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Constructing nonautonomous differential equations from experimental time series
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An approach to constructing model differential equations of harmonically driven systems is proposed. It is
a modification of the standard global reconstruction technique: an algebraic polynomial which coefficients
depend on time is used for approximation. Efficiency and details of the approach are demonstrated by various
numerical and natural examples.
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[. INTRODUCTION struction methods. Such a modification was used in applica-
tion to harmonically driven oscillators ih11-13, where
Different methods of reconstructing ordinary differential harmonically excited electric oscillatory circuits with nonlin-
equationgdODE’s) from time series have been developed forear capacitance were modeled. The modification consisted in
the last two decaddd—4]. They were applied successfully reconstruction ohonautonomous equationthat is, explicit
to solve the problems of predictid®], qualitative descrip- functions of time were incorporated in model equations:
tion of dynamics [5,6], calculation of dimensions and

Lyapunov exponents of an attractaf], and signal classifi- Y1=Y2,
cation [8,9]. The success of modeling from a time series . _ 3
depends essentially on the choice of a model structure—a yo,=1(y1,y2) +acoswt+bsinwt,

number of model equations and a kind of basis functions . .
used for approximation. This choice is the most difficult partWhere'c ISa p°'¥f‘°m'a'- Thg mo_dc_al structu(@) reflects only

of a reconstruction procedure and it can hardly be completelt € case obdditive harmonic driving. .

reduced to an algorithm. The methods employed involve, as,. In this paper a genergl approach to_global nonlinear mod-
a rule, reconstruction of ODE’s ia universal form Thus, a eling of harmonically driven systems is proposed. It can be

widely used approacP4—7,1q which we callstandardin- effective not only for additive, but for an arbitrary way of
volves reconstruction of eiquations in the form harmonic driving. This approach is more general due to an-

other modification of the standard model structure. It is as-
sumed that all model coefficients may depend on time, i.e.,
the coefficientss . . in (2) are replaced by the expres-
sions €, 1, I, Coswt+by || sinwt).
(1) This approach is described in details in Sec. Il B which
follows the discussion of the possibilities and limitations of
the standard metho@ec. Il A). Efficiency of the new modi-
fication is demonstrated in Sec. Il where harmonically
driven (in various way} systems are modeled. Advantages
and potentialities of the approach are discussed in Sec. IV.

Y1:y21
S/2:y3'
yD:f(yliyZI e !yD)1

wherey, is an observabld,is a polynomial of an ordeK:

K D II. MODELING NONAUTONOMOUS SYSTEMS
f(y1.Yo, ... V)= > Ci,i, |DH y'ji , A. The standard approach
PP Ip=0 vertt j=1 . . .
v ° 2 Let us consider, in brief, the standard approach to the
D global reconstruction and discuss possible reasons of its in-
efficiency in many cases. The problem is as follows. Experi-
S =K. : | . ;
i mental data are in the form of a scalar time series, that is a

finite sequence of values of an observabte {ui}iNgl, o
However, such methods appear to be inefficient in many=uv(t;), tj=iAt, i=1,... N,, whereAt is a sampling in-
situations. In particular, universal models often contain aerval. The realization observed is sufficiently smooth. It is
large number of coefficients and demonstrate divergent soltrecessary to construct model ODE’s that demonstrate a be-
tions. These difficulties may arise, e.g., when nonautonohavior qualitatively similar to the original one and allow for
mous systems which this paper is devoted to are modeled.an accurate short-term prediction. Under the standard ap-
A modification of the standard approach in application toproach, a procedure for solving the problem follows. First, a
modeling objects of a sufficiently small class seems to be gertain value of a model dimensidd is selected. Second,
promising way of further development of the global recon-state vectorsy(t;) are reconstructed by the method
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of sequential derivatived) time derivatives are obtained by models. It consists in decreasing a model dimension and a
differentiating the observed series numericfyl0]). Third, = number of its coefficients due to the change of a model struc-

the dependencyp(y) is approximated by a polynomig2).  ture. This change should lean on knowledge of specific fea-
The values of coefficients;_ | . are calculated by the tures of an object under investigation, universality of models
107200 D

least squares technique. That is, their values are selected 98”‘9 in part lost.

as to minimize o )
B. The modification of model equations structure

N
1 - So, a ibl f the standard h devel t
2_= N ' ' 2 , a possible way of the standard approach developmen
€N ;1 (Yo(t) = F(ya(t).y2(t), - - Yo% (¢ e choice of a model structufim application to a certain
class of objectsthat would allow for obtaining efficient
odels ofless dimensianSuch a choice can be done if one

whereN is a number of state vectors reconstructed from th o . : .
nowscharacteristic featuresf objects which belong to this

scalar time series. Now, the problem is reduced to solving | I thi ial f d
system of linear algebraic equations since the funcfigm  ©'@SS- In this paper we propose a special structure for mod-

linear with respect to the fitting coefficients. Finally, effi- €ling harmonically driven systems. A model takes the form
ciency of a model obtained is checked. If the model is not

effective then one should chan¢gs a rule, increage poly- Yi=Ya,
nomial orderK or a model dimensio until a satisfactory )
model is found. Y2=Ys,
Experience of using the above procedure shows that the (5)

standard structure of model equatioii$ and (2) does not

allow for effective description of an observed process at all if

models of moderate dimensiofepproximately 3—#do not Yo=f(Y1,¥2, ... Yp,tb),

work well. Reconstructed equations often demonstrate a be-

havior qualitatively different from the original one, in par- wherey;=v and the functiorf depends on time explicitly.
ticular, divergent solutions. There are several reasons fdit is easy to show that can depend on time only via func-
this. First, increase of the model dimensibn(that means tions coswt and sinwt in this case. We have employed a
increase of the order of numerical differentiatiaesults in  polynomial of an ordeK with varying coefficients:

increase of the effect of noise. Second, a polynomial of a

high order may appear to be necessary for approximation. If f(y1,¥2, -...¥Yp,t)

the values oD andK are big, then a standard model contains K

a very large number of coefficientsM: M=(D _ Z (c

+K)!/D!K!. The more is the value dfl, the less accurate ol
are the estimates of the coefficients. Third, an orbit in a
model phase space may go out of the region containing ex-
perimental data due to the approximation error. Then, the
behavior of the model is no longer connected with the be-

havior of the object. _ So, f is linear with respect to the terms c@sand sinwt. In
To summarize, one of the_ main reasons of the Stf_:lndf’ﬂgeneraL these harmonic functions can enter the expression
approach inefficiency is the big size of the models. This dif-fo; f i an arbitrary way, buté) is a simple and an effective
ficulty is, in general,_ unavoidable_because the standard Stru%rpproximation for a sufficiently wide class of systefsse
ture of model equationdl) and(2) is not, as a rule, a “natu- - examples in Sec. Il A more sophisticated method of taking
ral” and the most relevant one for the variety of real systemspe driving terms into account is also possible, e.g., one can
and situations. Moreover, employing the standard mode|,5e higher powers of cast and sinwt along with their first
structure results in increase of a model dimension. It can bBowers. But the size of a model can increase significantly,
seen clearly by considering the reconstruction of dynamicaj|iowed by the above-mentioned difficulties.
systems. As it follows from the results of Takerd5] and One does not need to develop a new algorithm for the
Sauer, Yorke, and Casdagli6], any system of ODE’s can  construction of a models) and(6). It is possible to employ
be written in the forn(1) for almost every observable But e standard procedutec. 11 A) if the value of a driving
the value ofD should satisfy the conditioP>2d, whered  heriod T is preliminary calculated from a time series. The
is the dimension of a smooth manifold within which an ob-|atter is necessary for application of the linear least squares
served motion occurs or the box-counting dimension of argytine to determining the other model coefficients. A way of
attractor(if the motion corresponds to an attragtor finding the value of a period was suggestedia—13 for
Thus, one can assume the direction of refining universajhe construction of a modéB). It can also be used in our
case without any change. The idea is as follows. First, a
sufficiently big value of a polynomial ordef is selected.
We use the term “dynamical system” to denote a mathematicalSecond, an initial estimat&=T* of the period value is
object only, in contrast to the existing practice of using it in appli- found (this estimate can be derived as a location of a peak in
cation to real systemgl4]. the power spectrum of the observed seriég this value of
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T, one obtains the values 0{:|1,|2

bI | In?

1'20 9D
squares method. Then, the trial valuelas varied through a
certain range near the initial estimate-T* and approxima-

,,,,, @y 0y, I ing period because the latter is a characteristic time scale for
and an approximation errerby the linear least ~all examples.

The first exampldlustrates the efficiency of the proposed
modification in the presence of noi§e the case of additive
fdriving). An observed time series is a chaotic time realiza-
gion of the coordinatey; of harmonically driven Duffing os-

e(T) has a sharp and deep minimum which correspondcmator:

quite precisely to the “true” value of the driving period.
Note, that rather high accuracy of determining the driving

period value is needed. Otherwise, a significant “phase dif- Y1i=Ya,
ference” between original driving and its approximation _
a cog (27 T)t]+bsin (27/T)t] occurs during the investigated Y2=—YoY2— Y1~ Y3+ Ag COSwit, (7)

time interval Ty=NAt. One can derive an estimate for an
accessible erroAT of determining the value of the driving wherey,=0.1, Ag=35, wo=1. This system of ODE'’s can
period (from the condition that the relative error of driving be written in the form(1) and(2) with D=4 andK=3. To

approximation does not exceeg): see this, it is sufficient to differentiate the second equation
twice and replace the terdy, coswgt by its expression from
AT V3 T (7). Thereby, one derives

— <&p5— .
T 27Ty \
Y1=Y2,
The precise calculation of values of certain driving param- .

eters is, in general, necessary when nonautonomous equa- Y2=Y3,
tions are reconstructed.

Y3=Ya,
I1l. APPLICATION OF THE MODIFIED MODEL
STRUCTURE Ya=—YoYa— (1+3yi+ wo)y3—6y1y5— 03 yoy2
Further, we illustrate the advantages of the suggested ap- _ wﬁ(yﬁy?). (8)

proach by four numerical and one natural examples. All nu-

merical time series were obtained by integrating numericallyrne pest mode(l) and (2) is obtained, naturally, ab =4,
known systems of ODE’(;‘obje(;ts of.modeling”) using the k-3 The pbest mode(5) and (6) is obtained aD =2, K
fourth-order Runge—Kutta routine with the step=0.01. In - _3 Al model coefficients agree within a percent with the
each case, a time series contained 6000 val@ésut 10  qginal coefficients in both cases. Prediction time is large
driving periodg. An original time series in the physical ex- enough for both models:Band 7T, respectively.
periment was obtained by analogous-digital conversion of a The standard method is also effective because the struc-
realization of potential. A standard systdf) and(2) and a ture of the original systeni®) and the model structuréd)
nonautonomous syste®) and (6) are reconstructed from  onq(2) completely coincide. However, to build an effective
the time series. Results achieved by using a model with adsianqard model, one needs to calculate four time derivatives
ditive driving (3) are also prese_nted. For each model strucyf an observable, while to construct a nonautonomous
ture only the best(corresponding to the most effective nqqe| it is necessary to find only two derivatives. Therefore,
mode) results are reported. . when a noisgnamely, Gaussian white noise with the stan-
To checkqualitative similaritybetween an original and & 5y deviation of about 0.001 of the signal standard devia-
model behavior, a model phase orbit is compared to a phasg,,) is added to the same time series, the standard method is
orbit reconstructed from a time series. The goodness of, |onger effective(the values of model coefficients are far
quantitative descriptioris estimated as an interval of a suf- g0, original onesdue to huge errors of numerical differen-
figiently accurate short-term prediction according [f/]. tiation, while a mode(5) and (6) remains quite efficientthe
First, the value ofo(7)—root-mean-squared erfoof pre- yajyes of model coefficients are close to the original dnes
dicting a time intervalr ahead(normalized to the standard Thg pregiction time is small for both models, but for a non-
deviation of an observablg)—is calculated. Second, a time 5,,1onomous model it is 10 times greater than for a standard
mterval. Tpred @t Which the vglue otr(7) becomes more than e 0.5 and 0.09, respectively. Note, that a modé) is
a certain threshold value, is found. We choose the thresh- {he most relevant in the case considered since its structure is
old valueo.=0.05. The time intervatpeqis calledpredic-  exactly the same as the form of the original syst&nSo, a
tion time This value is always presented in units of the driv- mogel (3) does not contain several superfluous coefficients
which are incorporated i5) and (6). However, the results
which are achieved by using a mod8) almost do not differ
The average is carried over different initial conditions. Thesefrom the above-mentioned results for the mogland (6).
initial conditions are taken from the part of a time series which is  The second exampl#ustrates a situation when a model
not used for a model construction; they are always the same for atb) and(6) is efficient while the standard approach does not
object and for a model. lead to success because the dependélde too complex to
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FIG. 1. (a) A projection of the attractor of Toda oscillatGt0). (b) Prediction error for the modéll) and (2) with D=4 andK =6 (the
dashed ling for the model(3) with D=2 andK =10 (the circles and for the mode(5) and (6) with D=2 andK=9 (the solid ling. (c)
and(d) Phase orbits of the modéb) and (6) and of the mode(3), respectively. Phase orbits of the standard model are globally unstable.

be approximated by a polynomial. Mod€® are not effec-  Similarly to the first example, it is possible to show that the
tive also since taking only additive driving terms into ac- equationg9) can be written in the fornil) with D=4 and a

count is not sufficient. rather complicated function on the right-hand side:
An observed time series is a chaotic time realization of
the coordinatey; of harmonically driven Toda oscillatda yi=y
projection of the phase orbit is shown in Figall: 1
yl:yZ! y2:y31
Vo= —0.45/,+ (5+4 cost)(e Y1—1)+ 7 sint). (9) Y3=Ya,

. 8
Ya=—0.45/,+(ys+ 0-45/2)(7)/23_“_ 1

8
+ e‘yl( Y3—Ya— 5ya(e7¥1-1)

(e ™V1—1)(y3+0.45/,)+4(y,+0.45/;— 10y,e Y1)+ 35

(10
7—4ye 1+ (e V1-1)?

X

Prediction times for the optimal mode(S) and(6), (3), and  an original system in a linear additive way. Nevertheless, a
(1) and(2) are equal to T, 1.5T, and 0.15, respectively. model (3) does not work well, but a moddb) and (6) is
For this example, the graphs versust (which allow for  quite effective.
determining a prediction timeare shown in Fig. (b). The An observed time series is a chaotic time realization of
best model(5) and(6) is obtained aD =2, K=9 [Fig. 1(c)]. thex coordinate of the Rossler system, theoordinate being
The values of its coefficients are quite close to the values ofiriven
the corresponding coefficients of the original systétm
compare these values, one should replace the exponential X=—y—z
function by its Taylor series expansioThe optimal model '
(3) with D=2 and K=10 works essentially worsgFig.
1d)]. _ . y=x+ay, (11
The optimal for prediction standard model with=4 and
K=6 demonstrates globally unstable orbits. This is due to _
the fact that effective approximation of complex dependence z=b—cz+xz+Acost,
(10) in a space of high dimension by a polynomial is very
difficult. The model is too big, estimates of the values of its _ _ _ _
coefficients are not reliable. A model orbit may go out of thewhergaa—(_).39$, bEZ.fO, ¢=4.0, A=10. The systen(1)
region of the observed motidfmue to unavoidable approxi- can be written in the form
mation errorg Then, the polynomial is no longer connected
with the original system. As a result, a model orbit goes to Vi=Ys,
infinity. Note that this, unsuccessful for the standard method
result, appears even in the absence of noise. )
The third exampleharmonic driving enters equations of Yo=VY3,
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1 1 FIG. 2. (a) A projection of the
attractor of Rossler systeri?2).

(b) and (c) Phase orbits of the

s X model (5) and (6) with D=3 and

1 1 K=5 and of the mode(l) and(2)
with D=5 and K=3, respec-

1 1 . 1 tively. The optimal mode(3) with
-12.4 rzal —” — gzal D=3 andK=5 has globally un-

58 bg! 87 58 ! af stable orbits.
b) <)
yz=ab—cy;+(ac—1)y,+(a—c)ys+yi—ayy,+yiys y3=—b—aA%2-cy;+(ac—1)y,+(a—c)ys—ayj;
_ Ya(ys+b—ay,+ys) +(a%+1)y1y,—ay;—ayiys+yays

atc—y; +A((1—2a’+ac)cost+ (1+a—c—a?)sint)

—(1—a)?Acost+(1—c®—2cy;—y,— y?)Asint
+
atc—y,

—y,Asint+yzAcost+ ((a+ 1)/2)A?sin(2t), (13)

(12) wherey, =y [a projection of the phase orbit is shown in Fig.
3(a)]. Now, the function on the right-hand side of the last
equation contains the term simf2long with the first powers

wherey, =x [a projection of the phase orbit is shown in Fig. of driving terms. This term, however, does not affect signifi-
2(a)]. Prediction times for the optimal mode(s) and (6) cantly qualitative behavior of the system. Its quantitative ef-
(3), and (1) and (2) are equal to #, 0.25T, and 0_33’ fect is also not great. Therefore, our approach appears to be
respectively. The results of comparison of different model<Efficient. Prediction times for the optimal modéf and(6),
showing the advantages of a mod8) and(6) are presented (3): and(1) and(2) are equal to T, 0.28T, and 0.9, re-
in Figs. 2b) and Zc) [phase orbits of the moddB) are spectively. A model(5) and (6) demonstrates an attractor
globally unstablg which is similar to the original ongig. 3(b)]. The orbits of

The fourth examplshows that a modéb) and(6) can be the standard model and of the mod8) are globally un-

effective also when higher powers of driving terms enterStable. This example shows that the model structGrend
equations of an original system. (6) is useful for the description of a sufficiently wide class of

An observed time series is a chaotic time realization of@rmonically driven systemsvhen mainly the first powers

they coordinate of the nonautonomous Rossler system whicRf driving terms affect the original dynamics
differs from (11) only in that they coordinate is driven in-
stead of thez coordinate. Again, Rossler equations can b
written in the form

Efficiency of this approach for modeling real systems is
dllustrated in Fig. 4 where the results of modeling a radio-
technical circuit—a circuit with switched capacitors
[18,13—are presented. This system can be described, in
brief, as follows. The circuit is driven by an external har-
- monic signal with the amplitudg, and frequency [see the
Yi=Va, scheme in Fig. @)]. The elementk of the scheme is an

electronic switch—a microscheme comprising dozens of

_ transistors and other passive elements, which is fed from a
Yo=VY3, special source of dc potential. When the value of potehtial

FIG. 3. (@) A projection of the attractor of
Rossler systen(13). (b) A projection of the at-
tractor of the model5) and (6) with D=3 and
K=5. The model(1) and (2) with D=4 andK
=3 and the mode(3) with D=3 andK =2 dem-
onstrate globally unstable orbits.

YR .y.1 — YR .y.1 —
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FIG. 4. (a) A circuit with switched capacitorsK is a switch. The values of the parameters of the circuit are followiRg: 1002, L
=14 mH, C,;=0.1 uF, C,=4.4 uF, the value of the threshold potentidl,,= —0.2 V, Uy=2.3 V, v=3 kHz, a sampling frequency is
250 kHz. (b) A projection of the attractor of the experimental system. The vajyeandy; are proportional to the current through the
resistorR and to its integral, respectively. They are presented in arbitrary \{iihe. time series observed contains numbers proportional to
the values of potential on the resistor. They come from the output of an ADC in the range-26dA8 to 2048 and are divided by 6D(c)
A projection of the attractor of the modé) and(6) with D=2 andK=5.

on the capacityC, is small, linear oscillations in the circuit monically driven systems is proposed. Our method is a
RLC,; occur (the resistance of the switch is very layge modification of the standard global reconstruction technique.
When the value ol increases through a threshold value The form of model equations is selected by taking into ac-
Uy, the resistance of the switch decreases abruptly and tHeount a priori (or obtained experimentallyinformation
capacityC, is connected to the circuit. about the presence of harmonic driving. Namely, explicit

Models were constructed from an integrated chaotic timdime dependence is incorporated in model equations. Such an
realization of the current through the resis®iFig. 4(b)]. approach has certain advar)tages in comparison wuh the stan-
Standard polynomial models cannot predict the measured sgf"rd one. It allows for using fewer model equations and,
ries further than T ahead and demonstrate either globally '€NCe: calculating fewer time derivatives of an observable
unstable or simple periodic phase orbits. A ma@land (6) and model coefficients. Eff|C|.ency of the. approach is |IIus-.

. e : : : T : trated by several examples with both additive and parametric

provides the prediction timeT6 [while the prediction time

: . S . harmonic driving.
for a model(3) is less than 3] and its behavior is qualita- e mogification of the standard method is considered in
tively similar to the experimental or{é€ig. 4(c)].

the paper for the case of modeling frarscalar time series

It IS possmle,_of course, to find gxamples of systemg forand usinghe method of sequential derivativiesreconstruct
modeling of which our approach is not useful. Such is

ith i dd q f the f o 8state vectors. One can, however, employ it when the method
system(5).vy|t a comp |cate. Jependency o the funct ON  6f time delays is used. The only difference is that it would be
on the driving terms when it is not sufficient to take into necessary to fiD various functions. Hence, one should in-

account iny their fir_st powers. Another examP'e IS a systemy e driving terms into each of them accordind@a In the
of very high dimension when too many equations would D&z e manner, application of the modification is possible
needed for modeling. In the latter case, our method suffer&,hen several variablei.e., a vector time serigsare mea-

from the same shortcomings as the standard approach do%red. Thus, the proposed method seems to be widely appli-
Nevertheless, the suggested approach can, obviously, be Useple.

ful for many practical situations.
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