresponding to a phase orb
Fig. 4~a!. A model is constructed in the form of Eq.~1! in
two variants which differ from each other with the form of
function f (x,y,t) ~see the modeling procedure in Sec. I!.
First, a standard bivariate polynomial is used:

f ~x,y,t !5Pk~x,y!5 (
i , j 50

k

ai j x
iy j , i 1 j <k. ~9!
03621
in

Second, a function is found in the form

f ~x,y,t !5~l2x2!y1Pn~x!, ~10!

where Pn(x) is a standard univariate polynomial which,
fact, approximates an exponential function. The first str
ture contains many ‘‘superfluous’’ terms„e.g., the terms with
xy, xy2, x2y2, . . . , andothers which do not enter the secon
equation of the object@Eq. ~8!#…. Ideally, if the order of a
polynomial were infinite, the accuracy infinitely high, an
0-5
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BEZRUCHKO, DIKANEV, AND SMIRNOV PHYSICAL REVIEW E64 036210
the time series of an infinite length, then the values of co
ficients corresponding to superfluous terms would be eq
to zero. In practice, however, their values differ from ze
due to truncation and round-off errors, etc. They are fitted
as to minimize an approximation error over the points o
reconstruction window. Outside the window, in a test part
the series, superfluous terms can affect the results essen
and lead to a significant difference between a model and
object.

Let us compare dependencies«(m) for models@Eqs. ~1!
and ~9! and Eqs.~1! and ~10!# with polynomials of the sev-
enth order presented in Fig. 4~b!. As should be anticipated
the second modeling variant ignoring superfluous ter
gives a result which is better by an order of magnitude.
addition, there is practically no dependence of« on m for the
second variant~see curve 2!. Consequently, using a transie
does not have any advantages here. This means that a
crease of reconstruction quality is achieved in this case
to a decrease in the number of superfluous terms~instead of
broadening the domain of a phase space explored by a p
orbit!. Conversely, there is an essential dependence of« on
m in the case of using models~1! and ~9!, which contains
many superfluous terms~see curve 1!. The dependence i
most notable at small values ofm, corresponding to a tran
sient where the value of« oscillates intensively.

The appearance of the graph«(m) in the latter case is
explained by a sensitive dependence of coefficients co
sponding to superfluous terms onm in the region of a tran-
sient process. The values of some of the 36 coefficient
the models~1! and ~9!, with a polynomial of the seventh
order @constructed from a time realization of system~8! at
different values ofm# are presented in Fig. 5~a!. Graphs of
the coefficients corresponding to ‘‘necessary’’ terms
shown on the left-hand side, and graphs for superflu
terms on the right-hand side. It can be observed that ‘‘su
fluous’’ coefficients are essentially less stable than neces
ones; oscillations appear whenm is changed in the region o
a transient process.

Drawing on these results, we propose a procedure for
refinement of a model structure which is based on a seq
tial deletion of terms corresponding to less stable coe
cients. One can use the following characteristics as meas
of the stability of a coefficienta: the ratio of its mean value
to its standard deviation,

m15
^a&
sa

; ~11!

and the ratio of its mean value to the standard deviation
the first difference is

m25
^a&

A^~am1d2am!2&
. ~12!
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Angular brackets denote an average over the ensembl
values ofa obtained for different values ofm, andd is a shift
between sequential locations of a reconstruction window~we
taked520). The first characteristic assesses the intensity
oscillations of the coefficient values, while the second sho
how fast these oscillations occur.

The proposed procedure for model structure optimizat
is illustrated in Fig. 5~b! where the dependence of an a
proximation error« on the number of excluded superfluou
terms is presented. According to the above characteris
@Eqs. ~11! and ~12!#, the least stable coefficient is selecte
and the corresponding term is excluded from a model. T
reconstruction process is repeated with a simplified functi
the next least stable coefficient is found, the correspond
term is again excluded from the model, etc. The depend
cies in Fig. 5~b! are shown for different characteristics o
instability. In the considered example the characteristic@Eq.
~12!# estimating the variation of the first difference prov
more effective. Note that after achieving a minimum, all
tempts of further simplification of a model lead to a fa
increase of an approximation error, since the procedure
no longer distinct a superfluous term from a necessary o

V. CONCLUSIONS

By considering examples of the reconstruction of seve
discrete-time and continuous-time systems from scalar
vector time series with the use of different criteria of mod
quality, we show that the part of a time series which is t
most valuable for the purpose of global modeling of an o
ject dynamics in a wide domain of a phase space correspo
to a transient process. It should be stressed, however, that
a model is needed just to predict a settled motion, the
nonstationary part of a time series is harmful for modelin
In addition, transients do not play an important role if t
structure of a model is optimal~completely adequate to a
object!. Using transients is reasonable when one need
refine a model structure, that is, to detect superfluous te
and exclude them, e.g., when a polynomial representatio
functions is employed.

The results presented are obtained by investigating ex
plary dynamical systems, but they concern the steps o
reconstruction procedure which is common for both real a
artificial objects. Therefore, we assume that these results
appear useful for modeling a wide class of systems.
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