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Constructing nonautonomous differential equations from experimental time series
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An approach to constructing model differential equations of harmonically driven systems is proposed. It is
a modification of the standard global reconstruction technique: an algebraic polynomial which coefficients
depend on time is used for approximation. Efficiency and details of the approach are demonstrated by various
numerical and natural examples.
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I. INTRODUCTION

Different methods of reconstructing ordinary different
equations~ODE’s! from time series have been developed
the last two decades@1–4#. They were applied successfull
to solve the problems of prediction@5#, qualitative descrip-
tion of dynamics @5,6#, calculation of dimensions an
Lyapunov exponents of an attractor@7#, and signal classifi-
cation @8,9#. The success of modeling from a time seri
depends essentially on the choice of a model structure
number of model equations and a kind of basis functio
used for approximation. This choice is the most difficult p
of a reconstruction procedure and it can hardly be comple
reduced to an algorithm. The methods employed involve
a rule, reconstruction of ODE’s ina universal form. Thus, a
widely used approach@4–7,10# which we callstandardin-
volves reconstruction of equations in the form

ẏ15y2 ,

ẏ25y3 ,
~1!

•••,

ẏD5 f ~y1 ,y2 , . . . ,yD!,

wherey1 is an observable,f is a polynomial of an orderK:

f ~y1 ,y2 , . . . ,yD!5 (
l 1 ,l 2 , . . . ,l D50

K

cl 1 ,l 2 , . . . ,l D)j 51

D

yj
l j ,

~2!

(
j 51

D

l j<K.

However, such methods appear to be inefficient in ma
situations. In particular, universal models often contain
large number of coefficients and demonstrate divergent s
tions. These difficulties may arise, e.g., when nonauto
mous systems which this paper is devoted to are modele

A modification of the standard approach in application
modeling objects of a sufficiently small class seems to b
promising way of further development of the global reco
1063-651X/2000/63~1!/016207~7!/$15.00 63 0162
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struction methods. Such a modification was used in appl
tion to harmonically driven oscillators in@11–13#, where
harmonically excited electric oscillatory circuits with nonlin
ear capacitance were modeled. The modification consiste
reconstruction ofnonautonomous equations, that is, explicit
functions of time were incorporated in model equations:

ẏ15y2 ,
~3!

ẏ25 f ~y1 ,y2!1a cosvt1b sinvt,

wheref is a polynomial. The model structure~3! reflects only
the case ofadditiveharmonic driving.

In this paper a general approach to global nonlinear m
eling of harmonically driven systems is proposed. It can
effective not only for additive, but for an arbitrary way o
harmonic driving. This approach is more general due to
other modification of the standard model structure. It is
sumed that all model coefficients may depend on time,
the coefficientscl 1 ,l 2 , . . . ,l D

in ~2! are replaced by the expres

sions (cl 1 ,l 2 , . . . ,l D
1al 1 ,l 2 , . . . ,l D

cosvt1bl1,l2, . . . ,l D
sinvt).

This approach is described in details in Sec. II B whi
follows the discussion of the possibilities and limitations
the standard method~Sec. II A!. Efficiency of the new modi-
fication is demonstrated in Sec. III where harmonica
driven ~in various ways! systems are modeled. Advantag
and potentialities of the approach are discussed in Sec.

II. MODELING NONAUTONOMOUS SYSTEMS

A. The standard approach

Let us consider, in brief, the standard approach to
global reconstruction and discuss possible reasons of its
efficiency in many cases. The problem is as follows. Expe
mental data are in the form of a scalar time series, that
finite sequence of values of an observablev: $v i% i 51

Nv , v i

5v(t i), t i5 iDt, i 51, . . . ,Nv , whereDt is a sampling in-
terval. The realization observed is sufficiently smooth. It
necessary to construct model ODE’s that demonstrate a
havior qualitatively similar to the original one and allow fo
an accurate short-term prediction. Under the standard
proach, a procedure for solving the problem follows. First
certain value of a model dimensionD is selected. Second
state vectors y(t i) are reconstructed by the metho
©2000 The American Physical Society07-1
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of sequential derivatives (D time derivatives are obtained b
differentiating the observed series numerically@5,10#!. Third,
the dependencyẏD(y) is approximated by a polynomial~2!.
The values of coefficientscl 1 ,l 2 , . . . ,l D

are calculated by the
least squares technique. That is, their values are selecte
as to minimize

«25
1

N (
i 51

N

~ ẏD~ t i !2 f ~y1~ t i !,y2~ t i !, . . . ,yD~ t i !!!2, ~4!

whereN is a number of state vectors reconstructed from
scalar time series. Now, the problem is reduced to solvin
system of linear algebraic equations since the functionf is
linear with respect to the fitting coefficients. Finally, ef
ciency of a model obtained is checked. If the model is
effective then one should change~as a rule, increase! a poly-
nomial orderK or a model dimensionD until a satisfactory
model is found.

Experience of using the above procedure shows that
standard structure of model equations~1! and ~2! does not
allow for effective description of an observed process at a
models of moderate dimensions~approximately 3–4! do not
work well. Reconstructed equations often demonstrate a
havior qualitatively different from the original one, in pa
ticular, divergent solutions. There are several reasons
this. First, increase of the model dimensionD ~that means
increase of the order of numerical differentiation! results in
increase of the effect of noise. Second, a polynomial o
high order may appear to be necessary for approximatio
the values ofD andK are big, then a standard model contai
a very large number of coefficientsM : M5(D
1K)!/D!K!. The more is the value ofM, the less accurate
are the estimates of the coefficients. Third, an orbit in
model phase space may go out of the region containing
perimental data due to the approximation error. Then,
behavior of the model is no longer connected with the
havior of the object.

To summarize, one of the main reasons of the stand
approach inefficiency is the big size of the models. This d
ficulty is, in general, unavoidable because the standard s
ture of model equations~1! and~2! is not, as a rule, a ‘‘natu-
ral’’ and the most relevant one for the variety of real syste
and situations. Moreover, employing the standard mo
structure results in increase of a model dimension. It can
seen clearly by considering the reconstruction of dynam
systems.1 As it follows from the results of Takens@15# and
Sauer, Yorke, and Casdagli@16#, any system of ODE’s can
be written in the form~1! for almost every observablev. But
the value ofD should satisfy the conditionD.2d, whered
is the dimension of a smooth manifold within which an o
served motion occurs or the box-counting dimension of
attractor~if the motion corresponds to an attractor!.

Thus, one can assume the direction of refining unive

1We use the term ‘‘dynamical system’’ to denote a mathemat
object only, in contrast to the existing practice of using it in app
cation to real systems@14#.
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models. It consists in decreasing a model dimension an
number of its coefficients due to the change of a model str
ture. This change should lean on knowledge of specific f
tures of an object under investigation, universality of mod
being in part lost.

B. The modification of model equations structure

So, a possible way of the standard approach developm
is the choice of a model structure~in application to a certain
class of objects! that would allow for obtaining efficient
models ofless dimension. Such a choice can be done if on
knowscharacteristic featuresof objects which belong to this
class. In this paper we propose a special structure for m
eling harmonically driven systems. A model takes the for

ẏ15y2 ,

ẏ25y3 ,
~5!

•••,

ẏD5 f ~y1 ,y2 , . . . ,yD ,t !,

wherey15v and the functionf depends on timet explicitly.
It is easy to show thatf can depend on time only via func
tions cosvt and sinvt in this case. We have employed
polynomial of an orderK with varying coefficients:

f ~y1 ,y2 , . . . ,yD ,t !

5 (
l 1 ,l 2 , . . . ,l D50

K

~cl 1 ,l 2 , . . . ,l D
1al 1 ,l 2 , . . . ,l D

cosvt

1bl 1 ,l 2 , . . . ,l D
sinvt !)

j 51

D

yj
l j , (

j 51

D

l j<K. ~6!

So, f is linear with respect to the terms cosvt and sinvt. In
general, these harmonic functions can enter the expres
for f in an arbitrary way, but~6! is a simple and an effective
approximation for a sufficiently wide class of systems~see
examples in Sec. III!. A more sophisticated method of takin
the driving terms into account is also possible, e.g., one
use higher powers of cosvt and sinvt along with their first
powers. But the size of a model can increase significan
followed by the above-mentioned difficulties.

One does not need to develop a new algorithm for
construction of a model~5! and~6!. It is possible to employ
the standard procedure~Sec. II A! if the value of a driving
period T is preliminary calculated from a time series. Th
latter is necessary for application of the linear least squa
routine to determining the other model coefficients. A way
finding the value of a period was suggested in@11–13# for
the construction of a model~3!. It can also be used in ou
case without any change. The idea is as follows. Firs
sufficiently big value of a polynomial orderK is selected.
Second, an initial estimateT5T* of the period value is
found ~this estimate can be derived as a location of a pea
the power spectrum of the observed series!. At this value of

l
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CONSTRUCTING NONAUTONOMOUS DIFFERENTIAL . . . PHYSICAL REVIEW E 63 016207
T, one obtains the values ofcl 1 ,l 2 , . . . ,l D
,al 1 ,l 2 , . . . ,l D

,

bl 1 ,l 2 , . . . ,l D
, and an approximation error« by the linear least

squares method. Then, the trial value ofT is varied through a
certain range near the initial estimateT5T* and approxima-
tion is performed for each of the trial values. The graph
«(T) has a sharp and deep minimum which correspo
quite precisely to the ‘‘true’’ value of the driving period.

Note, that rather high accuracy of determining the drivi
period value is needed. Otherwise, a significant ‘‘phase
ference’’ between original driving and its approximatio
a cos@(2p/T)t#1bsin@(2p/T)t# occurs during the investigate
time intervalTN5NDt. One can derive an estimate for a
accessible errorDT of determining the value of the driving
period ~from the condition that the relative error of drivin
approximation does not exceed«0):

DT

T
<«0

A3

2p

T

TN
.

The precise calculation of values of certain driving para
eters is, in general, necessary when nonautonomous e
tions are reconstructed.

III. APPLICATION OF THE MODIFIED MODEL
STRUCTURE

Further, we illustrate the advantages of the suggested
proach by four numerical and one natural examples. All
merical time series were obtained by integrating numeric
known systems of ODE’s~‘‘objects of modeling’’! using the
fourth-order Runge–Kutta routine with the stepDt50.01. In
each case, a time series contained 6000 values~about 10
driving periods!. An original time series in the physical ex
periment was obtained by analogous-digital conversion o
realization of potential. A standard system~1! and ~2! and a
nonautonomous system~5! and ~6! are reconstructed from
the time series. Results achieved by using a model with
ditive driving ~3! are also presented. For each model str
ture only the best~corresponding to the most effectiv
model! results are reported.

To checkqualitative similaritybetween an original and
model behavior, a model phase orbit is compared to a ph
orbit reconstructed from a time series. The goodness
quantitative descriptionis estimated as an interval of a su
ficiently accurate short-term prediction according to@17#.
First, the value ofs(t)—root-mean-squared error2 of pre-
dicting a time intervalt ahead~normalized to the standar
deviation of an observablev)—is calculated. Second, a tim
interval tpred at which the value ofs(t) becomes more than
a certain threshold valuesc is found. We choose the thresh
old valuesc50.05. The time intervaltpred is calledpredic-
tion time. This value is always presented in units of the dr

2The average is carried over different initial conditions. The
initial conditions are taken from the part of a time series which
not used for a model construction; they are always the same fo
object and for a model.
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ing period because the latter is a characteristic time scale
all examples.

The first exampleillustrates the efficiency of the propose
modification in the presence of noise~in the case of additive
driving!. An observed time series is a chaotic time realiz
tion of the coordinatey1 of harmonically driven Duffing os-
cillator:

ẏ15y2 ,

ẏ252g0y22y12y1
31A0 cosv0t, ~7!

whereg050.1, A0535, v051. This system of ODE’s can
be written in the form~1! and ~2! with D54 andK53. To
see this, it is sufficient to differentiate the second equat
twice and replace the termA0 cosv0t by its expression from
~7!. Thereby, one derives

ẏ15y2 ,

ẏ25y3 ,

ẏ35y4 ,

ẏ452g0y42~113y1
21v0!y326y1y2

22v0
2g0y2

2v0
2~y11y1

3!. ~8!

The best model~1! and ~2! is obtained, naturally, atD54,
K53. The best model~5! and ~6! is obtained atD52, K
53. All model coefficients agree within a percent with th
original coefficients in both cases. Prediction time is lar
enough for both models: 6T and 7T, respectively.

The standard method is also effective because the st
ture of the original system~8! and the model structure~1!
and ~2! completely coincide. However, to build an effectiv
standard model, one needs to calculate four time derivat
of an observable, while to construct a nonautonomo
model, it is necessary to find only two derivatives. Therefo
when a noise~namely, Gaussian white noise with the sta
dard deviation of about 0.001 of the signal standard dev
tion! is added to the same time series, the standard metho
no longer effective~the values of model coefficients are fa
from original ones! due to huge errors of numerical differen
tiation, while a model~5! and~6! remains quite efficient~the
values of model coefficients are close to the original one!.
The prediction time is small for both models, but for a no
autonomous model it is 10 times greater than for a stand
one: 0.5T and 0.05T, respectively. Note, that a model~3! is
the most relevant in the case considered since its structu
exactly the same as the form of the original system~7!. So, a
model ~3! does not contain several superfluous coefficie
which are incorporated in~5! and ~6!. However, the results
which are achieved by using a model~3! almost do not differ
from the above-mentioned results for the model~5! and ~6!.

The second exampleillustrates a situation when a mode
~5! and ~6! is efficient while the standard approach does n
lead to success because the dependence~1! is too complex to

e
s
an
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FIG. 1. ~a! A projection of the attractor of Toda oscillator~10!. ~b! Prediction error for the model~1! and~2! with D54 andK56 ~the
dashed line!, for the model~3! with D52 andK510 ~the circles! and for the model~5! and ~6! with D52 andK59 ~the solid line!. ~c!
and ~d! Phase orbits of the model~5! and ~6! and of the model~3!, respectively. Phase orbits of the standard model are globally unst
c-

o

he
be approximated by a polynomial. Models~3! are not effec-
tive also since taking only additive driving terms into a
count is not sufficient.

An observed time series is a chaotic time realization
the coordinatey1 of harmonically driven Toda oscillator@a
projection of the phase orbit is shown in Fig. 1~a!#:

ẏ15y2 ,

ẏ2520.45y21~514 cost !~e2y121!17 sin~ t !. ~9!
s

n

t
nc
ry
its
he
-
ed

t
o

f

01620
f

Similarly to the first example, it is possible to show that t
equations~9! can be written in the form~1! with D54 and a
rather complicated function on the right-hand side:

ẏ15y2 ,

ẏ25y3 ,

ẏ35y4 ,
ẏ4520.45y41~y310.45y2!S 8

7
y2e2y121D1e2y1S y2

22y32
8

7
y2~e2y121! D

3

16
7 ~e2y121!~y310.45y2!14~y410.45y3210y2e2y1!135

724y2e2y11 16
7 ~e2y121!2

. ~10!
, a

of
Prediction times for the optimal models~5! and~6!, ~3!, and
~1! and ~2! are equal to 7T, 1.5T, and 0.15T, respectively.
For this example, the graphss versust ~which allow for
determining a prediction time! are shown in Fig. 1~b!. The
best model~5! and~6! is obtained atD52, K59 @Fig. 1~c!#.
The values of its coefficients are quite close to the value
the corresponding coefficients of the original system~to
compare these values, one should replace the expone
function by its Taylor series expansion!. The optimal model
~3! with D52 and K510 works essentially worse@Fig.
1~d!#.

The optimal for prediction standard model withD54 and
K56 demonstrates globally unstable orbits. This is due
the fact that effective approximation of complex depende
~10! in a space of high dimension by a polynomial is ve
difficult. The model is too big, estimates of the values of
coefficients are not reliable. A model orbit may go out of t
region of the observed motion~due to unavoidable approxi
mation errors!. Then, the polynomial is no longer connect
with the original system. As a result, a model orbit goes
infinity. Note that this, unsuccessful for the standard meth
result, appears even in the absence of noise.

The third example:harmonic driving enters equations o
of

tial

o
e

o
d

an original system in a linear additive way. Nevertheless
model ~3! does not work well, but a model~5! and ~6! is
quite effective.

An observed time series is a chaotic time realization
thex coordinate of the Rossler system, thez coordinate being
driven

ẋ52y2z,

ẏ5x1ay, ~11!

ż5b2cz1xz1A cost,

where a50.398, b52.0, c54.0, A51.0. The system~11!
can be written in the form

ẏ15y2 ,

ẏ25y3 ,
7-4
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FIG. 2. ~a! A projection of the
attractor of Rossler system~12!.
~b! and ~c! Phase orbits of the
model ~5! and ~6! with D53 and
K55 and of the model~1! and~2!
with D55 and K53, respec-
tively. The optimal model~3! with
D53 andK55 has globally un-
stable orbits.
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ẏ35ab2cy11~ac21!y21~a2c!y31y1
22ay1y21y1y3

2
y2~y11b2ay21y3!

a1c2y1

1
2~12a!2A cost1~12c222cy12y22y1

2!A sint

a1c2y1
,

~12!

wherey15x @a projection of the phase orbit is shown in Fi
2~a!#. Prediction times for the optimal models~5! and ~6!,
~3!, and ~1! and ~2! are equal to 4T, 0.25T, and 0.35T,
respectively. The results of comparison of different mod
showing the advantages of a model~5! and~6! are presented
in Figs. 2~b! and 2~c! @phase orbits of the model~3! are
globally unstable#.

The fourth exampleshows that a model~5! and~6! can be
effective also when higher powers of driving terms en
equations of an original system.

An observed time series is a chaotic time realization
they coordinate of the nonautonomous Rossler system wh
differs from ~11! only in that they coordinate is driven in-
stead of thez coordinate. Again, Rossler equations can
written in the form

ẏ15y2 ,

ẏ25y3 ,
01620
s
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ẏ352b2aA2/22cy11~ac21!y21~a2c!y32ay1
2

1~a211!y1y22ay2
22ay1y31y2y3

1A~~122a21ac!cost1~11a2c2a2!sint !

2y2A sint1y3A cost1~~a11!/2!A2 sin~2t !, ~13!

wherey15y @a projection of the phase orbit is shown in Fi
3~a!#. Now, the function on the right-hand side of the la
equation contains the term sin(2t) along with the first powers
of driving terms. This term, however, does not affect sign
cantly qualitative behavior of the system. Its quantitative
fect is also not great. Therefore, our approach appears t
efficient. Prediction times for the optimal models~5! and~6!,
~3!, and ~1! and ~2! are equal to 1T, 0.25T, and 0.3T, re-
spectively. A model~5! and ~6! demonstrates an attracto
which is similar to the original one@Fig. 3~b!#. The orbits of
the standard model and of the model~3! are globally un-
stable. This example shows that the model structure~5! and
~6! is useful for the description of a sufficiently wide class
harmonically driven systems~when mainly the first powers
of driving terms affect the original dynamics!.

Efficiency of this approach for modeling real systems
illustrated in Fig. 4 where the results of modeling a rad
technical circuit—a circuit with switched capacito
@18,13#—are presented. This system can be described
brief, as follows. The circuit is driven by an external ha
monic signal with the amplitudeU0 and frequencyn @see the
scheme in Fig. 4~a!#. The elementK of the scheme is an
electronic switch—a microscheme comprising dozens
transistors and other passive elements, which is fed fro
special source of dc potential. When the value of potentiaU
FIG. 3. ~a! A projection of the attractor of
Rossler system~13!. ~b! A projection of the at-
tractor of the model~5! and ~6! with D53 and
K55. The model~1! and ~2! with D54 andK
53 and the model~3! with D53 andK52 dem-
onstrate globally unstable orbits.
7-5
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FIG. 4. ~a! A circuit with switched capacitors (K is a switch!. The values of the parameters of the circuit are following:R510V, L
514 mH, C150.1 mF, C254.4 mF, the value of the threshold potentialU thr520.2 V, U052.3 V, n53 kHz, a sampling frequency is
250 kHz. ~b! A projection of the attractor of the experimental system. The valuesy2 and y1 are proportional to the current through th
resistorR and to its integral, respectively. They are presented in arbitrary units.~The time series observed contains numbers proportiona
the values of potential on the resistor. They come from the output of an ADC in the range from22048 to 2048 and are divided by 600.! ~c!
A projection of the attractor of the model~5! and ~6! with D52 andK55.
t

ue
t

m

s
lly

-

fo

to
e
b
fe
o
u

ne
re

se
al

ar

a
ue.
ac-

icit
h an
tan-

nd,
ble
s-
tric

in

hod
be
n-

ble

ppli-

us
eful
pa-

the
In-
ant
ntal
on the capacityC1 is small, linear oscillations in the circui
RLC1 occur ~the resistance of the switch is very large!.
When the value ofU increases through a threshold val
U thr , the resistance of the switch decreases abruptly and
capacityC2 is connected to the circuit.

Models were constructed from an integrated chaotic ti
realization of the current through the resistorR @Fig. 4~b!#.
Standard polynomial models cannot predict the measured
ries further than 1T ahead and demonstrate either globa
unstable or simple periodic phase orbits. A model~5! and~6!
provides the prediction time 6T @while the prediction time
for a model~3! is less than 5T# and its behavior is qualita
tively similar to the experimental one@Fig. 4~c!#.

It is possible, of course, to find examples of systems
modeling of which our approach is not useful. Such is
system~5! with a complicated dependency of the functionf
on the driving terms when it is not sufficient to take in
account only their first powers. Another example is a syst
of very high dimension when too many equations would
needed for modeling. In the latter case, our method suf
from the same shortcomings as the standard approach d
Nevertheless, the suggested approach can, obviously, be
ful for many practical situations.

IV. CONCLUSIONS

The success of modeling from a time series is determi
by the choice of informative dynamical variables, a cor
spondingstructure of model equationsand a method of cal-
culating their coefficients. Obviously, one can hope for u
ful recommendations only with respect to sufficiently sm
classes of objects to be modeled.

In this paper, a structure of equations for modeling h
ev
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monically driven systems is proposed. Our method is
modification of the standard global reconstruction techniq
The form of model equations is selected by taking into
count a priori ~or obtained experimentally! information
about the presence of harmonic driving. Namely, expl
time dependence is incorporated in model equations. Suc
approach has certain advantages in comparison with the s
dard one. It allows for using fewer model equations a
hence, calculating fewer time derivatives of an observa
and model coefficients. Efficiency of the approach is illu
trated by several examples with both additive and parame
harmonic driving.

The modification of the standard method is considered
the paper for the case of modeling froma scalar time series
and usingthe method of sequential derivativesto reconstruct
state vectors. One can, however, employ it when the met
of time delays is used. The only difference is that it would
necessary to fitD various functions. Hence, one should i
clude driving terms into each of them according to~6!. In the
same manner, application of the modification is possi
when several variables~i.e., a vector time series! are mea-
sured. Thus, the proposed method seems to be widely a
cable.
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