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Control of chaos was achieved experimentally for the first time in a nonautonomous RL-diode
circuit using a two-level system and modeled numencally using a multiparameter one-
dimensional mapping). This system is a modification of the classical Ott—Grebogi-Yorke method
but is distinguished by its ease of implementation in real systems. © 1999 American

Institute of Physics. [S1063-7850(99)02702-0]

1. The experimental implementation of methods of con-
trolling chaos in nonlinear systems frequently comes up
against the complexity of the algorithms for the vanation of
the control parameter and requires the development of sim-
pler variants. Such approaches may include the modification
of the Ott—Grebogi—Yorke method' proposed in Ref. 2, in
which the variation of the parameter p, which in the classical
variant is proportional to the deviation of the state of the
system from that being stabilized, is replaced by switching
between two fixed values p and p,, i.e., by the two-level
equation |
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where k= (p,—p1)/2, po=(p1+Pp2)/2, p2>p,, and x, and
xo are the instantaneous value of the variable and the value
on the stabilized unstable orbit in the Poincare cross section
(in general a vector).

Here two-level stabilization is achieved in physical and
numerical experiments in two variants: (a) with the algo-
rithm (1) ‘‘switched on’” when the mapping point in the
phase space reaches a given vicinity of the stabilized orbit
(on entering a ‘‘window’’) and (b) in a simpler variant under
the continuous action of the algorithm (1) without introduc-
ing a window. The objects of the investigation are a nonlin-
ear dissipative oscillator periodically excited by an external
force, i.e., a nonautonomous RL diode circuit (shown by the
heavy line in Fig. 1) and a multiparameter one-dimensional
mapping which accurately models the complex dynamics of
the experimental system in the subharmonic resonance fre-
quency range:

X,+1=A+x,exp(—d/N)cos(2m/(N(1+ Bx,))), (2)

where A is the analog of the amplitude of the external action,
N=T,/T is the normalized frequency of the action, d char-
acterizes the dissipation, 8 is the nonlinearity parameter, and
n=1,2,3... is the discrete time."

We demonstrate the efficiency of this simplified control
procedure and analyze its capabilities and shortcomings: the
motion takes place in a given range of the dynamic vanable
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near a selected orbit; an increase in the period of the staba-
lized motion is accompanied by a decrease in the range of
parameters in which stabilization 1s possible.

2. We shall first analyze the two-level control procedure
using the multiparameter mapping (2), which we rewrite 1n
the form x, ., ; =A + f(x,), where A is the control parameter.
In the immediate vicinity of the fixed point x,, the dynamics
of the system are described by

- df | -~ .
x0+xn+l=A0+f(x0)+E;_ XptAp, (3)

£0

where x, . ; and x, correspond to small perturbations and the

variation of the control parameter A, is also introduced for
control purposes. We separate Eq. (3) into the equation for
the fixed point |

xo=Ag*f(x0) (4)
and the equation for the variations
- _ daf| .-
xn+l=Au+ dx- 1 Xp (5)
" n xﬁ

We set ourselves the task of using A, to restrict the motion to
the immediate vicinity of the unstable fixed point x, (an
unstable cycle of period 1) for values of the parameters A,
B, d, and N corresponding to chaos. For this purpose we
determine the value of x, from Eq. (4), find the derivative of
the function f at this point, and define the window o. We
then iterate Eq. (3) beginning with various initial conditions
until x, is within o of the point xg, i.e., |x,|<o. The param-
eter A, should then be varied in accordance with rule (1)
(A, =k for x,>0; A,=—k for x,<0), so that the mapping
point does not leave the given vicinity of the fixed point,
x,.|<o. This is possible if, in accordance with Eq. (5), the
following inequality is satisfied: |

af
dx,

—0'(1+ ,o)qéa. ©

Thus, the condition for finding x, near a fixed point of period
Lis (dffdxy)y,> —2. This senies of actions 1s easily trans-
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ferred to cycles of period m=24.,8..., if we use formulas
for the corresponding iterations x,.,,=f (x,) rather than
Eq. (2).

The results of numerical experiments to implement this
control procedure using the mapping (2) for values of A, B,
d, and N corresponding to chaos are plotted in Fig. 2. With
no control the steady-state motion of the system on the phase
plane takes place on a chaotic attractor occupying an ex-
tended region of the parabola (Fig. 2a), but when the control
1s switched on it 1s confined to a given vicinity of the point
Xo. The degree of “‘compression’” of the attractor and the
duration of the establishment process (between switching on
the control and stabilization) is determined by the choice of
k: for small k the values of x, are positioned near x,, as k&
increases the spread of x, increases and the duration of the
transition process decreases. This is illustrated by the time
series of the oscillations in the system shown in Figs. 2b and
2c: for k=0.05 stabilization occurs after 80 iterations,
whereas for k=0.1 it occurs after around 20. The calcula-
tions show that two-level control can also stabilize the mo-
tion near unstable cycles of period 2 and 4. However, the
higher the period of the unstable cycle, the larger the factor
multiplying the absolute value and the smaller the region in
which stabilization can be achieved.

We shall simplify the control procedure by retaining two
fixed values Ap+k and A,—k after the parameter A but re-
moving the condition that x, must lie within o of the fixed
point of period 1. In this case, the control parameter A does
not have values of Ay as in the previous case. The calcula-
tions show that the new procedure also stabilizes the motion
near the fixed point of period 1 but appreciably simplifies the
experimental implementation of the control system.

3. In a physical expennment, the two-level control
scheme (Fig. 1) was constructed in accordance with the sec-
ond (simplified) variant of those considered in Sec. 2. An RL
circuit with a diode (L= 100 mH, KD202 diode) was excited
by a pulsed signal from a generator via an amplifier. The
gain p could have two values: p;=1 and p,=1+A, where
A was varied between 0.00 and 0.07 during the experiment.
The control system was used to compare the voltage V at the
diode and at the reference voltage source V, at times when
the external action has a certain phase. Depending on the
sign of V—V the level of the exciting signal was set at one
of two values. The form of the stabilized motion was deter-
mined by defining the reference voltage V,, the value of A,
and the time interval between the comparisons of the diode
and reference voltage. Note that as in Ref. 2, there are two
levels of the control parameter p; and p, in the experimental
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FIG. 1. Schematic of experiment {the heavy line indicates the
system being studied): 1 — oscillator, 2 — amplifier, 3 —
pulse shaper, 4 — amplitude detector, 5 — comparator, 6 —
trigger, and / — control circuit.

procedure, but the control parameter never has the value
po=(p2+p1)/2.

The results of the experimental investigations showed
that the simplified two-level control variant is effective and
revealed qualitative agreement with the results of the nu-
merical modeling. Figure 2d illustrates the stabilization of
the motion near an unstable cycle of the period of the exter-
nal action for the case, where before control was switched on
chaotic oscillations existed in the system, formed as a result
of a series of doubling bifurcations of this cycle.” This higure
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FIG. 2. a — Mapping on the plane x,, ;-x, with control switched off (/)
and switched on (2); b, ¢ — time series of oscillations in the system (2) for
Ag=7, d=0.13, =0.205, N=0.4 for the same initial conditions for k%
=0.05 and £=0.10, respectively; d — mapping of the sequence of the
experimental system without control (/) and with control for A=0.04(1)
and A=0.07 (2).
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gives the dependence V.. ,(V,), where V. 1s the voltage at
the diode at discrete times i after the period of action. The
main diagram shows the case where the control system 1s
swilched off and the magnified fragment gives the depen-
dence after switching on the control for vanious values of A
(crosses denote A =0.04 and circles A=0.07). As in the nu-
mencal expennment, when the control 1s swiiched on, the
points 1n the stroboscopic cross section form piecewise linear
sets with a discontinuity near the reference value. As A de-
creases, the vicinity of the unstable cycle visited by the map-
ping point becomes shorter. As A approaches zero, control is
abruptly terminated.

4. A two-level control system can organize the moton of
the system in a given range of the phase space of nonauto-
nomous oscillators 1in chaotic motion based on any of the
subharmonic cycles. The method is fairly approximate and is
stable with respect to the unavoidable perturbations in a
physical expennment. An advantage of this control system 1is
that the algonthm and thus the design of the control circuits
1s extremely simple. However, it can only confine the motion
1In a given interval and is not suitable for prolonged motion
on an unstable orbit, as in the classical stabilization proce-
dure.
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DAn RL diode circuit is widely used as a selective element with electronic

tuning, as a frequency divider and multiplier, and has been considered as 3
memory cell with phase recording of information,> but recently. following
the observation of chaotic dynamics® in this circuit, it has become a test
bed for studying vanous nonlinear oscillatory phenomena. The model
mapping (2) was obtained for dissipative oscillators with ‘‘soft sprning’
nonlinearity, periodically excited by forcing pulses dunng which addi-
tuonal losses are introduced into the system. For an RL diode circuit this 1s
achieved when the pulses are positive for the diode.*

2'The thickening of the lines of the experimental mapping and their separa-
tion 1n Fig. 2d 1s caused by the real system nol being one-dimensional and
by technical factors (the unavoidable propagation of the control signal of
the electromic switch into the exaitabon signal of the osaillator carcuit.

'E. Ou, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).

2Z. Galias and M. J. Ogorzakk, in Proceedings of the Third Iniernational
Workshop on Nonlinear Dynamics of Electronic Systems, NDES ' 95, Dud-
lin, Ireland, 1998, pp. 229-232

*P.S. Linsay, Phys. Rev. Lett. 47, 1349 (1981).

‘B. P. Bezuchko, M. D. Prokhorov, and E. P. Seleznev, Chaos Solitons
Fractals §, 2095 (1995).

*A. E. Kaplan, Yu. A. Kravtsov, and V. A. Rylov, Paramerric Oscillators
and Frequency Dividers [in Russian], Sovet-skoe Radio, Moscow (1966),
334 pp.

Translated by R. M. Durham



